Summary:
Large-model was added first. With the addition of support for multiple PIC
models in LLVM, now add small-model PIC for 32-bit PowerPC, SysV4 ABI. This
generates more optimal code, for shared libraries with less than about 16380
data objects.
Test Plan: Test cases added or updated
Reviewers: joerg, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, mcrosier, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D5399
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221791 91177308-0d34-0410-b5e6-96231b3b80d8
cases from Halide folks. This initial step was extracted from
a prototype change by Clay Wood to try and address regressions found
with Halide and the new vector shuffle lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221779 91177308-0d34-0410-b5e6-96231b3b80d8
removes windows line endings and other noise. This is in prelude to
making substantive changes to these tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221776 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables the vec_vsx_ld and vec_vsx_st intrinsics for
PowerPC, which provide programmer access to the lxvd2x, lxvw4x,
stxvd2x, and stxvw4x instructions.
New LLVM intrinsics are provided to represent these four instructions
in IntrinsicsPowerPC.td. These are patterned after the similar
intrinsics for lvx and stvx (Altivec). In PPCInstrVSX.td, these
intrinsics are tied to the code gen patterns, with additional patterns
to allow plain vanilla loads and stores to still generate these
instructions.
At -O1 and higher the intrinsics are immediately converted to loads
and stores in InstCombineCalls.cpp. This will open up more
optimization opportunities while still allowing the correct
instructions to be generated. (Similar code exists for aligned
Altivec loads and stores.)
The new intrinsics are added to the code that checks for consecutive
loads and stores in PPCISelLowering.cpp, as well as to
PPCTargetLowering::getTgtMemIntrinsic().
There's a new test to verify the correct instructions are generated.
The loads and stores tend to be reordered, so the test just counts
their number. It runs at -O2, as it's not very effective to test this
at -O0, when many unnecessary loads and stores are generated.
I ended up having to modify vsx-fma-m.ll. It turns out this test case
is slightly unreliable, but I don't know a good way to prevent
problems with it. The xvmaddmdp instructions read and write the same
register, which is one of the multiplicands. Commutativity allows
either to be chosen. If the FMAs are reordered differently than
expected by the test, the register assignment can be different as a
result. Hopefully this doesn't change often.
There is a companion patch for Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221767 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a new pass that can inject checks before indirect calls to
make sure that these calls target known locations. It supports three types of
checks and, at compile time, it can take the name of a custom function to call
when an indirect call check fails. The default failure function ignores the
error and continues.
This pass incidentally moves the function JumpInstrTables::transformType from
private to public and makes it static (with a new argument that specifies the
table type to use); this is so that the CFI code can transform function types
at call sites to determine which jump-instruction table to use for the check at
that site.
Also, this removes support for jumptables in ARM, pending further performance
analysis and discussion.
Review: http://reviews.llvm.org/D4167
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221708 91177308-0d34-0410-b5e6-96231b3b80d8
This is a first step for generating SSE rcp instructions for reciprocal
calcs when fast-math allows it. This is very similar to the rsqrt optimization
enabled in D5658 ( http://reviews.llvm.org/rL220570 ).
For now, be conservative and only enable this for AMD btver2 where performance
improves significantly both in terms of latency and throughput.
We may never enable this codegen for Intel Core* chips because the divider circuits
are just too fast. On SandyBridge, divss can be as fast as 10 cycles versus the 21
cycle critical path for the rcp + mul + sub + mul + add estimate.
Follow-on patches may allow configuration of the number of Newton-Raphson refinement
steps, add AVX512 support, and enable the optimization for more chips.
More background here: http://llvm.org/bugs/show_bug.cgi?id=21385
Differential Revision: http://reviews.llvm.org/D6175
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221706 91177308-0d34-0410-b5e6-96231b3b80d8
My original support for the general dynamic and local dynamic TLS
models contained some fairly obtuse hacks to generate calls to
__tls_get_addr when lowering a TargetGlobalAddress. Rather than
generating real calls, special GET_TLS_ADDR nodes were used to wrap
the calls and only reveal them at assembly time. I attempted to
provide correct parameter and return values by chaining CopyToReg and
CopyFromReg nodes onto the GET_TLS_ADDR nodes, but this was also not
fully correct. Problems were seen with two back-to-back stores to TLS
variables, where the call sequences ended up overlapping with unhappy
results. Additionally, since these weren't real calls, the proper
register side effects of a call were not recorded, so clobbered values
were kept live across the calls.
The proper thing to do is to lower these into calls in the first
place. This is relatively straightforward; see the changes to
PPCTargetLowering::LowerGlobalTLSAddress() in PPCISelLowering.cpp.
The changes here are standard call lowering, except that we need to
track the fact that these calls will require a relocation. This is
done by adding a machine operand flag of MO_TLSLD or MO_TLSGD to the
TargetGlobalAddress operand that appears earlier in the sequence.
The calls to LowerCallTo() eventually find their way to
LowerCall_64SVR4() or LowerCall_32SVR4(), which call FinishCall(),
which calls PrepareCall(). In PrepareCall(), we detect the calls to
__tls_get_addr and immediately snag the TargetGlobalTLSAddress with
the annotated relocation information. This becomes an extra operand
on the call following the callee, which is expected for nodes of type
tlscall. We change the call opcode to CALL_TLS for this case. Back
in FinishCall(), we change it again to CALL_NOP_TLS for 64-bit only,
since we require a TOC-restore nop following the call for the 64-bit
ABIs.
During selection, patterns in PPCInstrInfo.td and PPCInstr64Bit.td
convert the CALL_TLS nodes into BL_TLS nodes, and convert the
CALL_NOP_TLS nodes into BL8_NOP_TLS nodes. This replaces the code
removed from PPCAsmPrinter.cpp, as the BL_TLS or BL8_NOP_TLS
nodes can now be emitted normally using their patterns and the
associated printTLSCall print method.
Finally, as a result of these changes, all references to get-tls-addr
in its various guises are no longer used, so they have been removed.
There are existing TLS tests to verify the changes haven't messed
anything up). I've added one new test that verifies that the problem
with the original code has been fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221703 91177308-0d34-0410-b5e6-96231b3b80d8
The ISel lowering for global TLS access in PIC mode was creating a pseudo
instruction that is later expanded to a call, but the code was not
setting the hasCalls flag in the MachineFrameInfo alongside the adjustsStack
flag. This caused some functions to be mistakenly recognized as leaf functions,
and this in turn affected the decision to eliminate the frame pointer.
With the fix, hasCalls is properly set and the leaf frame pointer is correctly
preserved.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221695 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM replaces the SelectionDAG pattern (xor (set_cc cc x y) 1) with
(set_cc !cc x y), which is only correct when the xor has type i1.
Instead, we should check that the constant operand to the xor is all
ones.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221693 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch enables code generation for the MIPS II target. Pre-Mips32
targets don't have the MUL instruction, so we add the correspondent
pattern that uses the MULT/MFLO combination in order to retrieve the
product.
This is WIP as we don't support code generation for select nodes due to
the lack of conditional-move instructions.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6150
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221686 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes an issue with matching trunc -> assertsext -> zext on x86-64, which would not zero the high 32-bits. See PR20494 for details.
Recommitting - This time, with a hopefully working test.
Differential Revision: http://reviews.llvm.org/D6128
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221672 91177308-0d34-0410-b5e6-96231b3b80d8
AVX2 is available.
According to IACA, the new lowering has a throughput of 8 cycles instead of 13
with the previous one.
Althought this lowering kicks in some SPECs benchmarks, the performance
improvement was within the noise.
Correctness testing has been done for the whole range of uint32_t with the
following program:
uint4 v = (uint4) {0,1,2,3};
uint32_t i;
//Check correctness over entire range for uint4 -> float4 conversion
for( i = 0; i < 1U << (32-2); i++ )
{
float4 t = test(v);
float4 c = correct(v);
if( 0xf != _mm_movemask_ps( t == c ))
{
printf( "Error @ %vx: %vf vs. %vf\n", v, c, t);
return -1;
}
v += 4;
}
Where "correct" is the old lowering and "test" the new one.
The patch adds a test case for the two custom lowering instruction.
It also modifies the vector cost model, which is why cast.ll and uitofp.ll are
modified.
2009-02-26-MachineLICMBug.ll is also modified because we now hoist 7
instructions instead of 4 (3 more constant loads).
rdar://problem/18153096>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221657 91177308-0d34-0410-b5e6-96231b3b80d8
In the case we optimize an integer extend away and replace it directly with the
source register, we also have to clear all kill flags at all its uses.
This is necessary, because the orignal IR instruction might be trivially dead,
but we replaced it with a nop at MI level.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221628 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
... and after all that refactoring, it's possible to distinguish softfloat
floating point values from integers so this patch no longer breaks softfloat to
do it.
Remove direct handling of i32's in the N32/N64 ABI by promoting them to
i64. This more closely reflects the ABI documentation and also fixes
problems with stack arguments on big-endian targets.
We now rely on signext/zeroext annotations (already generated by clang) and
the Assert[SZ]ext nodes to avoid the introduction of unnecessary sign/zero
extends.
It was not possible to convert three tests to use signext/zeroext. These tests
are bswap.ll, ctlz-v.ll, ctlz-v.ll. It's not possible to put signext on a
vector type so we just accept the sign extends here for now. These tests don't
pass the vectors the same way clang does (clang puts multiple elements in the
same argument, these map 1 element to 1 argument) so we don't need to worry too
much about it.
With this patch, all known N32/N64 bugs should be fixed and we now pass the
first 10,000 tests generated by ABITest.py.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6117
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221534 91177308-0d34-0410-b5e6-96231b3b80d8
Reversing a CB* instruction used to drop the flags on the condition. On the
included testcase, this lead to a read from an undefined vreg.
Using addOperand keeps the flags, here <undef>.
Differential Revision: http://reviews.llvm.org/D6159
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221507 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed an issue with the (v)cvttps2dq and (v)cvttpd2dq instructions being incorrectly put in the 2 source operand folding tables instead of the 1 source operand and added the missing SSE/AVX versions.
Also added missing (v)cvtps2dq and (v)cvtpd2dq instructions to the folding tables.
Differential Revision: http://reviews.llvm.org/D6001
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221489 91177308-0d34-0410-b5e6-96231b3b80d8
This test case was never actually testing the trivial spiller: the -spiller
option has not been hooked up for a while now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221475 91177308-0d34-0410-b5e6-96231b3b80d8
On 32 bit windows we use label differences and .set does not suppress
rolocations, a combination that was not used before r220256.
This fixes PR21497.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221456 91177308-0d34-0410-b5e6-96231b3b80d8
Example:
define <4 x i32> @test(<4 x i32> %a, <4 x i32> %b) {
%shuffle = shufflevector <4 x i32> %a, <4 x i32> %b, <4 x i32> <i32 4, i32 5, i32 6, i32 3>
ret <4 x i32> %shuffle
}
Before llc (-mattr=+sse4.1), produced the following assembly instruction:
pblendw $4294967103, %xmm1, %xmm0
After
pblendw $63, %xmm1, %xmm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221455 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Currently, we give an error if %z is used with non-immediates, instead of continuing as if the %z isn't there.
For example, you use the %z operand modifier along with the "Jr" constraints ("r" makes the operand a register, and "J" makes it an immediate, but only if its value is 0).
In this case, you want the compiler to print "$0" if the inline asm input operand turns out to be an immediate zero and you want it to print the register containing the operand, if it's not.
We give an error in the latter case, and we shouldn't (GCC also doesn't).
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6023
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221453 91177308-0d34-0410-b5e6-96231b3b80d8
If a section cannot be dead stripped, it is safe to use L symbols, since
the linker will keep all of it in the end.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221431 91177308-0d34-0410-b5e6-96231b3b80d8
condition to match a blend.
This prevents optimizations that work on VSELECT to perform invalid
transformations. Indeed, the optimized condition does not match the vector
boolean content that is expected and bad things may happen.
This patch yields the exact same code on the whole test-suite + specs (-O3 and
-O3 -march=core-avx2), it improves one test case (vector-blend.ll) and fixes a
bug reduced in vselect-avx.ll.
<rdar://problem/18819506>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221429 91177308-0d34-0410-b5e6-96231b3b80d8
Added missing memory folding for the (V)CVTDQ2PS instructions - we can safely fold these (but not the (V)CVTDQ2PD versions which have a register/memory size discrepancy in the source operand). I've added a test case demonstrating that stack folding now works.
Differential Revision: http://reviews.llvm.org/D5981
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221407 91177308-0d34-0410-b5e6-96231b3b80d8
This works around the limitation that PTX does not allow .param space
loads/stores with arbitrary pointers.
If a function has a by-val struct ptr arg, say foo(%struct.x *byval %d), then
add the following instructions to the first basic block :
%temp = alloca %struct.x, align 8
%tt1 = bitcast %struct.x * %d to i8 *
%tt2 = llvm.nvvm.cvt.gen.to.param %tt2
%tempd = bitcast i8 addrspace(101) * to %struct.x addrspace(101) *
%tv = load %struct.x addrspace(101) * %tempd
store %struct.x %tv, %struct.x * %temp, align 8
The above code allocates some space in the stack and copies the incoming
struct from param space to local space. Then replace all occurences of %d
by %temp.
Fixes PR21465.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221377 91177308-0d34-0410-b5e6-96231b3b80d8