These were pretty straightforward instructions, with some assembly support
required for HLT.
The ARM assembler is keen to split the instruction mnemonic into a
(non-existent) 'H' instruction with the LT condition code. An exception for
HLT is needed.
HLT follows the same rules as BKPT when in IT blocks, so the special BKPT
hadling code has been adapted to handle HLT also.
Regression tests added including diagnostic tests for out of range immediates
and illegal condition codes, as well as negative tests for pre-ARMv8.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190053 91177308-0d34-0410-b5e6-96231b3b80d8
Solution is not sufficient to prevent 'mov pc, lr' being emitted for jump table code.
Test case doesn't trigger the added functionality.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190047 91177308-0d34-0410-b5e6-96231b3b80d8
This improves code generation for jump tables by avoiding the emission of "mov pc, lr" which could fool the processor into believing this is a return from a function causing mispredicts. The code generation logic for jump tables uses ADR to materialize the address of the jump target.
Patch by Daniel Stewart!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190043 91177308-0d34-0410-b5e6-96231b3b80d8
In sparc, setjmp stores only the registers %fp, %sp, %i7 and %o7. longjmp restores
the stack, and the callee-saved registers (all local/in registers: %i0-%i7, %l0-%l7)
using the stored %fp and register windows. However, this does not guarantee that the longjmp
will restore the registers, as they were when the setjmp was called. This is because these
registers may be clobbered after returning from setjmp, but before calling longjmp.
This patch prevents the registers %i0-%i5, %l0-l7 to live across the setjmp call using the register mask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190033 91177308-0d34-0410-b5e6-96231b3b80d8
Fast register pressure tracking currently only takes effect during
bottom up scheduling. Forcing this is a bit faster and simpler for
targets that don't have many scheduling constraints and don't need
top-down scheduling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190014 91177308-0d34-0410-b5e6-96231b3b80d8
If the instruction window is < NumRegs/2, pressure tracking is not
likely to be effective. The scheduler has to process a very large
number of tiny blocks. We want this to be fast.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189991 91177308-0d34-0410-b5e6-96231b3b80d8
Register pressure tracking is half the complexity of the
scheduler. It's useful to be able to turn it off for compile time and
performance comparisons.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189987 91177308-0d34-0410-b5e6-96231b3b80d8
'Force' values in registers using the calling convention. Now, we only depend on
the calling convention and that the allocator performs copy coalescing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189985 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions, such as vmul.f32, require the second source operand to
be in D0-D15 rather than the full D0-D31. When optimizing, make sure to
account for that by constraining the register class of a replacement virtual
register to be compatible with the virtual register(s) it's replacing.
I've been unsuccessful in creating a non-fragile regression test. This issue
was detected by the LLVM nightly test suite running on an A15 (Bullet).
PR17093: http://llvm.org/bugs/show_bug.cgi?id=17093
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189972 91177308-0d34-0410-b5e6-96231b3b80d8