This patch minimizes the number of nops that must be emitted on X86 to satisfy
stackmap shadow constraints.
To minimize the number of nops inserted, the X86AsmPrinter now records the
size of the most recent stackmap's shadow in the StackMapShadowTracker class,
and tracks the number of instruction bytes emitted since the that stackmap
instruction was encountered. Padding is emitted (if it is required at all)
immediately before the next stackmap/patchpoint instruction, or at the end of
the basic block.
This optimization should reduce code-size and improve performance for people
using the llvm stackmap intrinsic on X86.
<rdar://problem/14959522>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213892 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213864 91177308-0d34-0410-b5e6-96231b3b80d8
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213859 91177308-0d34-0410-b5e6-96231b3b80d8
Constant fold the lanes of the input constant build_vector individually
so we correctly handle when the vector elements are not all the same
constant value.
PR20394
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213798 91177308-0d34-0410-b5e6-96231b3b80d8
The target-independent DAGcombiner will generate:
asr w1, X, #31 w1 = splat sign bit.
add X, X, w1, lsr #28 X = X + 0 or pow2-1
asr w0, X, asr #4 w0 = X/pow2
However, the add + shifts is expensive, so generate:
add w0, X, 15 w0 = X + pow2-1
cmp X, wzr X - 0
csel X, w0, X, lt X = (X < 0) ? X + pow2-1 : X;
asr w0, X, asr 4 w0 = X/pow2
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213758 91177308-0d34-0410-b5e6-96231b3b80d8
This pass attempts to speculatively use a sqrt instruction if one exists on the target, falling back to a libcall if the target instruction returned NaN.
This was enabled for MIPS and System-Z, but is well guarded and is good for most targets - GCC does this for (that I've checked) X86, ARM and AArch64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213752 91177308-0d34-0410-b5e6-96231b3b80d8
insertions.
The old behavior could cause arbitrarily bad memory usage in the DAG
combiner if there was heavy traffic of adding nodes already on the
worklist to it. This commit switches the DAG combine worklist to work
the same way as the instcombine worklist where we null-out removed
entries and only add new entries to the worklist. My measurements of
codegen time shows slight improvement. The memory utilization is
unsurprisingly dominated by other factors (the IR and DAG itself
I suspect).
This change results in subtle, frustrating churn in the particular order
in which DAG combines are applied which causes a number of minor
regressions where we fail to match a pattern previously matched by
accident. AFAICT, all of these should be using AddToWorklist to directly
or should be written in a less brittle way. None of the changes seem
drastically bad, and a few of the changes seem distinctly better.
A major change required to make this work is to significantly harden the
way in which the DAG combiner handle nodes which become dead
(zero-uses). Previously, we relied on the ability to "priority-bump"
them on the combine worklist to achieve recursive deletion of these
nodes and ensure that the frontier of remaining live nodes all were
added to the worklist. Instead, I've introduced a routine to just
implement that precise logic with no indirection. It is a significantly
simpler operation than that of the combiner worklist proper. I suspect
this will also fix some other problems with the combiner.
I think the x86 changes are really minor and uninteresting, but the
avx512 change at least is hiding a "regression" (despite the test case
being just noise, not testing some performance invariant) that might be
looked into. Not sure if any of the others impact specific "important"
code paths, but they didn't look terribly interesting to me, or the
changes were really minor. The consensus in review is to fix any
regressions that show up after the fact here.
Thanks to the other reviewers for checking the output on other
architectures. There is a specific regression on ARM that Tim already
has a fix prepped to commit.
Differential Revision: http://reviews.llvm.org/D4616
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213727 91177308-0d34-0410-b5e6-96231b3b80d8
DAG into a helper function.
This adds a trip through the (very minimal) verification logic in
a bunch of places that were missing it, but shouldn't have any other
impact outside of refactoring. I'm hoping to use this to do more clever
things when DAG nodes are inserted into the graph.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213612 91177308-0d34-0410-b5e6-96231b3b80d8
a bug in 2010 when they were added but are adding no value today.
In fact, they are utter lies. NodeAllocator is used to allocate almost
all of these node types. I don't know what we were trying to assert
here, and the docs don't give any answer. Until we once again stumble
upon a bug needing help, let's clear the path for improvements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213610 91177308-0d34-0410-b5e6-96231b3b80d8
We should update the usages to all of the results;
otherwise, we might get assertion failure or SEGV during
the type legalization of ATOMIC_CMP_SWAP_WITH_SUCCESS
with two or more illegal types.
For example, in the following sequence, both i8 and i1
might be illegal in some target, e.g. armv5, mipsel, mips64el,
%0 = cmpxchg i8* %ptr, i8 %desire, i8 %new monotonic monotonic
%1 = extractvalue { i8, i1 } %0, 1
Since both i8 and i1 should be legalized, the corresponding
ATOMIC_CMP_SWAP_WITH_SUCCESS dag will be checked/replaced/updated
twice.
If we don't update the usage to *ALL* of the results in the
first round, the DAG for extractvalue might be processed earlier.
The GetPromotedInteger() will result in assertion failure,
because its operand (i.e. the success bit of cmpxchg) is not
promoted beforehand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213569 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r213474 (and r213475), which causes a miscompile on
a stage2 LTO build. I'll reply on the list in a moment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213562 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the first stage DAG for @llvm.convert.to.fp16 an fptrunc,
and correspondingly @llvm.convert.from.fp16 an fpext. The legalisation
path is now uniform, regardless of the input IR:
fptrunc -> FP_TO_FP16 (if f16 illegal) -> libcall
fpext -> FP16_TO_FP (if f16 illegal) -> libcall
Each target should be able to select the version that best matches its
operations and not be required to duplicate patterns for both fptrunc
and FP_TO_FP16 (for example).
As a result we can remove some redundant AArch64 patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213507 91177308-0d34-0410-b5e6-96231b3b80d8
'Worklist' consistently rather than a deeply confusing mixture of
'WorkList' and 'Worklist'.
Notably, the very 'WorkList' of the DAG combiner was exposed to target
specific DAG combines under an interface 'AddToWorklist' which was
implemented by in turn calling 'AddToWorkList' in the combiner. This has
sent me circling with the wrong case in grep one too many times.
I chose to normalize on 'Worklist' because that one won the grep-vote
for llvm/lib/... by a hundered hits or so, and it is used in places
relatively "canonical" such as InstCombine's Worklist. Let's all jsut
pick this casing, whether "correct", "good", or "bad" and be
consistent...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213506 91177308-0d34-0410-b5e6-96231b3b80d8
stack, filter all handle nodes from the DAG combiner worklist.
This will also handle cases where other handle nodes might be
(erroneously) added to the worklist and then cause bugs and explosions
when deleted. For example, when running the legalizer within the DAG
combiner, there are times when other handle nodes are used and can end
up here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213505 91177308-0d34-0410-b5e6-96231b3b80d8
Canonicalize shuffles according to rules:
* shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
* shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
* shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
This patch helps identifying more shuffle pairs that could be combined reusing
the already existing rules in the DAGCombiner.
Added new test 'combine-vec-shuffle-5.ll' to verify that the canonicalized
shuffles are now folded into a single shuffle node by the DAGCombiner.
Added more test cases to 'combine-vec-shuffle-4.ll'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213504 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes function 'CommuteVectorShuffle' from X86ISelLowering.cpp
and moves its logic into SelectionDAG.cpp as method 'getCommutedVectorShuffles'.
This refactoring is in preperation of an upcoming change to the DAGCombiner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213503 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213474 91177308-0d34-0410-b5e6-96231b3b80d8
Also removes an unnecessary '.release()' that should've been a std::move
anyway. (I'm on a hunt for '.release()' calls)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213464 91177308-0d34-0410-b5e6-96231b3b80d8
It's also possible to just write "= nullptr", but there's some question
of whether that's as readable, so I leave it up to authors to pick which
they prefer for now. If we want to discuss standardizing on one or the
other, we can do that at some point in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213438 91177308-0d34-0410-b5e6-96231b3b80d8
Recommits 212776 which was reverted in r212793. This has been committed
and recommitted a few times as I try to test it harder and find/fix more
issues. The most recent revert was due to an asan bot failure which I
can't seem to reproduce locally, though I believe I'm following all the
steps the buildbot does.
So I'm going to recommit this in the hopes of investigating the failure
on the buildbot itself... apologies in advance for the bot noise. If
anyone sees failures with this /please/ provide me with any
reproductions, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213391 91177308-0d34-0410-b5e6-96231b3b80d8
Actual support for softening f16 operations is still limited, and can be added
when it's needed. But Soften is much closer to being a useful thing to try
than keeping it Legal when no registers can actually hold such values.
Longer term, we probably want something between Soften and Promote semantics
for most targets, it'll be more efficient to promote the 4 basic operations to
f32 than libcall them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213372 91177308-0d34-0410-b5e6-96231b3b80d8
Since the result of a SETCC for AArch64 is 0 or -1 in each lane, we can
move unary operations, in this case [su]int_to_fp through the mask
operation and constant fold the operation away. Generally speaking:
UNARYOP(AND(VECTOR_CMP(x,y), constant))
--> AND(VECTOR_CMP(x,y), constant2)
where constant2 is UNARYOP(constant).
This implements the transform where UNARYOP is [su]int_to_fp.
For example, consider the simple function:
define <4 x float> @foo(<4 x float> %val, <4 x float> %test) nounwind {
%cmp = fcmp oeq <4 x float> %val, %test
%ext = zext <4 x i1> %cmp to <4 x i32>
%result = sitofp <4 x i32> %ext to <4 x float>
ret <4 x float> %result
}
Before this change, the code is generated as:
fcmeq.4s v0, v0, v1
movi.4s v1, #0x1 // Integer splat value.
and.16b v0, v0, v1 // Mask lanes based on the comparison.
scvtf.4s v0, v0 // Convert each lane to f32.
ret
After, the code is improved to:
fcmeq.4s v0, v0, v1
fmov.4s v1, #1.00000000 // f32 splat value.
and.16b v0, v0, v1 // Mask lanes based on the comparison.
ret
The svvtf.4s has been constant folded away and the floating point 1.0f
vector lanes are materialized directly via fmov.4s.
Rather than do the folding manually in the target code, teach getNode()
in the generic SelectionDAG to handle folding constant operands of
vector [su]int_to_fp nodes. It is reasonable (as noted in a FIXME) to do
additional constant folding there as well, but I don't have test cases
for those operations, so leaving them for another time when it becomes
appropriate.
rdar://17693791
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213341 91177308-0d34-0410-b5e6-96231b3b80d8
There's a bug where this can create cycles in the DAG. It will take a bit
to fix, so I'm backing it out for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213339 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we asserted on this code. Currently compiler-rt doesn't
actually implement any of these new libcalls, but external help is
pretty much the only viable option for LLVM.
I've followed the much more generic "__truncST2" naming, as opposed to
the odd name for f32 -> f16 truncation. This can obviously be changed
later, or overridden by any targets that need to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213252 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the two intrinsics @llvm.convert.from.f16 and
@llvm.convert.to.f16 accept types other than simple "float". This is
only strictly needed for the truncate operation, since otherwise
double rounding occurs and there's no way to represent the strict IEEE
conversion. However, for symmetry we allow larger types in the extend
too.
During legalization, we can expand an "fp16_to_double" operation into
two extends for convenience, but abort when the truncate isn't legal. A new
libcall is probably needed here.
Even after this commit, various target tweaks are needed to actually use the
extended intrinsics. I've put these into separate commits for clarity, so there
are no actual tests of f64 conversion here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213248 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes an issue where a local value is defined before and used after an
inline asm call with side effects.
This fix simply flushes the local value map, which updates the insertion point
for the inline asm call to be above any previously defined local values.
This fixes <rdar://problem/17694203>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213203 91177308-0d34-0410-b5e6-96231b3b80d8
It turns out that in most cases (the main exception being i1-related
types) once these operations are formed we cannot separate them and
the targets end up having to deal with them whether they want to or
not.
This is not a good situation, and a more reasonable default can be
formed by ackowledging this and having targets leave them as Legal.
Only x86 seems to be affected (other targets don't even try marking
the operation Expand).
Mostly there's no visible change here yet, but it will be useful to
have truly expanded EXTLOADS for MVT::f16 softening support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213162 91177308-0d34-0410-b5e6-96231b3b80d8
There is no need to pass on TLI separately to the function. As Eric pointed out
the Target Machine already provides everything we need.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213108 91177308-0d34-0410-b5e6-96231b3b80d8
Refactoring; no functional changes intended
Removed PostRAScheduler bits from subtargets (X86, ARM).
Added PostRAScheduler bit to MCSchedModel class.
This bit is set by a CPU's scheduling model (if it exists).
Removed enablePostRAScheduler() function from TargetSubtargetInfo and subclasses.
Fixed the existing enablePostMachineScheduler() method to use the MCSchedModel (was just returning false!).
Added methods to TargetSubtargetInfo to allow overrides for AntiDepBreakMode, CriticalPathRCs, and OptLevel for PostRAScheduling.
Added enablePostRAScheduler() function to PostRAScheduler class which queries the subtarget for the above values.
Preserved existing scheduler behavior for ARM, MIPS, PPC, and X86:
a. ARM overrides the CPU's postRA settings by enabling postRA for any non-Thumb or Thumb2 subtarget.
b. MIPS overrides the CPU's postRA settings by enabling postRA for everything.
c. PPC overrides the CPU's postRA settings by enabling postRA for everything.
d. X86 is the only target that actually has postRA specified via sched model info.
Differential Revision: http://reviews.llvm.org/D4217
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213101 91177308-0d34-0410-b5e6-96231b3b80d8
The coalescer is very aggressive at propagating constraints on the register classes, and the register allocator doesn’t know how to split sub-registers later to recover. This patch provides an escape valve for targets that encounter this problem to limit coalescing.
This patch also implements such for ARM to lower register pressure when using lots of large register classes. This works around PR18825.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213078 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds two new rules to the DAGCombiner:
1. shuffle (shuffle A, Undef, M0), B, M1 -> shuffle A, B, M2
2. shuffle (shuffle A, Undef, M0), A, M1 -> shuffle A, Undef, M2
We only do this if the combined shuffle is legal for the target.
Example:
;;
define <4 x float> @test(<4 x float> %a, <4 x float> %b) {
%1 = shufflevector <4 x float> %a, <4 x float> undef, <4 x i32><i32 6, i32 0, i32 1, i32 7>
%2 = shufflevector <4 x float> %1, <4 x float> %b, <4 x i32><i32 1, i32 2, i32 4, i32 5>
ret <4 x i32> %2
}
;;
(using llc -mcpu=corei7 -march=x86-64)
Before, the x86 backend generated:
pshufd $120, %xmm0, %xmm0
shufps $-108, %xmm0, %xmm1
movaps %xmm1, %xmm0
Now the x86 backend generates:
movsd %xmm1, %xmm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213069 91177308-0d34-0410-b5e6-96231b3b80d8
The patchpoint instruction should have been inserted before the target
generated call instruction to be inside the ADJSTACKDOWN/ADJSTACKUP call
sequence window.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213034 91177308-0d34-0410-b5e6-96231b3b80d8
Always update the value map with the result register (if there is one), for the
patchpoint instruction we created to replace the target-specific call
instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213033 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes a crasher in method 'DAGCombiner::visitOR' due to an invalid
call to method 'isShuffleMaskLegal'. On x86, method 'isShuffleMaskLegal'
always expects a legal vector value type in input.
With this patch, we immediately check if the input OR dag node has a legal
vector type; we only try to fold a OR dag node into a single shufflevector
if we know that the resulting shuffle will have a legal type.
This is to avoid calling method 'isShuffleMaskLegal' on a potentially
illegal vector value type.
Added a new test-case to file 'CodeGen/X86/combine-or.ll' to verify that
DAGCombiner doesn't crash in the attempt to check/combine an OR between shuffles
with illegal types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213020 91177308-0d34-0410-b5e6-96231b3b80d8
COFF lacks a feature that other object file formats support: mergeable
sections.
To work around this, MSVC sticks constant pool entries in special COMDAT
sections so that each constant is in it's own section. This permits
unused constants to be dropped and it also allows duplicate constants in
different translation units to get merged together.
This fixes PR20262.
Differential Revision: http://reviews.llvm.org/D4482
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213006 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the DAGCombiner how to fold a pair of shuffles
according to rules:
1. shuffle(shuffle A, B, M0), B, M1) -> shuffle(A, B, M2)
2. shuffle(shuffle A, B, M0), A, M1) -> shuffle(A, B, M3)
The new rules would only trigger if the resulting shuffle has legal type and
legal mask.
Added test 'combine-vec-shuffle-3.ll' to verify that DAGCombiner correctly
folds shuffles on x86 when the resulting mask is legal. Also added some negative
cases to verify that we avoid introducing illegal shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213001 91177308-0d34-0410-b5e6-96231b3b80d8
Found during windows unwinding work. This header is indirectly included through
a chain leading through Support/Win64EH.h. Explicitly include the header. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212955 91177308-0d34-0410-b5e6-96231b3b80d8
This crash was pretty common while compiling Rust for iOS (armv7). Reason -
SjLj preparation step was lowering aggregate arguments as ExtractValue +
InsertValue. ExtractValue has assertion which checks that there is some data in
value, which is not true in case of empty (no fields) structures. Rust uses
them quite extensively so this patch uses a 'select true, %val, undef'
instruction to lower the argument.
Patch by Valerii Hiora.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212922 91177308-0d34-0410-b5e6-96231b3b80d8
Verify that DAGCombiner does not crash when trying to fold a pair of shuffles
according to rule (added at r212539):
(shuffle (shuffle A, Undef, M0), Undef, M1) -> (shuffle A, Undef, M2)
The DAGCombiner avoids folding shuffles if the resulting shuffle dag node
is not legal for the target. That means, the resulting shuffle must have
legal type and legal mask.
Before, the DAGCombiner only called method
'TargetLowering::isShuffleMaskLegal' to check if it was "safe" to fold according
to the above-mentioned rule. However, this caused a crash in the x86 backend
since method 'isShuffleMaskLegal' always expects to be called on a
legal vector type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212915 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the target-independent lowering for the patchpoint
intrinsic. Targets have to implement the FastLowerCall
hook to support this intrinsic.
Related to <rdar://problem/17427052>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212849 91177308-0d34-0410-b5e6-96231b3b80d8
The infrastructure mimics the call lowering we have already in place for
SelectionDAG, but with limitations. For example structure return demotion and
non-simple types are not supported (yet).
Currently every backend has its own implementation and duplicated code for call
lowering. There is also no specified interface that could be called from
target-independent code. The target-hook is opt-in and doesn't affect current
implementations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212848 91177308-0d34-0410-b5e6-96231b3b80d8
Break out the arguemnts required from SelectionDAG, so that this function can
also be used by FastISel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212844 91177308-0d34-0410-b5e6-96231b3b80d8
Create a separate helper function for target-independent intrinsic lowering. Also
add an target-hook that allows to directly call into a target-sepcific intrinsic
lowering method. Currently the implementation is opt-in and doesn't affect
existing target implementations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212843 91177308-0d34-0410-b5e6-96231b3b80d8
ACLE 2.0 allows __fp16 to be used as a function argument or return
type. This enables this for AArch64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212812 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r212776.
Nope, still seems to be failing on the sanitizer bots... but hey, not
the msan self-host anymore, it's failing in asan now. I'll start looking
there next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212793 91177308-0d34-0410-b5e6-96231b3b80d8
Committed in r212205 and reverted in r212226 due to msan self-hosting
failure, I believe I've got that fixed by r212761 to Clang.
Original commit message:
"Originally committed in r211723, reverted in r211724 due to failure
cases found and fixed (ArgumentPromotion: r211872, Inlining: r212065),
committed again in r212085 and reverted again in r212089 after fixing
some other cases, such as debug info subprogram lists not keeping track
of the function they represent (r212128) and then short-circuiting
things like LiveDebugVariables that build LexicalScopes for functions
that might not have full debug info.
And again, I believe the invariant actually holds for some reasonable
amount of code (but I'll keep an eye on the buildbots and see what
happens... ).
Original commit message:
PR20038: DebugInfo: Inlined call sites where the caller has debug info
but the call itself has no debug location.
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined
instructions."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212776 91177308-0d34-0410-b5e6-96231b3b80d8
Move the code to a helper function to allow calls from TypeLegalizer.
No functionality change intended
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <tom@stellard.net>
Reviewed-by: Owen Anderson <resistor@mac.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212772 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the DAGCombiner how to fold shuffles according to the
following new rules:
1. shuffle(shuffle(x, y), undef) -> x
2. shuffle(shuffle(x, y), undef) -> y
3. shuffle(shuffle(x, y), undef) -> shuffle(x, undef)
4. shuffle(shuffle(x, y), undef) -> shuffle(y, undef)
The backend avoids to combine shuffles according to rules 3. and 4. if
the resulting shuffle does not have a legal mask. This is to avoid introducing
illegal shuffles that are potentially expanded into a sub-optimal sequence of
target specific dag nodes during vector legalization.
Added test case combine-vec-shuffle-2.ll to verify that we correctly triggers
the new rules when combining shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212748 91177308-0d34-0410-b5e6-96231b3b80d8
to the zero-extend-vector-inreg node introduced previously for the same
purpose: manage the type legalization of widened extend operations,
especially to support the experimental widening mode for x86.
I'm adding both because sign-extend is expanded in terms of any-extend
with shifts to propagate the sign bit. This removes the last
fundamental scalarization from vec_cast2.ll (a test case that hit many
really bad edge cases for widening legalization), although the trunc
tests in that file still appear scalarized because the the shuffle
legalization is scalarizing. Funny thing, I've been working on that.
Some initial experiments with this and SSE2 scenarios is showing
moderately good behavior already for sign extension. Still some work to
do on the shuffle combining on X86 before we're generating optimal
sequences, but avoiding scalarization is a huge step forward.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212714 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
On MIPS32r6/MIPS64r6, floating point comparisons return 0 or -1 but integer
comparisons return 0 or 1.
Updated the various uses of getBooleanContents. Two simplifications had to be
disabled when float and int boolean contents differ:
- ScalarizeVecRes_VSELECT except when the kind of boolean contents is trivially
discoverable (i.e. when the condition of the VSELECT is a SETCC node).
- visitVSELECT (select C, 0, 1) -> (xor C, 1).
Come to think of it, this one could test for the common case of 'C'
being a SETCC too.
Preserved existing behaviour for all other targets and updated the affected
MIPS32r6/MIPS64r6 tests. This also fixes the pi benchmark where the 'low'
variable was counting in the wrong direction because it thought it could simply
add the result of the comparison.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, jholewinski, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D4389
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212697 91177308-0d34-0410-b5e6-96231b3b80d8
don't need to set it manually.
This is based on feedback from Tom who pointed out that if every target
needs to handle this we need to reach out to those maintainers. In fact,
it doesn't make sense to duplicate everything when anything other than
expand seems unlikely at this stage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212661 91177308-0d34-0410-b5e6-96231b3b80d8
Reverted by Eric Christopher (Thanks!) in r212203 after Bob Wilson
reported LTO issues. Duncan Exon Smith and Aditya Nandakumar helped
provide a reduced reproduction, though the failure wasn't too hard to
guess, and even easier with the example to confirm.
The assertion that the subprogram metadata associated with an
llvm::Function matches the scope data referenced by the DbgLocs on the
instructions in that function is not valid under LTO. In LTO, a C++
inline function might exist in multiple CUs and the subprogram metadata
nodes will refer to the same llvm::Function. In this case, depending on
the order of the CUs, the first intance of the subprogram metadata may
not be the one referenced by the instructions in that function and the
assertion will fail.
A test case (test/DebugInfo/cross-cu-linkonce-distinct.ll) is added, the
assertion removed and a comment added to explain this situation.
Original commit message:
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212649 91177308-0d34-0410-b5e6-96231b3b80d8
not widening the input type to the node sufficiently to let the ext take
place in a register.
This would in turn result in a mysterious bitcast assertion failure
downstream. First change here is to add back the helpful assert I had in
an earlier version of the code to catch this immediately.
Next change is to add support to the type legalization to detect when we
have widened the operand either too little or too much (for whatever
reason) and find a size-matched legal vector type to convert it to
first. This can also fail so we get a new fallback path, but that seems
OK.
With this, we no longer crash on vec_cast2.ll when using widening. I've
also added the CHECK lines for the zero-extend cases here. We still need
to support sign-extend and trunc (or something) to get plausible code
for the other two thirds of this test which is one of the regression
tests that showed the most scalarization when widening was
force-enabled. Slowly closing in on widening being a viable legalization
strategy without it resorting to scalarization at every turn. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212614 91177308-0d34-0410-b5e6-96231b3b80d8
vector types to be legal and a ZERO_EXTEND node is encountered.
When we use widening to legalize vector types, extend nodes are a real
challenge. Either the input or output is likely to be legal, but in many
cases not both. As a consequence, we don't really have any way to
represent this situation and the prior code in the widening legalization
framework would just scalarize the extend operation completely.
This patch introduces a new DAG node to represent doing a zero extend of
a vector "in register". The core of the idea is to allow legal but
different vector types in the input and output. The output vector must
have fewer lanes but wider elements. The operation is defined to zero
extend the low elements of the input to the size of the output elements,
and drop all of the high elements which don't have a corresponding lane
in the output vector.
It also includes generic expansion of this node in terms of blending
a zero vector into the high elements of the vector and bitcasting
across. This in turn yields extremely nice code for x86 SSE2 when we use
the new widening legalization logic in conjunction with the new shuffle
lowering logic.
There is still more to do here. We need to support sign extension, any
extension, and potentially int-to-float conversions. My current plan is
to continue using similar synthetic nodes to model each of these
transitions with generic lowering code for each one.
However, with this patch LLVM already reaches performance parity with
GCC for the core C loops of the x264 code (assuming you disable the
hand-written assembly versions) when compiling for SSE2 and SSE3
architectures and enabling the new widening and lowering logic for
vectors.
Differential Revision: http://reviews.llvm.org/D4405
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212610 91177308-0d34-0410-b5e6-96231b3b80d8
tracks which elements of the build vector are in fact undef.
This should make actually inpsecting them (likely in my next patch)
reasonably pretty. Also makes the output parameter optional as it is
clear now that *most* users are happy with undefs in their splats.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212581 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches how to fold a shuffle according to rule:
shuffle (shuffle (x, undef, M0), undef, M1) -> shuffle(x, undef, M2)
We do this only if the resulting mask M2 is legal; this is to avoid introducing
illegal shuffles that are potentially expanded into a sub-optimal sequence
of target specific dag nodes.
This patch has the advantage of being target independent, since it works on ISD
nodes. Therefore, all targets (not only x86) can take advantage of this rule.
The idea behind this patch is that most shuffle pairs can be safely combined
before we run the legalizer on vector operations. This allows us to
combine/simplify dag nodes earlier in the process and not only immediately
before instruction selection stage.
That said. This patch is not meant to replace any existing target specific
combine rules; backends might still introduce new shuffles during legalization
stage. Also, this rule is very simple and avoids to aggressively optimize
shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212539 91177308-0d34-0410-b5e6-96231b3b80d8
aggressively from the x86 shuffle lowering to the generic SDAG vector
shuffle formation code.
This code already tried to fold away shuffles of splats! It just had
lots of bugs and couldn't handle the case my new x86 shuffle lowering
needed.
First, it failed to correctly compute whether N2 was undef because it
pre-computed this, then did transformations which could *make* N2 undef,
then failed to ever re-consider the precomputed state.
Second, it didn't look through bitcasts at all, even in the safe cases
where they are just element-type bitcasts with no change to the number
of elements.
Third, it didn't handle all-zero bit casts nicely the way my code in the
x86 side of things did, which is essential to getting good zext-shuffle
lowerings.
But all of these are generic. I just ported the code down to this layer
and fixed the surrounding bugs. Tests exercising this in the x86 backend
still pass and some silly code in widen_cast-6.ll gets better. I updated
that test to be a bit more precise but it's still pretty unclear what
the value of the test is in this day and age.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212517 91177308-0d34-0410-b5e6-96231b3b80d8
around the handling of UNDEF lanes in boolean vector content analysis.
The code before my changes here also failed to check for non-constant
splats in a buildvector. I have no idea how to trigger this, I just
spotted by inspection when trying to understand the code. It seems
extremely unlikely to be worth the trouble to teach the only caller of
this code (DAG combining setcc patterns) how to cleverly handle undef
lanes, so I've just commented more thoroughly that we're giving up
there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212515 91177308-0d34-0410-b5e6-96231b3b80d8
nodes about whether they are splats. This is factored out and improved
from r212324 which got reverted as it was far too aggressive. The new
API should help more conservatively handle buildvectors that are
a mixture of splatted and undef values.
No functionality change at this point. The hope is to slowly
re-introduce the undef-tolerant optimization of splats, but each time
being forced to make a concious decision about how to handle the undefs
in a way that doesn't lead to contradicting assumptions about the
collapsed value.
Hal has pointed out in discussions that this may not end up being the
desired API and instead it may be more convenient to get a mask of the
undef elements or something similar. I'm starting simple and will expand
the API as I adapt actual callers and see exactly what they need.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212514 91177308-0d34-0410-b5e6-96231b3b80d8
lanes in vector splats.
The core problem here is that undef lanes can't *unilaterally* be
considered to contribute to splats. Their handling needs to be more
cautious. There is also a reported failure of the nightly testers
(thanks Tobias!) that may well stem from the same core issue. I'm going
to fix this theoretical issue, factor the APIs a bit better, and then
verify that I don't see anything bad with Tobias's reduction from the
test suite before recommitting.
Original commit message for r212324:
[x86] Generalize BuildVectorSDNode::getConstantSplatValue to work for
any constant, constant FP, or undef splat and to tolerate any undef
lanes in a splat, then replace all uses of isSplatVector in X86's
lowering with it.
This fixes issues where undef lanes in an otherwise splat vector would
prevent the splat logic from firing. It is a touch more awkward to use
this interface, but it is much more accurate. Suggestions for better
interface structuring welcome.
With this fix, the code generated with the widening legalization
strategy for widen_cast-4.ll is *dramatically* improved as the special
lowering strategies for a v16i8 SRA kick in even though the high lanes
are undef.
We also get a slightly different choice for broadcasting an aligned
memory location, and use vpshufd instead of vbroadcastss. This looks
like a minor win for pipelining and domain crossing, but a minor loss
for the number of micro-ops. I suspect its a wash, but folks can
easily tweak the lowering if they want.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212475 91177308-0d34-0410-b5e6-96231b3b80d8
We've been performing the wrong operation on ARM for "atomicrmw nand" for
years, since "a NAND b" is "~(a & b)" rather than ARM's very tempting "a & ~b".
This bled over into the generic expansion pass.
So I assume no-one has ever actually tried to do an atomic nand in the real
world. Oh well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212443 91177308-0d34-0410-b5e6-96231b3b80d8
any constant, constant FP, or undef splat and to tolerate any undef
lanes in a splat, then replace all uses of isSplatVector in X86's
lowering with it.
This fixes issues where undef lanes in an otherwise splat vector would
prevent the splat logic from firing. It is a touch more awkward to use
this interface, but it is much more accurate. Suggestions for better
interface structuring welcome.
With this fix, the code generated with the widening legalization
strategy for widen_cast-4.ll is *dramatically* improved as the special
lowering strategies for a v16i8 SRA kick in even though the high lanes
are undef.
We also get a slightly different choice for broadcasting an aligned
memory location, and use vpshufd instead of vbroadcastss. This looks
like a minor win for pipelining and domain crossing, but a minor loss
for the number of micro-ops. I suspect its a wash, but folks can easily
tweak the lowering if they want.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212324 91177308-0d34-0410-b5e6-96231b3b80d8
subtarget. This involved having the movt predicate take the current
function - since we care about size in instruction selection for
whether or not to use movw/movt take the function so we can check
the attributes. This required adding the current MachineFunction to
FastISel and propagating through.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212309 91177308-0d34-0410-b5e6-96231b3b80d8
This patch sets the 'KeepReg' bit for any tied and live registers during the PrescanInstruction() phase of the dependency breaking algorithm. It then checks those 'KeepReg' bits during the ScanInstruction() phase to avoid changing any tied registers. For more details, please see comments in:
http://llvm.org/bugs/show_bug.cgi?id=20020
I added two FIXME comments for code that I think can be removed by using register iterators that include self. I don't want to include those code changes with this patch, however, to keep things as small as possible.
The test case is larger than I'd like, but I don't know how to reduce it further and still produce the failing asm.
Differential Revision: http://reviews.llvm.org/D4351
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212275 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC 128-bit long double data type (ppcf128 in LLVM) is in fact a
pair of two doubles, where one is considered the "high" or
more-significant part, and the other is considered the "low" or
less-significant part. When a ppcf128 value is stored in memory or a
register pair, the high part always comes first, i.e. at the lower
memory address or in the lower-numbered register, and the low part
always comes second. This is true both on big-endian and little-endian
PowerPC systems. (Similar to how with a complex number, the real part
always comes first and the imaginary part second, no matter the byte
order of the system.)
This was implemented incorrectly for little-endian systems in LLVM.
This commit fixes three related issues:
- When printing an immediate ppcf128 constant to assembler output
in emitGlobalConstantFP, emit the high part first on both big-
and little-endian systems.
- When lowering a ppcf128 type to a pair of f64 types in SelectionDAG
(which is used e.g. when generating code to load an argument into a
register pair), use correct low/high part ordering on little-endian
systems.
- In a related issue, because lowering ppcf128 into a pair of f64 must
operate differently from lowering an int128 into a pair of i64,
bitcasts between ppcf128 and int128 must not be optimized away by the
DAG combiner on little-endian systems, but must effect a word-swap.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212274 91177308-0d34-0410-b5e6-96231b3b80d8
This operation was classified as a binary operation in the widening
logic for some reason (clearly, untested). It is in fact a unary
operation. Add a RUN line to a test to exercise this for x86.
Note that again the vector widening strategy doesn't regress anything
and in one case removes a totally unecessary instruction that we
couldn't avoid when promoting the element type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212257 91177308-0d34-0410-b5e6-96231b3b80d8
vector type legalization strategies in a more fine grained manner, and
change the legalization of several v1iN types and v1f32 to be widening
rather than scalarization on AArch64.
This fixes an assertion failure caused by scalarizing nodes like "v1i32
trunc v1i64". As v1i64 is legal it will fail to scalarize v1i32.
This also provides a foundation for other targets to have more granular
control over how vector types are legalized.
Patch by Hao Liu, reviewed by Tim Northover. I'm committing it to allow
some work to start taking place on top of this patch as it adds some
really important hooks to the backend that I'd like to immediately start
using. =]
http://reviews.llvm.org/D4322
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212242 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r212205.
Reverting this again, still seeing crashes when building compiler-rt...
Sorry for the continued noise, not sure why I'm failing to reproduce
this locally.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212226 91177308-0d34-0410-b5e6-96231b3b80d8
Originally committed in r211723, reverted in r211724 due to failure
cases found and fixed (ArgumentPromotion: r211872, Inlining: r212065),
committed again in r212085 and reverted again in r212089 after fixing
some other cases, such as debug info subprogram lists not keeping track
of the function they represent (r212128) and then short-circuiting
things like LiveDebugVariables that build LexicalScopes for functions
that might not have full debug info.
And again, I believe the invariant actually holds for some reasonable
amount of code (but I'll keep an eye on the buildbots and see what
happens... ).
Original commit message:
PR20038: DebugInfo: Inlined call sites where the caller has debug info
but the call itself has no debug location.
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212205 91177308-0d34-0410-b5e6-96231b3b80d8
heuristic.
By default, no functionality change.
This is a follow-up of r212099.
This hook provides a finer grain to control the optimization.
<rdar://problem/17444599>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212204 91177308-0d34-0410-b5e6-96231b3b80d8
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212203 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r212109, which reverted r212088.
However, disable the assert as it's not necessary for correctness. There are
several corner cases that the assert needed to handle better for in-order
scheduling, but none of them are incorrect scheduler behavior. The assert is
mainly there to collect good unit tests like this and ensure that the
target-independent scheduler is working as expected with the various machine
models.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212187 91177308-0d34-0410-b5e6-96231b3b80d8
switches) into a switch, and sink them into a dispatch function that can
return the result rather than awkward variable setting with breaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212166 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't add any information for methods in the VectorLegalizer
class that clearly take SDAG operations to legalize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212157 91177308-0d34-0410-b5e6-96231b3b80d8
The argument list vector is never used after it has been passed to the
CallLoweringInfo and moving it to the CallLoweringInfo is cleaner and
pretty much as cheap as keeping a pointer to it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212135 91177308-0d34-0410-b5e6-96231b3b80d8
This macro is sometimes defined manually but isn't (and doesn't need to be) in
llvm-config.h so shouldn't appear in the headers, likewise NDEBUG.
Instead switch them over to LLVM_DUMP_METHOD on the definitions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212130 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r212088, which is causing a number of spec
failures. Will provide reduced test cases shortly.
PR20057
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212109 91177308-0d34-0410-b5e6-96231b3b80d8
copies.
This patch extends the peephole optimization introduced in r190713 to produce
register-coalescer friendly copies when possible.
This extension taught the existing cross-bank copy optimization how to deal
with the instructions that generate cross-bank copies, i.e., insert_subreg,
extract_subreg, reg_sequence, and subreg_to_reg.
E.g.
b = insert_subreg e, A, sub0 <-- cross-bank copy
...
C = copy b.sub0 <-- cross-bank copy
Would produce the following code:
b = insert_subreg e, A, sub0 <-- cross-bank copy
...
C = copy A <-- same-bank copy
This patch also introduces a new helper class for that: ValueTracker.
This class implements the logic to look through the copy related instructions
and get the related source.
For now, the advanced rewriting is disabled by default as we are lacking the
semantic on target specific instructions to catch the motivating examples.
Related to <rdar://problem/12702965>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212100 91177308-0d34-0410-b5e6-96231b3b80d8
By default, no functionality change.
Before evicting a local variable, this heuristic tries to find another (set of)
local(s) that can be reassigned to a free color.
In some extreme cases (large basic blocks with tons of local variables), the
compilation time is dominated by the local interference checks that this
heuristic must perform, with no code gen gain.
E.g., the motivating example takes 4 minutes to compile with this heuristic, 12
seconds without.
Improving the situation will likely require to make drastic changes to the
register allocator and/or the interference check framework.
For now, provide this flag to better understand the impact of that heuristic.
<rdar://problem/17444599>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212099 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r212085.
This breaks the sanitizer bot... & I thought I'd tried pretty hard not
to do that. Guess I need to try harder.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212089 91177308-0d34-0410-b5e6-96231b3b80d8
Originally committed in r211723, reverted in r211724 due to failure
cases found and fixed (ArgumentPromotion: r211872, Inlining: r212065),
and I now believe the invariant actually holds for some reasonable
amount of code (but I'll keep an eye on the buildbots and see what
happens... ).
Original commit message:
PR20038: DebugInfo: Inlined call sites where the caller has debug info
but the call itself has no debug location.
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212085 91177308-0d34-0410-b5e6-96231b3b80d8
This exception format is not specific to Windows x64. A similar approach is
taken on nearly all architectures. Generalise the name to reflect reality.
This will eventually be used for Windows on ARM data emission as well.
Switch the enum and namespace into an enum class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212000 91177308-0d34-0410-b5e6-96231b3b80d8
Rename the routines to reflect the reality that they are more related to call
frame information than to Win64 EH. Although EH is implemented in an intertwined
manner by augmenting with an exception handler and an associated parameter, the
majority of these routines emit information required to unwind the frames. This
also helps identify that these routines are generic for most windows platforms
(they apply equally to nearly all architectures except x86) although the
encoding of the information is architecture dependent.
Unwinding data is emitted via EmitWinCFI* and exception handling information via
EmitWinEH*.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211994 91177308-0d34-0410-b5e6-96231b3b80d8
This new IR facility allows us to represent the object-file semantic of
a COMDAT group.
COMDATs allow us to tie together sections and make the inclusion of one
dependent on another. This is required to implement features like MS
ABI VFTables and optimizing away certain kinds of initialization in C++.
This functionality is only representable in COFF and ELF, Mach-O has no
similar mechanism.
Differential Revision: http://reviews.llvm.org/D4178
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211920 91177308-0d34-0410-b5e6-96231b3b80d8
Reverting this again, didn't mean to commit it - while r211872 fixes one
of the issues here, there are still others to figure out and address.
This reverts commit r211871.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211873 91177308-0d34-0410-b5e6-96231b3b80d8
Fixe for Bug 20057 - Assertion failied in llvm::SUnit* llvm::SchedBoundary::pickOnlyChoice(): Assertion `i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && "permanent hazard"'
Thanks to Chad for the test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211865 91177308-0d34-0410-b5e6-96231b3b80d8
There is no need to calculate the liveness information for stackmaps. The
liveness information is still available for the patchpoint intrinsic and
that is also the intended usage model.
Related to <rdar://problem/17473725>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211816 91177308-0d34-0410-b5e6-96231b3b80d8
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211749 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r211723.
Breaks the ASan/compiler-rt build... guess I didn't test very far at all
:/.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211724 91177308-0d34-0410-b5e6-96231b3b80d8
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211723 91177308-0d34-0410-b5e6-96231b3b80d8
--
This patch enables LLVM to emit Win64-native unwind info rather than
DWARF CFI. It handles all corner cases (I hope), including stack
realignment.
Because the unwind info is not flexible enough to describe stack frames
with a gap of unknown size in the middle, such as the one caused by
stack realignment, I modified register spilling code to place all spills
into the fixed frame slots, so that they can be accessed relative to the
frame pointer.
Patch by Vadim Chugunov!
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D4081
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211691 91177308-0d34-0410-b5e6-96231b3b80d8
In assembly the expression a=b is parsed as an assignment, so it should be
printed as one.
This remove a truly horrible hack for producing a label with "a=.". It would
be used by codegen but would never be reached by the asm parser. Sorry I
missed this when it was first committed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211639 91177308-0d34-0410-b5e6-96231b3b80d8
Amusingly this survived a lot longer than the CFI transition. We don't even
support non-cfi assemblers any more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211498 91177308-0d34-0410-b5e6-96231b3b80d8
We handle this by spilling the whole thing to the stack and doing the
insertion as a store.
PR19492. This happens in real code because the vectorizer creates v2i128 when AVX is enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211435 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables LLVM to emit Win64-native unwind info rather than
DWARF CFI. It handles all corner cases (I hope), including stack
realignment.
Because the unwind info is not flexible enough to describe stack frames
with a gap of unknown size in the middle, such as the one caused by
stack realignment, I modified register spilling code to place all spills
into the fixed frame slots, so that they can be accessed relative to the
frame pointer.
Patch by Vadim Chugunov!
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D4081
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211399 91177308-0d34-0410-b5e6-96231b3b80d8
Targets can assume that a target streamer is present, so they have to be able
to construct a null streamer in order to set the target streamer in it to.
Fixes a crash when using the null streamer with arm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211358 91177308-0d34-0410-b5e6-96231b3b80d8
only 1/0 result like std::set. Some of the LLVM ADT already return unsigned
count(), while others still return bool count().
In continuation to r197879, this patch modifies DenseMap, DenseSet,
ScopedHashTable, ValueMap:: count() to return size_type instead of bool,
1 instead of true and 0 instead of false.
size_type is typedef-ed locally within each class to size_t.
http://reviews.llvm.org/D4018
Reviewed by dblaikie.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211350 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support to recognize patterns such as fadd,fsub,fadd,fsub.../add,sub,add,sub... and
vectorizes them as vector shuffles if they are profitable.
These patterns of vector shuffle can later be converted to instructions such as addsubpd etc on X86.
Thanks to Arnold and Hal for the reviews. http://reviews.llvm.org/D4015
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211339 91177308-0d34-0410-b5e6-96231b3b80d8
the atomic load linked expander pass to run for a particular
subtarget. This requires a check of the subtarget and so save
the TargetMachine rather than only TargetLoweringInfo and update
all callers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211314 91177308-0d34-0410-b5e6-96231b3b80d8
The address pool was being emitted before location lists. The latter
could add more entries to the pool which would be lost/never emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211284 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
With this patch, range metadata can be added to call/invoke including
IntrinsicInst. Previously, it could only be added to load.
Rename computeKnownBitsLoad to computeKnownBitsFromRangeMetadata because
range metadata is not only used by load.
Update the language reference to reflect this change.
Test Plan:
Add several tests in range-2.ll to confirm the verifier is happy with
having range metadata on call/invoke.
Add two tests in AddOverFlow.ll to confirm annotating range metadata to
call/invoke can benefit InstCombine.
Reviewers: meheff, nlewycky, reames, hfinkel, eliben
Reviewed By: eliben
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4187
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211281 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, llvm always emits a DWARF CIE with a version of 1, even when emitting
DWARF 3 or 4, which both support CIE version 3. This patch makes it emit the
newer CIE version when we are emitting DWARF 3 or 4. This will not reduce
compatibility, as we already emit other DWARF3/4 features, and is worth doing as
the DWARF3 spec removed some ambiguities in the interpretation of call frame
information.
It also fixes a minor bug where the "return address" field of the CIE was
encoded as a ULEB128, which is only valid when the CIE version is 3. There are
no test changes for this, because (as far as I can tell) none of the platforms
that we test have a return address register with a DWARF register number >127.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211272 91177308-0d34-0410-b5e6-96231b3b80d8
used by all of the MC level tools and codegen. Fix up all uses
in the compiler to use this and set it on the context accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211257 91177308-0d34-0410-b5e6-96231b3b80d8
It looks like there are two versions of LowerCallTo here: the
SelectionDAGBuilder one is designed to operate on LLVM IR, and the
TargetLowering one in the case where everything is at DAG level.
Previously, only the SelectionDAGBuilder variant could handle demoting
an impossible return to sret semantics (before delegating to the
TargetLowering version), but this functionality is also useful for
certain libcalls (e.g. 128-bit operations on 32-bit x86). So this
commit moves the sret handling down a level.
rdar://problem/17242889
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211155 91177308-0d34-0410-b5e6-96231b3b80d8
I haven't nailed this down entirely, but this is about as small of a
test case as I can seem to construct and adequately demonstrates the
crasher. I'll continue investigating the root cause/fix(es).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210993 91177308-0d34-0410-b5e6-96231b3b80d8
It's valid to use FP_TO_SINT when asking for a smaller type (e.g. all
"unsigned int16" values fit into a "signed int32"), but the reverse
isn't true.
Unfortunately, I'm not actually aware of any architecture with
asymmetric FP_TO_SINT and FP_TO_UINT handling and the logic happens to
work in the symmetric case, so I can't actually write a test for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210986 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we handle finding abstract variables at the end of the module,
remove the upfront handling and just ensure the abstract variable is
built when necessary.
In theory we could have a split implementation, where inlined variables
are immediately constructed referencing the abstract definition, and
concrete variables are delayed - but let's go with one solution for now
unless there's a reason not to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210961 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is to move GlobalMerge pass from Transform/Scalar
to CodeGen, because GlobalMerge depends on TargetMachine.
In the mean time, the macro INITIALIZE_TM_PASS is also moved
to CodeGen/Passes.h. With this fix we can avoid making
libScalarOpts depend on libCodeGen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210951 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than relying on abstract variables looked up at the time the
concrete variable is created, look them up at the end of the module to
ensure they're referenced even if they're created after the concrete
definition. This completes/matches the work done in r209677 to handle
this for the subprograms themselves.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210946 91177308-0d34-0410-b5e6-96231b3b80d8
This doesn't fix the abstract variable handling yet, but it introduces a
similar delay mechanism as was added for subprograms, causing
DW_AT_location to be reordered to the beginning of the attribute list
for local variables, and fixes all the test fallout for that.
A subsequent commit will remove the abstract variable handling in
DbgVariable and just do the abstract variable lookup at module end to
ensure that abstract variables introduced after their concrete
counterparts are appropriately referenced by the concrete variable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210943 91177308-0d34-0410-b5e6-96231b3b80d8
This also simplifies the IR we create slightly: instead of working out
where success & failure should go manually, it turns out we can just
always jump to a success/failure block created for the purpose. Later
phases will sort out the mess without much difficulty.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210917 91177308-0d34-0410-b5e6-96231b3b80d8
This has two benefits: it makes the result more suitable for direct
insertaion into the struct to emulate the new cmpxchg, and it means
the name we give the instruction matches its actual effect better.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210916 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210903 91177308-0d34-0410-b5e6-96231b3b80d8
Add branch weights to branch instructions, so that the following passes can
optimize based on it (i.e. basic block ordering).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210863 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds MachineMemOperands to load and store instructions. This allows
the peephole optimizer to fold load instructions. Unfortunatelly the peephole
optimizer currently doesn't run at -O0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210858 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r210540, adds a testcase for the regression it
caused, and marks the R600 test it was supposed to fix as XFAIL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210792 91177308-0d34-0410-b5e6-96231b3b80d8
Pass initialization requires to initialize TargetMachine for back-end
specific passes. This commit creates a new macro INITIALIZE_TM_PASS to
simplify this kind of initialization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210641 91177308-0d34-0410-b5e6-96231b3b80d8
DwarfException served as a base class for exception handling directive emission.
However, this is also used by other exception models (e.g. Win64EH). Rename
this class to EHStreamer and split it out of DwarfException.h. NFC.
Use the opportunity to fix up some of the documentation comments to match
current LLVM style. Also rename some functions to conform better with current
LLVM coding style.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210622 91177308-0d34-0410-b5e6-96231b3b80d8
The SelectionDAG bad a special case for ISD::SELECT_CC, where it would
allow targets to specify:
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
to indicate that they wanted to expand ISD::SELECT_CC for all types.
This wasn't applied correctly everywhere, and it makes writing new
DAG patterns with ISD::SELECT_CC difficult.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210541 91177308-0d34-0410-b5e6-96231b3b80d8
never be true in a well-defined context. The checking for null pointers
has been moved into the caller logic so it does not rely on undefined behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210497 91177308-0d34-0410-b5e6-96231b3b80d8
Don't terminate location ranges for register-described variables
at the end of machine basic block if this register is never modified
in the function body, except for the prologue and epilogue. Prologue
location is guessed by FrameSetup flags on MachineInstructions, while
epilogue location is deduced from debug locations of instructions
in the basic blocks ending with return instructions.
This patch is mostly targeted to fix non-trivial debug locations for
variables addressed via stack and frame pointers.
It is not really a generic fix. We can still produce poor debug info
for register-described variables if this register *is* modified somewhere
in the function, but in unrelated places. This might be the case for the debug
info in optimized binaries (e.g. for local variables in inlined functions).
LiveDebugVariables pass in CodeGen attempts to fix this problem by adjusting
DBG_VALUE instructions, but this pass is tied to greedy register allocator,
which is used in optimized builds only. Proper fix would likely involve
generalizing LiveDebugVariables to all register allocators. See more discussion
in http://reviews.llvm.org/D3933 review thread.
I'm proceeding with this patch to fix immediate severe problems and
important cases, e.g. fix completely broken debug info with AddressSanitizer
and fix PR19307 (missing debug info for by-value std::string arguments).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210492 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds new target specific combine rules to identify horizontal
add/sub idioms from BUILD_VECTOR dag nodes.
This patch also teaches the DAGCombiner how to canonicalize sequences of
insert_vector_elt dag nodes according to the following rule:
(insert_vector_elt (insert_vector_elt A, I0), I1) ->
(insert_vecto_elt (insert_vector_elt A, I1), I0)
This new canonicalization rule only triggers if the inner insert_vector
dag node has exactly one use; also, both indices must be known constants,
and I1 < I0.
This last rule made it possible to write a simpler algorithm to identify
horizontal add/sub patterns because now we don't have to worry about the
ordering of insert_vector_elt dag nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210477 91177308-0d34-0410-b5e6-96231b3b80d8
This patch modifies SelectionDAGBuilder to construct SDNodes with associated
NoSignedWrap, NoUnsignedWrap and Exact flags coming from IR BinaryOperator
instructions.
Added a new SDNode type called 'BinaryWithFlagsSDNode' to allow accessing
nsw/nuw/exact flags during codegen.
Patch by Marcello Maggioni.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210467 91177308-0d34-0410-b5e6-96231b3b80d8
Now the scheduler updates a node's ready time as soon as it is
scheduled, before releasing dependent nodes. There was a reason I
didn't do this initially but it no longer applies.
A53 is in-order and was running into an issue where nodes where added
to the readyQ too early. That's now fixed.
This also makes it easier for custom scheduling strategies to build
heuristics based on the actual cycles that the node was scheduled at.
The only impact on OOO (sandybridge/cyclone) is that ready times will
be slightly more accurate. I didn't measure any significant regressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210390 91177308-0d34-0410-b5e6-96231b3b80d8
This ensures that member functions, for example, are entered into
pubnames with their fully qualified name, rather than inside the global
namespace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210379 91177308-0d34-0410-b5e6-96231b3b80d8
* Section association cannot use just the section name as many
sections can have the same name. With this patch, the comdat symbol in
an assoc section is interpreted to mean a symbol in the associated
section and the mapping is discovered from it.
* Comdat symbols were not being set correctly. Instead we were getting
whatever was output first for that section.
A consequence is that associative sections now must use .section to
set the association. Using .linkonce would not work since it is not
possible to change a sections comdat symbol (it is used to decide if
we should create a new section or reuse an existing one).
This includes r210298, which was reverted because it was asserting
on an associated section having the same comdat as the associated
section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210367 91177308-0d34-0410-b5e6-96231b3b80d8
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210280 91177308-0d34-0410-b5e6-96231b3b80d8
No functional change intended, just streamlines the abstract variable
lookup/construction to use a common entry point.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210234 91177308-0d34-0410-b5e6-96231b3b80d8
Unused arguments were not being added to the argument list, but instead
treated as arbitrary scope variables. This meant they weren't carefully
added in the original argument order.
In this particular example, though, it turns out the argument is only
/mostly/ unused (well, actually it's entirely used, but in a specific
way). It's a struct that, due to ABI reasons, is decomposed into chunks
(exactly one chunk, since it has one member) and then passed. Since only
one of those chunks is used (SROA, etc, kill the original reconstitution
code) we don't have a location to describe the whole variable.
In this particular case, since the struct consists of just the one int,
once we have partial location information, this should have a location
that describes the entire variable (since the piece is the entirety of
the object).
And at some point we'll need to describe the location of even /entirely/
unused arguments so that they can at least be printed on function entry.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210231 91177308-0d34-0410-b5e6-96231b3b80d8
Abstract variables within abstract scopes that are entirely optimized
away in their first inlining are omitted because their scope is not
present so the variable is never created. Instead, we should ensure the
scope is created so the variable can be added, even if it's been
optimized away in its first inlining.
This fixes the incorrect debug info in missing-abstract-variable.ll
(added in r210143) and passes an asserts self-hosting build, so
hopefully there's not more of these issues left behind... *fingers
crossed*.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210221 91177308-0d34-0410-b5e6-96231b3b80d8
We would previously assert here when trying to figure out the section
for the global.
This makes us handle the situation more gracefully since the IR isn't
malformed.
Differential Revision: http://reviews.llvm.org/D4022
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210215 91177308-0d34-0410-b5e6-96231b3b80d8
As requested by AArch64 subtargets.
Note that this will have no effect until the
AArch64 target actually enables the pass like this:
substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
As soon as armv7 switches over, PostMachineScheduler will become the
default postRA scheduler, so this won't be necessary any more.
Targets using the old postRA schedule would then do:
substitutePass(&PostMachineSchedulerID, &PostRASchedulerID);
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210167 91177308-0d34-0410-b5e6-96231b3b80d8
These were not exposed previously because I didn't want out-of-tree
targets to be too dependent on their internals. They can be reused for
a very wide variety of processors with casual scheduling needs without
exposing the classes by instead using hooks defined in
MachineSchedPolicy (we can add more if needed). When targets are more
aggressively tuned or want to provide custom heuristics, they can
define their own MachineSchedStrategy. I tend to think this is better
once you start customizing heuristics because you can copy over only
what you need. I don't think that layering heuristics generally works
well.
However, Arch64 targets now want to reuse the Generic scheduling logic
but also provide extensions. I don't see much harm in exposing the
Generic scheduling classes with a major caveat: these scheduling
strategies may change in the future without validating performance on
less mainstream processors. If you want to be immune from changes,
just define your own MachineSchedStrategy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210166 91177308-0d34-0410-b5e6-96231b3b80d8
Along with a test case to demonstrate that due to inlining order there
are cases where abstract variable DIEs are not constructed since the
abstract subprogram was built due to a previous inlining that optimized
away those variables. This produces incorrect debug info (the 'missing'
abstract variable causes the inlined instance of that variable to be
emitted with a full description (name, line, file) rather than
referencing the abstract origin), but this commit at least ensures that
it doesn't crash...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210143 91177308-0d34-0410-b5e6-96231b3b80d8
This gets us closer to being able to remove LiveVariables entirely which is where dead instructions are currently tagged as such.
Reviewed by Jakob Olesen
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210132 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.
This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like
@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
i32 ptrtoint (i32* @bar to i32)) to i32*)
An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).
Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210062 91177308-0d34-0410-b5e6-96231b3b80d8
This was previously committed in r209680 and reverted in r209683 after
it caused sanitizer builds to crash.
The issue seems to be that the DebugLoc associated with dbg.value IR
intrinsics isn't necessarily accurate. Instead, we duplicate the
DIVariables and add an InlinedAt field to them to record their
location.
We were using this InlinedAt field to compute the LexicalScope for the
variable, but not using it in the abstract DbgVariable construction and
mapping. This resulted in a formal parameter to the current concrete
function, correctly having no InlinedAt information, but incorrectly
having a DebugLoc that described an inlined location within the
function... thus an abstract DbgVariable was created for the variable,
but its DIE was never constructed (since the LexicalScope had no such
variable). This DbgVariable was silently ignored (by testing for a
non-null DIE on the abstract DbgVariable).
So, fix this by using the right scoping information when constructing
abstract DbgVariables.
In the long run, I suspect we want to undo the work that added this
second kind of location tracking and fix the places where the DebugLoc
propagation on the dbg.value intrinsic fails. This will shrink debug
info (by not duplicating DIVariables), make it more efficient (by not
having to construct new DIVariable metadata nodes to try to map back to
a single variable), and benefit all instructions.
But perhaps there are insurmountable issues with DebugLoc quality that
I'm unaware of... I just don't know how we can't /just keep the DebugLoc
from the dbg.declare to the dbg.values and never get this wrong/.
Some history context:
http://llvm.org/viewvc/llvm-project?view=revision&revision=135629http://llvm.org/viewvc/llvm-project?view=revision&revision=137253
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209984 91177308-0d34-0410-b5e6-96231b3b80d8
DAG cycle detection is only enabled with ENABLE_EXPENSIVE_CHECKS. However we
can run it just before we would crash in order to provide more informative
diagnostics.
Now in addition to the "Overran sorted position" message we also get the Node
printed if a cycle was detected.
Tested by building several configs: Debug+Assert, Debug+Assert+Check (this is
ENABLE_EXPENSIVE_CHECKS), Release+Assert and Release. Also tried that the
AssignTopologicalOrder assert produces the expected results.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209977 91177308-0d34-0410-b5e6-96231b3b80d8
Pass the DAG down to checkForCycles from all callers where we have it. This
allows target-specific nodes to be printed properly.
Also print some missing newlines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209976 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the backend how to simplify/canonicalize dag node
sequences normally introduced by the backend when promoting certain dag nodes
with illegal vector type.
This patch adds two new combine rules:
1) fold (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
(shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
2) fold (BINOP (shuffle (A, Undef, <Mask>)), (shuffle (B, Undef, <Mask>))) ->
(shuffle (BINOP A, B), Undef, <Mask>).
Both rules are only triggered on the type-legalized DAG.
In particular, rule 1. is a target specific combine rule that attempts
to sink a bitconvert into the operands of a binary operation.
Rule 2. is a target independet rule that attempts to move a shuffle
immediately after a binary operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209930 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If both vector args to vselect are concat_vectors and the condition is
constant and picks half a vector from each argument, convert the vselect
into a concat_vectors.
Added a test.
The ConvertSelectToConcatVector is assuming it doesn't get vselects with
arguments of, for example, <undef, undef, true, true>. Those get taken
care of in the checks above its call.
Reviewers: nadav, delena, grosbach, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3916
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209929 91177308-0d34-0410-b5e6-96231b3b80d8
For MIPS, we have to encode the personality routine with
an indirect pointer to absptr; otherwise, some link warning
warning will be raised, and the program might crash in some
early MIPS Android device.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209907 91177308-0d34-0410-b5e6-96231b3b80d8
Unordered is strictly weaker than monotonic, so if the latter doesn't have any
barriers then the former certainly shouldn't.
rdar://problem/16548260
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209901 91177308-0d34-0410-b5e6-96231b3b80d8
The C and C++ semantics for compare_exchange require it to return a bool
indicating success. This gets mapped to LLVM IR which follows each cmpxchg with
an icmp of the value loaded against the desired value.
When lowered to ldxr/stxr loops, this extra comparison is redundant: its
results are implicit in the control-flow of the function.
This commit makes two changes: it replaces that icmp with appropriate PHI
nodes, and then makes sure earlyCSE is called after expansion to actually make
use of the opportunities revealed.
I've also added -{arm,aarch64}-enable-atomic-tidy options, so that
existing fragile tests aren't perturbed too much by the change. Many
of them either rely on undef/unreachable too pervasively to be
restored to something well-defined (particularly while making sure
they test the same obscure assert from many years ago), or depend on a
particular CFG shape, which is disrupted by SimplifyCFG.
rdar://problem/16227836
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209883 91177308-0d34-0410-b5e6-96231b3b80d8
never used again and updating the abstract variable for each inlined
instance of it was questionable in the first place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209829 91177308-0d34-0410-b5e6-96231b3b80d8
An address only use of an extract element of a load can be simplified to a
load. Without this the result of the extract element is spilled to the
stack so that an address is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209788 91177308-0d34-0410-b5e6-96231b3b80d8
No test because no in-tree targets change the bitwidth of the
setcc type depending on the bitwidth of the compared type.
Patch by Ke Bai
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209771 91177308-0d34-0410-b5e6-96231b3b80d8
This matches gcc's behavior. It also seems natural given that aliases
contain other properties that govern how it is accessed (linkage,
visibility, dll storage).
Clang still has to be updated to expose this feature to C.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209759 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r208640 (I've just XFAILed the test) because it broke ppc64/Linux
self-hosting. Because nearly every regression test triggers a segfault, I hope
this will be easy to fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209747 91177308-0d34-0410-b5e6-96231b3b80d8
Use more straightforward way to represent the set of instruction
ranges where the location of a user variable is defined - vector of pairs
of instructions (defining start/end of each range),
instead of a flattened vector of instructions where some instructions
are supposed to start the range, and the rest are supposed to "clobber" it.
Simplify the code which generates actual .debug_loc entries.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209698 91177308-0d34-0410-b5e6-96231b3b80d8
Current implementation of calculateDbgValueHistory already creates the
keys in the expected order (user variables are listed in order of appearance),
and should do so later by contract.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209690 91177308-0d34-0410-b5e6-96231b3b80d8
I'm not sure exactly where/how we end up with an abstract DbgVariable
with a null DIE, but we do... looking into it & will add a test and/or
fix when I figure it out.
Currently shows up in selfhost or compiler-rt builds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209683 91177308-0d34-0410-b5e6-96231b3b80d8
Originally committed in r207717, I clearly didn't look very closely at
the code to understand how existing things were working...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209680 91177308-0d34-0410-b5e6-96231b3b80d8
After much puppetry, here's the major piece of the work to ensure that
even when a concrete definition preceeds all inline definitions, an
abstract definition is still created and referenced from both concrete
and inline definitions.
Variables are still broken in this case (see comment in
dbg-value-inlined-parameter.ll test case) and will be addressed in
follow up work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209677 91177308-0d34-0410-b5e6-96231b3b80d8
A further step to correctly emitting concrete out of line definitions
preceeding inlined instances of the same program.
To do this, emission of subprograms must be delayed until required since
we don't know which (abstract only (if there's no out of line
definition), concrete only (if there are no inlined instances), or both)
DIEs are required at the start of the module.
To reduce the test churn in the following commit that actually fixes the
bug, this commit introduces the lazy DIE construction and cleans up test
cases that are impacted by the changes in the resulting DIE ordering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209675 91177308-0d34-0410-b5e6-96231b3b80d8
This is a precursor to fixing inlined debug info where the concrete,
out-of-line definition may preceed any inlined usage. To cope with this,
the attributes that may appear on the concrete definition or the
abstract definition are delayed until the end of the module. Then, if an
abstract definition was created, it is referenced (and no other
attributes are added to the out-of-line definition), otherwise the
attributes are added directly to the out-of-line definition.
In a couple of cases this causes not just reordering of attributes, but
reordering of types. When the creation of the attribute is delayed, if
that creation would create a type (such as for a DW_AT_type attribute)
then other top level DIEs may've been constructed during the delay,
causing the referenced type to be created and added after those
intervening DIEs. In the extreme case, in cross-cu-inlining.ll, this
actually causes the DW_TAG_basic_type for "int" to move from one CU to
another.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209674 91177308-0d34-0410-b5e6-96231b3b80d8
Cortex-M4 only has single-precision floating point support, so any LLVM
"double" type will have been split into 2 i32s by now. Fortunately, the
consecutive-register framework turns out to be precisely what's needed to
reconstruct the double and follow AAPCS-VFP correctly!
rdar://problem/17012966
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209650 91177308-0d34-0410-b5e6-96231b3b80d8
Post commit review feedback from Manman called this out, but it looks
like it slipped through the cracks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209611 91177308-0d34-0410-b5e6-96231b3b80d8
Seems my previous fix was insufficient - we were still not adding the
inlined function to the abstract scope list. Which meant it wasn't
flagged as inline, didn't have nested lexical scopes in the abstract
definition, and didn't have abstract variables - so the inlined variable
didn't reference an abstract variable, instead being described
completely inline.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209602 91177308-0d34-0410-b5e6-96231b3b80d8
This makes front/back symmetric with begin/end, avoiding some confusion.
Added instr_front/instr_back for the old behavior, corresponding to
instr_begin/instr_end. Audited all three in-tree users of back(), all
of them look like they don't want to look inside bundles.
Fixes an assertion (PR19815) when generating debug info on mips, where a
delay slot was bundled at the end of a branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209580 91177308-0d34-0410-b5e6-96231b3b80d8
This seems like a simple cleanup/improved consistency, but also helps
lay the foundation to fix the bug mentioned in the test case: concrete
definitions preceeding any inlined usage aren't properly split into
concrete + abstract (because they're not known to need it until it's too
late).
Once we start deferring this choice until later, we won't have the
choice to put concrete definitions for inlined subroutines in a
different scope from concrete definitions for non-inlined subroutines
(since we won't know at time-of-construction which one it'll be). This
change brings those two cases into alignment ahead of that future
chaneg/fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209547 91177308-0d34-0410-b5e6-96231b3b80d8
It's not really a "ScopeDIE", as such - it's the abstract function
definition's DIE. And we usually use "SP" for subprograms, rather than
"Sub".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209499 91177308-0d34-0410-b5e6-96231b3b80d8
constructSubprogramDIE was already called for every subprogram in every
CU when the module was started - there's no need to call it again at
module finalization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209372 91177308-0d34-0410-b5e6-96231b3b80d8
a subtarget hook to enable. Unconditionally add to the pass pipeline
for targets that might want to use it. No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209340 91177308-0d34-0410-b5e6-96231b3b80d8