The zext handling added in r197802 wasn't right for RNSBG. This patch
restricts it to ROSBG, RXSBG and RISBG. (The tests for RISBG were added
in r197802 since RISBG was the motivating example.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198862 91177308-0d34-0410-b5e6-96231b3b80d8
At the moment we expect rotates to have the form:
(or (shl X, Y), (shr X, Z))
where Y == bitsize(X) - Z or Z == bitsize(X) - Y. This form means that
the (or ...) is undefined for Y == 0 or Z == 0. This undefinedness can
be avoided by using Y == (C * bitsize(X) - Z) & (bitsize(X) - 1) or
Z == (C * bitsize(X) - Y) & (bitsize(X) - 1) for any integer C
(including 0, the most natural choice).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198861 91177308-0d34-0410-b5e6-96231b3b80d8
InstCombine converts (sub 32, (add X, C)) into (sub 32-C, X),
so a rotate left of a 32-bit Y by X+C could appear as either:
(or (shl Y, (add X, C)), (shr Y, (sub 32, (add X, C))))
without InstCombine or:
(or (shl Y, (add X, C)), (shr Y, (sub 32-C, X)))
with it.
We already matched the first form. This patch handles the second too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198860 91177308-0d34-0410-b5e6-96231b3b80d8
In the stackmap format we advertise the constant field as signed.
However, we were determining whether to promote to a 64-bit constant
pool based on an unsigned comparison.
This fix allows -1 to be encoded as a small constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198816 91177308-0d34-0410-b5e6-96231b3b80d8
MIsNeedChainEdge, which is used by -enable-aa-sched-mi (AA in misched), had an
llvm_unreachable when -enable-aa-sched-mi is enabled and we reach an
instruction with multiple MMOs. Instead, return a conservative answer. This
allows testing -enable-aa-sched-mi on x86.
Also, this moves the check above the isUnsafeMemoryObject checks.
isUnsafeMemoryObject is currently correct only for instructions with one MMO
(as noted in the comment in isUnsafeMemoryObject):
// We purposefully do no check for hasOneMemOperand() here
// in hope to trigger an assert downstream in order to
// finish implementation.
The problem with this is that, had the candidate edge passed the
"!MIa->mayStore() && !MIb->mayStore()" check, the hoped-for assert would never
happen (which could, in theory, lead to incorrect behavior if one of these
secondary MMOs was volatile, for example).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198795 91177308-0d34-0410-b5e6-96231b3b80d8
to the following two rules:
1) fold (vselect (build_vector AllOnes), A, B) -> A
2) fold (vselect (build_vector AllZeros), A, B) -> B
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198777 91177308-0d34-0410-b5e6-96231b3b80d8
I couldn't see how to do this sanely without splitting RETQ from RETL.
Eric says: "sad about the inability to roundtrip them now, but...".
I have no idea what that means, but perhaps it wants preserving in the
commit comment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198756 91177308-0d34-0410-b5e6-96231b3b80d8
Modern versions of OSX/Darwin's ld (ld64 > 97.17) have an optimisation present that allows the back end to omit relocations (and replace them with an absolute difference) for FDE some text section refs.
This patch allows a backend to opt-in to this behaviour by setting "DwarfFDESymbolsUseAbsDiff". At present, this is only enabled for modern x86 OSX ports.
test changes by David Fang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198744 91177308-0d34-0410-b5e6-96231b3b80d8
With the gnu objc runtime private strings are used. Since we only need to
produce a unique label, the fix is to just drop the asserts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198701 91177308-0d34-0410-b5e6-96231b3b80d8
Parse tag names as well as expressions. The former is part of the
specification, the latter is for improved compatibility with the GNU assembler.
Fix attribute value handling to be comformant to the specification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198662 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM backend has been using most of the MachO related subtarget
checks almost interchangeably, and since the only target it's had to
run on has been IOS (which is all three of MachO, Darwin and IOS) it's
worked out OK so far.
But we'd like to support embedded targets under the "*-*-none-macho"
triple, which means everything starts falling apart and inconsistent
behaviours emerge.
This patch should pick a reasonably sensible set of behaviours for the
new triple (and any others that come along, with luck). Some choices
were debatable (notably FP == r7 or r11), but we can revisit those
later when deficiencies become apparent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198617 91177308-0d34-0410-b5e6-96231b3b80d8
This requires a knowledge of the stack size which is not known until
the frame is complete, hence the need for the XCoreFTAOElim pass
which lowers the XCoreISD::FRAME_TO_ARGS_OFFSET instrution into its
final form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198614 91177308-0d34-0410-b5e6-96231b3b80d8
Longer term, we want to move users to "*-*-*-macho" for embedded work, but for
now people are relying on the last thing we told them, which is unfortunately
"*-*-darwin-eabi".
rdar://problem/15703934
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198602 91177308-0d34-0410-b5e6-96231b3b80d8
There is a wrong assumption that the vector element type and the
type of each ConstantSDNode in the build_vector were the same.
However, when promoting the integer operand of a legally typed
build_vector, the operand type and the vector element type do not
need to be the same
(See method 'DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR' in
LegalizeIntegerTypes.cpp).
in AArch64 backend, the following dag sequence:
C0: i1 = Constant<0>
C1: i1 = Constant<-1>
V: v8i1 = BUILD_VECTOR C1, C1, C0, C0, C0, C0, C0, C0
is type-legalized into:
NewC0: i32 = Constant<0>
NewC1: i32 = Constant<1>
V: v8i8 = BUILD_VECTOR NewC1, NewC1, NewC0, NewC0, NewC0, NewC0, NewC0, NewC0
Forcing a getZeroExtend to VTBits to ensure that the new constant
is correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198582 91177308-0d34-0410-b5e6-96231b3b80d8
Removed vzeroupper from AVX-512 mode - our optimization gude does not recommend to insert vzeroupper at all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198557 91177308-0d34-0410-b5e6-96231b3b80d8
__builtin_returnaddress requires that the value passed into is be a constant.
However, at -O0 even a constant expression may not be converted to a constant.
Emit an error message intead of crashing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198531 91177308-0d34-0410-b5e6-96231b3b80d8
The greedy register allocator tries to split a live-range around each
instruction where it is used or defined to relax the constraints on the entire
live-range (this is a last chance split before falling back to spill).
The goal is to have a big live-range that is unconstrained (i.e., that can use
the largest legal register class) and several small local live-range that carry
the constraints implied by each instruction.
E.g.,
Let csti be the constraints on operation i.
V1=
op1 V1(cst1)
op2 V1(cst2)
V1 live-range is constrained on the intersection of cst1 and cst2.
tryInstructionSplit relaxes those constraints by aggressively splitting each
def/use point:
V1=
V2 = V1
V3 = V2
op1 V3(cst1)
V4 = V2
op2 V4(cst2)
Because of how the coalescer infrastructure works, each new variable (V3, V4)
that is alive at the same time as V1 (or its copy, here V2) interfere with V1.
Thus, we end up with an uncoalescable copy for each split point.
To make tryInstructionSplit less aggressive, we check if the split point
actually relaxes the constraints on the whole live-range. If it does not, we do
not insert it.
Indeed, it will not help the global allocation problem:
- V1 will have the same constraints.
- V1 will have the same interference + possibly the newly added split variable
VS.
- VS will produce an uncoalesceable copy if alive at the same time as V1.
<rdar://problem/15570057>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198369 91177308-0d34-0410-b5e6-96231b3b80d8
This patch makes it possible to select the ABI with -mattr. It will be used to
forward clang's -target-abi option to llvm's CodeGen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198304 91177308-0d34-0410-b5e6-96231b3b80d8
For AArch64 backend, if DAGCombiner see "sext(setcc)", it will
combine them together to a single setcc with extended value type.
Then if it see "zext(setcc)", it assumes setcc is Vxi1, and try to
create "(and (vsetcc), (1, 1, ...)". While setcc isn't Vxi1,
DAGcombiner will create wrong node and get wrong code emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198190 91177308-0d34-0410-b5e6-96231b3b80d8