Currently, the sub-operand of a memrr address that corresponds to what
hardware considers the base register is called "offreg", while the
sub-operand that corresponds to the offset is called "ptrreg".
To avoid confusion, this patch simply swaps the named of those two
sub-operands and updates all uses. No functional change is intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177734 91177308-0d34-0410-b5e6-96231b3b80d8
PPCTargetLowering::getPreIndexedAddressParts currently provides
the base part of a memory address in the offset result, and the
offset part in the base result. That swap is then undone again
when an MI instruction is generated (in PPCDAGToDAGISel::Select
for loads, and using .md Pat patterns for stores).
This patch reverts this double swap, to make common code and
back-end be in sync as to which part of the address is base
and which is offset.
To avoid performance regressions in certain cases, target code
now checks whether the choice of base register would be rejected
for pre-inc accesses by common code, and attempts to swap base
and offset again in such cases. (Overall, this means that now
pre-ice accesses are generated *more* frequently than before.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177733 91177308-0d34-0410-b5e6-96231b3b80d8
The iaddroff ComplexPattern is supposed to recognize displacement
expressions that have been processed by a SelectAddressRegImm,
which means it needs to accept TargetConstant and TargetGlobalAddress
nodes. Currently, it erroneously also accepts some other nodes,
in particular Constant and PPCISD::Lo.
While this problem is currently latent, it would cause wrong-code
bugs with a follow-on patch I'm about to commit, so this patch
tightens the ComplexPattern. The equivalent change is made in
PPCDAGToDAGISel::Select, where pre-inc load patterns are handled
(as opposed to store patterns, the loads are handled in C++ code
without making use of the .td ComplexPattern).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177732 91177308-0d34-0410-b5e6-96231b3b80d8
The xaddroff pattern is currently (mistakenly) used to recognize
the *base* register in pre-inc store patterns. This patch replaces
those uses by ptr_rc_nor0 (as is elsewhere done to match the base
register of an address), and removes the now unused ComplexPattern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177731 91177308-0d34-0410-b5e6-96231b3b80d8
Before: the function name was stored by the compiler as a constant string
and the run-time was printing it.
Now: the PC is stored instead and the run-time prints the full symbolized frame.
This adds a couple of instructions into every function with non-empty stack frame,
but also reduces the binary size because we store less strings (I saw 2% size reduction).
This change bumps the asan ABI version to v3.
llvm part.
Example of report (now):
==31711==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fffa77cf1c5 at pc 0x41feb0 bp 0x7fffa77cefb0 sp 0x7fffa77cefa8
READ of size 1 at 0x7fffa77cf1c5 thread T0
#0 0x41feaf in Frame0(int, char*, char*, char*) stack-oob-frames.cc:20
#1 0x41f7ff in Frame1(int, char*, char*) stack-oob-frames.cc:24
#2 0x41f477 in Frame2(int, char*) stack-oob-frames.cc:28
#3 0x41f194 in Frame3(int) stack-oob-frames.cc:32
#4 0x41eee0 in main stack-oob-frames.cc:38
#5 0x7f0c5566f76c (/lib/x86_64-linux-gnu/libc.so.6+0x2176c)
#6 0x41eb1c (/usr/local/google/kcc/llvm_cmake/a.out+0x41eb1c)
Address 0x7fffa77cf1c5 is located in stack of thread T0 at offset 293 in frame
#0 0x41f87f in Frame0(int, char*, char*, char*) stack-oob-frames.cc:12 <<<<<<<<<<<<<< this is new
This frame has 6 object(s):
[32, 36) 'frame.addr'
[96, 104) 'a.addr'
[160, 168) 'b.addr'
[224, 232) 'c.addr'
[288, 292) 's'
[352, 360) 'd'
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177724 91177308-0d34-0410-b5e6-96231b3b80d8
The original code used i32, and i64 if legal. This introduced unneeded
casts when they aren't legal, or when the index variable i has another
type. In order of preference: try to use i's type; use the smallest
fitting legal type (using an added DataLayout method); default to i32.
A testcase checks that this works when the index gep operand is i16.
Patch by : Ahmed Bougacha <ahmed.bougacha@gmail.com>
Reviewed by : Duncan
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177712 91177308-0d34-0410-b5e6-96231b3b80d8
ScavengedRC was a dead private variable (set, but not otherwise used). No
functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177708 91177308-0d34-0410-b5e6-96231b3b80d8
-time-ir-parsing flag
This breaks the layering of the Support library. We can't add an
implementation side to IRReader because it refers directly to entities
only accessible as part of the IR, AsmParser, and BitcodeReader
libraries. It can only be used in a context where all of those libraries
will be available.
We'll need to find some other way to get this functionality, and
hopefully solve the long-standing layering problem of IRReader.h...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177695 91177308-0d34-0410-b5e6-96231b3b80d8
For mips a branch an 18-bit signed offset (the 16-bit
offset field shifted left 2 bits) is added to the
address of the instruction following the branch
(not the branch itself), in the branch delay slot,
to form a PC-relative effective target address.
Previously, the code generator did not perform the
shift of the immediate branch offset which resulted
in wrong instruction opcode. This patch fixes the issue.
Contributor: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177687 91177308-0d34-0410-b5e6-96231b3b80d8
This patch uses the generated instruction info tables to
identify memory/load store instructions.
After successful matching and based on the operand type
and size, it generates additional instructions to the output.
Contributor: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177685 91177308-0d34-0410-b5e6-96231b3b80d8
As Jakob pointed out in his review of r177423, having a shared ZERO
register between the 32- and 64-bit register classes causes this
odd G8RC_NOX0_and_GPRC_NOR0 class to be created. As recommended,
this adds a ZERO8 register which differentiates the 32- and 64-bit
zeros.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177683 91177308-0d34-0410-b5e6-96231b3b80d8
How did this ever work?
Basically, if you have a function that's inlined into the caller, it may not
have any 'call' instructions, but any 'resume' instructions it may have should
still be forwarded to the outer (caller's) landing pad. This requires that all
of the 'landingpad' instructions in the callee have their clauses merged with
the caller's outer 'landingpad' instruction (hence the bit of ugly code in the
`forwardResume' method).
Testcase in a follow commit to the test-suite repository.
<rdar://problem/13360379> & PR15555
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177680 91177308-0d34-0410-b5e6-96231b3b80d8
Thanks to Jakob for isolating the underlying problem from the
test case in r177423. The original commit had introduced
asymmetric copy operations, but these turned out to be a work-around
to the real problem (the use of == instead of hasSubClassEq in PPCCTRLoops).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177679 91177308-0d34-0410-b5e6-96231b3b80d8
The DARWIN_USER_TEMP_DIR and DARWIN_USER_CACHE_DIR configuration
settings are more idiomatic for Darwin than the TMPDIR environment
variable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177669 91177308-0d34-0410-b5e6-96231b3b80d8
The .set directive in the Mips the assembler can be
used to set the value of a symbol to an expression.
This changes the symbol's value and type to conform
to the expression's.
Syntax: .set symbol, expression
This patch implements the parsing of the above syntax
and enables the parser to use defined symbols when
parsing operands.
Contributor: Vladimir Medic
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177667 91177308-0d34-0410-b5e6-96231b3b80d8
This implements SJLJ lowering on PPC, making the Clang functions
__builtin_{setjmp/longjmp} functional on PPC platforms. The implementation
strategy is similar to that on X86, with the exception that a branch-and-link
variant is used to get the right jump address. Credit goes to Bill Schmidt for
suggesting the use of the unconditional bcl form (instead of the regular bl
instruction) to limit return-address-cache pollution.
Benchmarking the speed at -O3 of:
static jmp_buf env_sigill;
void foo() {
__builtin_longjmp(env_sigill,1);
}
main() {
...
for (int i = 0; i < c; ++i) {
if (__builtin_setjmp(env_sigill)) {
goto done;
} else {
foo();
}
done:;
}
...
}
vs. the same code using the libc setjmp/longjmp functions on a P7 shows that
this builtin implementation is ~4x faster with Altivec enabled and ~7.25x
faster with Altivec disabled. This comparison is somewhat unfair because the
libc version must also save/restore the VSX registers which we don't yet
support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177666 91177308-0d34-0410-b5e6-96231b3b80d8
Although there is only one Altivec VRSAVE register, it is a member of
a register class, and we need the ability to spill it. Because this
register is normally callee-preserved and handled by special code this
has never before been necessary. However, this capability will be required by
a forthcoming commit adding SjLj support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177654 91177308-0d34-0410-b5e6-96231b3b80d8
The old code used to lower FRAMEADDR tried to replicate the logic in the real
frame-lowering code that determines whether or not the frame pointer (r31) will
be used. When it seemed as through the frame pointer would not be used, the
stack pointer (r1) was used instead. Unfortunately, because the stack size is
not yet known, this does not work. Instead, this change introduces new
always-reserved pseudo-registers (FP and FP8) that are replaced during prologue
insertion with the real frame-pointer register (either r1 or r31).
It is important that this intrinsic always return a valid frame address because
it is used by Clang to store the frame address as part of code generation for
__builtin_setjmp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177653 91177308-0d34-0410-b5e6-96231b3b80d8
NEON is not IEEE 754 compliant, so we should avoid lowering single-precision
floating point operations with NEON unless unsafe-math is turned on. The
equivalent VFP instructions are IEEE 754 compliant, but in some cores they're
much slower, so some archs/OSs might still request it to be on by default,
such as Swift and Darwin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177651 91177308-0d34-0410-b5e6-96231b3b80d8
header.
This method is called in the hot path for *many* passes, SROA is what
caught my interest. A common pattern is that which branch of the switch
should be taken is known in the callsite and so it is a very good
candidate for inlining and simplification. Moving it into the header
allows the optimizer to fold a lot of boring, repeatitive code in
callers of this routine.
I'm seeing pretty significant speedups in parts of SROA and I suspect
other passes will see similar speedups if they end up working with type
sizes frequently. I've not seen any significant growth of the binaries
as a consequence, but let me know if you see anything suspicious here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177632 91177308-0d34-0410-b5e6-96231b3b80d8
The key part of this is ensuring that name prefixes remain in a Twine
form until we get to a point where we can nuke them under NDEBUG. This
is tricky using the old APIs as they played fast and loose with Twine,
which is prone to serious error. The inserter is much cleaner as it is
actually in the call stack leading to the setName call, and so has
a good opportunity to prepend the prefix.
This matters more than you might imagine because most runs over an
alloca find a single partition, and rewrite 3 or 4 instructions
referring to it. As a consequence doing this lazily and exclusively with
Twine allows the optimizer to delete more of it and shaves another 2% to
3% off of the release build's SROA run time for PR15412. I also think
the APIs are cleaner, and the use of Twine is more reliable, so
I consider it a win-win despite the churn required to reach this state.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177631 91177308-0d34-0410-b5e6-96231b3b80d8
The 'Modified' variable should have been removed from SimplifyLibCalls
in r177619, but was missed. This commit removes it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177622 91177308-0d34-0410-b5e6-96231b3b80d8
The simplify-libcalls pass implemented a doInitialization hook to infer
function prototype attributes for well-known functions. Given that the
simplify-libcalls pass is going away *and* that the functionattrs pass
is already in place to deduce function attributes, I am moving this logic
to the functionattrs pass. This approach was discussed during patch
review:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20121126/157465.html.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177619 91177308-0d34-0410-b5e6-96231b3b80d8
- After moving logic recognizing vector shift with scalar amount from
DAG combining into DAG lowering, we declare to customize all vector
shifts even vector shift on AVX is legal. As a result, the cost model
needs special tuning to identify these legal cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177586 91177308-0d34-0410-b5e6-96231b3b80d8
Use the new `llvm_gcov_init' function to register the writeout and flush
functions. The initialization function will also call `atexit' for some cleanups
and final writout calls. But it does this only once. This is better than
checking for the `main' function, because in a library that function may not
exist.
<rdar://problem/12439551>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177579 91177308-0d34-0410-b5e6-96231b3b80d8
This makes it possible to report multiple errors in one invocation.
There are already calls to PrintError in CodeGenDAGPatterns.cpp which
previously would not cause TableGen to fail.
<rdar://problem/13463339>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177573 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit 06091513c2.
The code is obviously wrong, but the trivial fix causes
inefficient code generation on X86. Somebody with more
knowledge of the code needs to take a look here.
Signed-off-by: Christian König <christian.koenig@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177529 91177308-0d34-0410-b5e6-96231b3b80d8
TargetOpcodes need to be treaded as Machine- and not ISD-Opcodes.
Signed-off-by: Christian König <christian.koenig@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177518 91177308-0d34-0410-b5e6-96231b3b80d8
This is espcially important because the new SROA pass goes to great
lengths to provide helpful names for debugging, and as a consequence
they can become very slow to render.
Good for between 5% and 15% of the SROA runtime on some slow test cases
such as the one in PR15412.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177495 91177308-0d34-0410-b5e6-96231b3b80d8
Moving the DIFile parameter to immediately proceed the tag so that it will be a
common prefix with other DIScopes (once the DIFile is replaced with the raw
file/directory pair).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177492 91177308-0d34-0410-b5e6-96231b3b80d8
- Move SRA/SRL/SHL lowering support from DAG combination to DAG lowering
to support extended 256-bit integer in AVX but not AVX2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177478 91177308-0d34-0410-b5e6-96231b3b80d8
This makes DIType's first non-tag parameter the same as DIFile's, allowing them
to both share the common implementation of getFilename/getDirectory in DIScope.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177467 91177308-0d34-0410-b5e6-96231b3b80d8
A node's ordering is only propagated during legalization if (a) the new node does
not have an ordering (is not a CSE'd node), or (b) the new node has an ordering
that is higher than the node being legalized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177465 91177308-0d34-0410-b5e6-96231b3b80d8
This is another step along the way to making all DIScopes have a common prefix
which can be added to in a general manner to support using directives
(DW_TAG_imported_module).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177462 91177308-0d34-0410-b5e6-96231b3b80d8
Add a new WriteZero SchedWrite type for the common dependency-breaking
instructions that clear a register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177442 91177308-0d34-0410-b5e6-96231b3b80d8
added back in by X86AsmPrinter::printIntelMemReference() during codegen.
Previously, this following example
void t() {
int i;
__asm mov eax, [i]
}
would generate the below assembly
mov eax, dword ptr [[eax]]
which resulted in a fatal error when compiling. Test case coming on the
clang side.
rdar://13444264
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177440 91177308-0d34-0410-b5e6-96231b3b80d8
an X86Operand, but also performs a Sema lookup and adds the sizing directive
when appropriate. Use this when parsing a bracketed statement. This is
necessary to get the instruction matching correct as well. Test case coming
on clang side.
rdar://13455408
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177439 91177308-0d34-0410-b5e6-96231b3b80d8
We don't want to write out >1000 files at the same time. That could make things
prohibitively expensive. Instead, register the "writeout" function so that it's
emitted serially.
<rdar://problem/12439551>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177437 91177308-0d34-0410-b5e6-96231b3b80d8
- it is trivially known to be used inside the loop in a way that can not be optimized away
- there is no use outside of the loop which can take advantage of the computation hoisting
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177432 91177308-0d34-0410-b5e6-96231b3b80d8
All pre-increment load patterns need to set the mayLoad flag (since
they don't provide a DAG pattern).
This was missing for LHAUX8 and LWAUX, which is added by this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177431 91177308-0d34-0410-b5e6-96231b3b80d8
As opposed to to pre-increment store patterns, the pre-increment
load patterns were already using standard memory operands, with
the sole exception of LHAU8.
As there's no real reason why LHAU8 should be different here,
this patch simply rewrites the pattern to also use a memri
operand, just like all the other patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177430 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, pre-increment store patterns are written to use two separate
operands to represent address base and displacement:
stwu $rS, $ptroff($ptrreg)
This causes problems when implementing the assembler parser, so this
commit changes the patterns to use standard (complex) memory operands
like in all other memory access instruction patterns:
stwu $rS, $dst
To still match those instructions against the appropriate pre_store
SelectionDAG nodes, the patch uses the new feature that allows a Pat
to match multiple DAG operands against a single (complex) instruction
operand.
Approved by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177429 91177308-0d34-0410-b5e6-96231b3b80d8
The tocentry operand class refers to 64-bit values (it is only used in 64-bit,
where iPTR is a 64-bit type), but its sole suboperand is designated as 32-bit
type. This causes a mismatch to be detected at compile-time with the TableGen
patch I'll check in shortly.
To fix this, this commit changes the suboperand to a 64-bit type as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177427 91177308-0d34-0410-b5e6-96231b3b80d8
def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
(MOV64rm tglobaltlsaddr :$dst)>;
This pattern is invalid because the MOV64rm instruction expects a
source operand of type "i64mem", which is a subclass of X86MemOperand
and thus actually consists of five MI operands, but the Pat provides
only a single MI operand ("tglobaltlsaddr" matches an SDnode of
type ISD::TargetGlobalTLSAddress and provides a single output).
Thus, if the pattern were ever matched, subsequent uses of the MOV64rm
instruction pattern would access uninitialized memory. In addition,
with the TableGen patch I'm about to check in, this would actually be
reported as a build-time error.
Fortunately, the pattern does in fact never match, for at least two
independent reasons.
First, the code generator actually never generates a pattern of the
form (load (X86Wrapper (tglobaltlsaddr))). For most combinations of
TLS and code models, (tglobaltlsaddr) represents just an offset that
needs to be added to some base register, so it is never directly
dereferenced. The only exception is the initial-exec model, where
(tglobaltlsaddr) refers to the (pc-relative) address of a GOT slot,
which *is* in fact directly dereferenced: but in that case, the
X86WrapperRIP node is used, not X86Wrapper, so the Pat doesn't match.
Second, even if some patterns along those lines *were* ever generated,
we should not need an extra Pat pattern to match it. Instead, the
original MOV64rm instruction pattern ought to match directly, since
it uses an "addr" operand, which is implemented via the SelectAddr
C++ routine; this routine is supposed to accept the full range of
input DAGs that may be implemented by a single mov instruction,
including those cases involving ISD::TargetGlobalTLSAddress (and
actually does so e.g. in the initial-exec case as above).
To avoid build breaks (due to the above-mentioned error) after the
TableGen patch is checked in, I'm removing this Pat here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177426 91177308-0d34-0410-b5e6-96231b3b80d8
Currently the PPC r0 register is unconditionally reserved. There are two reasons
for this:
1. r0 is treated specially (as the constant 0) by certain instructions, and so
cannot be used with those instructions as a regular register.
2. r0 is used as a temporary register in the CR-register spilling process
(where, under some circumstances, we require two GPRs).
This change addresses the first reason by introducing a restricted register
class (without r0) for use by those instructions that treat r0 specially. These
register classes have a new pseudo-register, ZERO, which represents the r0-as-0
use. This has the side benefit of making the existing target code simpler (and
easier to understand), and will make it clear to the register allocator that
uses of r0 as 0 don't conflict will real uses of the r0 register.
Once the CR spilling code is improved, we'll be able to allocate r0.
Adding these extra register classes, for some reason unclear to me, causes
requests to the target to copy 32-bit registers to 64-bit registers. The
resulting code seems correct (and causes no test-suite failures), and the new
test case covers this new kind of asymmetric copy.
As r0 is still reserved, no functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177423 91177308-0d34-0410-b5e6-96231b3b80d8
Remove an accidentally-added instruction definition and add a comment in the
test case. This is in response to a post-commit review by Bill Schmidt.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177404 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM backend currently has poor codegen for long sext/zext
operations, such as v8i8 -> v8i32. This patch addresses this
by performing a custom expansion in ARMISelLowering. It also
adds/changes the cost of such lowering in ARMTTI.
This partially addresses PR14867.
Patch by Pete Couperus
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177380 91177308-0d34-0410-b5e6-96231b3b80d8