on x86 to handle more cases. Fix a bug in said code that would cause it
to read past the end of an object. Rewrite the code in
SelectionDAGLegalize::ExpandBUILD_VECTOR to be a bit more general.
Remove PerformBuildVectorCombine, which is no longer necessary with
these changes. In addition to simplifying the code, with this change,
we can now catch a few more cases of consecutive loads.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73012 91177308-0d34-0410-b5e6-96231b3b80d8
nodes for vectors with an i16 element type. Add an optimization for
building a vector which is all zeros/undef except for the bottom
element, where the bottom element is an i8 or i16.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72988 91177308-0d34-0410-b5e6-96231b3b80d8
Update code generator to use this attribute and remove NoImplicitFloat target option.
Update llc to set this attribute when -no-implicit-float command line option is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72959 91177308-0d34-0410-b5e6-96231b3b80d8
build vectors with i64 elements will only appear on 32b x86 before legalize.
Since vector widening occurs during legalize, and produces i64 build_vector
elements, the dag combiner is never run on these before legalize splits them
into 32b elements.
Teach the build_vector dag combine in x86 back end to recognize consecutive
loads producing the low part of the vector.
Convert the two uses of TLI's consecutive load recognizer to pass LoadSDNodes
since that was required implicitly.
Add a testcase for the transform.
Old:
subl $28, %esp
movl 32(%esp), %eax
movl 4(%eax), %ecx
movl %ecx, 4(%esp)
movl (%eax), %eax
movl %eax, (%esp)
movaps (%esp), %xmm0
pmovzxwd %xmm0, %xmm0
movl 36(%esp), %eax
movaps %xmm0, (%eax)
addl $28, %esp
ret
New:
movl 4(%esp), %eax
pmovzxwd (%eax), %xmm0
movl 8(%esp), %eax
movaps %xmm0, (%eax)
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72957 91177308-0d34-0410-b5e6-96231b3b80d8
`-fomit-frame-pointer', we would lack the DW_CFA_advance_loc information for a
lot of function, and then they would be `0'. The linker (at least on Darwin)
needs to encode the stack size. In some cases, the stack size is too large to
directly encode. So the linker checks to see if there is a "subl $xxx,%esp"
instruction at the point where the `DW_CFA_def_cfa_offset' says the pc was. If
so, the compact encoding records the offset in the function to where the stack
size is embedded. But because the `DW_CFA_advance_loc' instructions are missing,
it looks before the function and dies.
So, instead of emitting the EH debug label before the stack adjustment
operations, emit it afterwards, right before the frame move stuff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72898 91177308-0d34-0410-b5e6-96231b3b80d8
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
Update code generator to use this attribute and remove DisableRedZone target option.
Update llc to set this attribute when -disable-red-zone command line option is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72894 91177308-0d34-0410-b5e6-96231b3b80d8
using Promote which won't work because i64 isn't
a legal type. It's easy enough to use Custom, but
then we have the problem that when the type
legalizer is promoting FP_TO_UINT->i16, it has no
way of telling it should prefer FP_TO_SINT->i32
to FP_TO_UINT->i32. I have uncomfortably hacked
this by making the type legalizer choose FP_TO_SINT
when both are Custom.
This fixes several regressions in the testsuite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72891 91177308-0d34-0410-b5e6-96231b3b80d8
carry GlobalBaseReg, and GlobalRetAddr too in Alpha's case. This
eliminates the need for them to search through the
MachineRegisterInfo livein list in order to identify these
virtual registers. EmitLiveInCopies is now the only user of the
virtual register portion of MachineRegisterInfo's livein data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72802 91177308-0d34-0410-b5e6-96231b3b80d8
with an accessor method which simply casts the parent class
SelectionDAGISel's TM to the target-specific type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72801 91177308-0d34-0410-b5e6-96231b3b80d8
Expand it exactly like GlobalAddress.
Fix some more crashes (InsertBranch() not being implemented) for compiling hitec libs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72776 91177308-0d34-0410-b5e6-96231b3b80d8
relocation model on x86-64. Higher level logic should override
the relocation model to PIC on x86_64-apple-darwin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72746 91177308-0d34-0410-b5e6-96231b3b80d8
ADDC/ADDE use MVT::i1 (later, whatever it gets legalized to)
instead of MVT::Flag. Remove CARRY_FALSE in favor of 0; adjust
all target-independent code to use this format.
Most targets will still produce a Flag-setting target-dependent
version when selection is done. X86 is converted to use i32
instead, which means TableGen needs to produce different code
in xxxGenDAGISel.inc. This keys off the new supportsHasI1 bit
in xxxInstrInfo, currently set only for X86; in principle this
is temporary and should go away when all other targets have
been converted. All relevant X86 instruction patterns are
modified to represent setting and using EFLAGS explicitly. The
same can be done on other targets.
The immediate behavior change is that an ADC/ADD pair are no
longer tightly coupled in the X86 scheduler; they can be
separated by instructions that don't clobber the flags (MOV).
I will soon add some peephole optimizations based on using
other instructions that set the flags to feed into ADC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72707 91177308-0d34-0410-b5e6-96231b3b80d8
decoding. Essentially, they both map to the same column in the "opcode
extensions for one- and two-byte opcodes" table in the x86 manual. The RawFrm
complicates decoding this.
Instead, use opcode 0x01, prefix 0x01, and form MRM1r. Then have the code
emitter special case these, a la [SML]FENCE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72556 91177308-0d34-0410-b5e6-96231b3b80d8
list in Attributes.h. It also reorders the CPPBackend list to match so that
it's easier to see that it's complete.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72510 91177308-0d34-0410-b5e6-96231b3b80d8
the Intel manual (screenshot) says it should be 0b11110110 (f6). The existing
encoding causes a disassembly conflict with MMX_PAVGBrm, which really should be
0f e0."
Patch by Sean Callanan!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72508 91177308-0d34-0410-b5e6-96231b3b80d8
e.g.
orl $65536, 8(%rax)
=>
orb $1, 10(%rax)
Since narrowing is not always a win, e.g. i32 -> i16 is a loss on x86, dag combiner consults with the target before performing the optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72507 91177308-0d34-0410-b5e6-96231b3b80d8
FP_TO_XINT. Necessary for some cleanups I'm working on. Updated
from the previous version (r72431) to fix a bug and make some things a
bit clearer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72445 91177308-0d34-0410-b5e6-96231b3b80d8
- added processors k8-sse3, opteron-sse3, athlon64-sse3, amdfam10, and
barcelona with appropriate sse3/4a levels
- added FeatureSSE4A for amdfam10 processors
in X86Subtarget:
- added hasSSE4A
- updated AutoDetectSubtargetFeatures to detect SSE4A
- updated GetCurrentX86CPU to detect family 15 with sse3 as k8-sse3 and
family 10h as amdfam10
New processor names match those used by gcc.
Patch by Paul Redmond!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72434 91177308-0d34-0410-b5e6-96231b3b80d8
systems instead of attempting to promote them to a 64-bit SINT_TO_FP or
FP_TO_SINT. This is in preparation for removing the type legalization
code from LegalizeDAG: once type legalization is gone from LegalizeDAG,
it won't be able to handle the i64 operand/result correctly.
This isn't quite ideal, but I don't think any other operation for any
target ends up in this situation, so treating this case specially seems
reasonable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72324 91177308-0d34-0410-b5e6-96231b3b80d8
to run last because it needs to know the exact size and position of every
basic block. Currently CodePlacementOpt is set up to run last. It might be
worthwhile to investigate reordering these passes, but for now, let's just
make it work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72037 91177308-0d34-0410-b5e6-96231b3b80d8