1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-29 12:50:28 +00:00
CLK/Machines/Apple/AppleIIgs/AppleIIgs.cpp

1158 lines
38 KiB
C++
Raw Normal View History

//
// AppleIIgs.cpp
// Clock Signal
//
// Created by Thomas Harte on 20/10/2020.
// Copyright 2020 Thomas Harte. All rights reserved.
//
#include "AppleIIgs.hpp"
2020-11-14 23:00:06 +00:00
#include "../../../Activity/Source.hpp"
#include "../../MachineTypes.hpp"
#include "../../../Analyser/Static/AppleIIgs/Target.hpp"
2021-02-17 00:39:22 +00:00
2020-11-01 01:00:15 +00:00
#include "ADB.hpp"
#include "MemoryMap.hpp"
2020-11-01 00:39:32 +00:00
#include "Video.hpp"
#include "Sound.hpp"
2021-02-17 00:39:22 +00:00
#include "../../../Processors/65816/65816.hpp"
#include "../../../Components/8530/z8530.hpp"
#include "../../../Components/AppleClock/AppleClock.hpp"
2020-11-12 02:04:38 +00:00
#include "../../../Components/AudioToggle/AudioToggle.hpp"
#include "../../../Components/DiskII/IWM.hpp"
#include "../../../Components/DiskII/MacintoshDoubleDensityDrive.hpp"
#include "../../../Components/DiskII/DiskIIDrive.hpp"
2021-02-17 00:39:22 +00:00
#include "../AppleII/Joystick.hpp"
#include "../../../Outputs/Speaker/Implementation/CompoundSource.hpp"
2020-11-12 02:04:38 +00:00
#include "../../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp"
#include "../../Utility/MemoryFuzzer.hpp"
#include "../../../ClockReceiver/JustInTime.hpp"
#include <cassert>
#include <array>
namespace {
2021-02-17 00:39:22 +00:00
constexpr int CLOCK_RATE = 14'318'180;
2021-03-06 22:11:06 +00:00
class MemManagerChecker {
int handle_total_ = 0;
bool dump_bank(const Apple::IIgs::MemoryMap &memory, const char *name, uint32_t address, bool print, uint32_t must_contain = 0xffffffff) {
const auto handles = memory.regions[memory.region_map[0xe117]].read;
bool did_find = false;
if(print) printf("%s: ", name);
int max = 52;
uint32_t last_visited = 0;
// Seed address.
address = uint32_t(handles[address] | (handles[address+1] << 8) | (handles[address+2] << 16) | (handles[address+3] << 24));
while(true) {
did_find |= address == must_contain;
if(!address) {
if(print) printf("nil\n");
break;
}
++handle_total_;
if(address < 0xe11700 || address > 0xe11aff) {
if(print) printf("Out of bounds error with address = %06x!\n", address);
return false;
}
if((address - 0xe11700)%20) {
if(print) printf("Address alignment error!\n");
return false;
}
const uint32_t previous = uint32_t(handles[address+12] | (handles[address+13] << 8) | (handles[address+14] << 16) | (handles[address+15] << 24));
const uint32_t next = uint32_t(handles[address+16] | (handles[address+17] << 8) | (handles[address+18] << 16) | (handles[address+19] << 24));
const uint32_t pointer = uint32_t(handles[address] | (handles[address+1] << 8) | (handles[address+2] << 16) | (handles[address+3] << 24));
const uint32_t size = uint32_t(handles[address+8] | (handles[address+9] << 8) | (handles[address+10] << 16) | (handles[address+11] << 24));
if(print) printf("%06x (<- %06x | %06x ->) [%06x:%06x] -> \n", address, previous, next, pointer, size);
if(previous && ((previous < 0xe0'0000) || (previous > 0xe2'0000))) {
if(print) printf("Out of bounds error with previous = %06x! [%d && (%d || %d)]\n", previous, bool(previous), previous < 0xe0'0000, previous > 0xe2'0000);
return false;
}
if((previous || last_visited) && (previous != last_visited)) {
if(print) printf("Back link error!\n");
return false;
}
last_visited = address;
address = next;
--max;
if(!max) {
if(print) printf("Endless loop error!\n");
return false;
}
}
if(must_contain != 0xffffffff) {
if(!did_find) {
if(print) printf("%08x not found\n", must_contain);
return false;
}
}
return true;
}
// bool has_seen_valid_memory_ = false;
// bool should_validate_ = false;
2021-03-06 22:11:06 +00:00
public:
bool validate_memory_manager(const Apple::IIgs::MemoryMap &memory, bool print) {
const auto pointers = memory.regions[memory.region_map[0xe116]].read;
constexpr uint32_t address = 0xe1162c;
const uint32_t last_high_handle = uint32_t(pointers[address] | (pointers[address+1] << 8) | (pointers[address+2] << 16) | (pointers[address+3] << 24));
// Check for initial state having been reached.
// if(!has_seen_valid_memory_) {
// if(pointers[0xe11624]) return true;
// for(int c = 0xe1160c; c < 0xe1161c; c++) {
// if(pointers[c]) return true;
// }
// has_seen_valid_memory_ = true;
// }
// Output.
if(print) printf("\nNumber of banks: %d\n", pointers[0xe11624]);
if(print) printf("Last high handle: %04x\n", last_high_handle);
bool result = true;
handle_total_ = 0;
result &= dump_bank(memory, "Mem", 0xe11600, print, last_high_handle);
result &= dump_bank(memory, "Purge", 0xe11604, print);
result &= dump_bank(memory, "Free", 0xe11608, print);
// TODO: and other checs?
// result &= dump_bank("Bank 0", 0xe1160c);
// result &= dump_bank("Bank 1", 0xe11610);
// result &= dump_bank("Bank E0", 0xe11614);
// result &= dump_bank("Bank E1", 0xe11618);
// result &= dump_bank("Bank FF", 0xe1161c);
if(print) printf("Total: %d\n", handle_total_);
if(handle_total_ != 51) result &= false;
return result;
}
};
}
namespace Apple {
namespace IIgs {
class ConcreteMachine:
2020-11-14 23:00:06 +00:00
public Activity::Source,
public Apple::IIgs::Machine,
2020-11-12 02:04:38 +00:00
public MachineTypes::AudioProducer,
2021-02-17 00:39:22 +00:00
public MachineTypes::JoystickMachine,
public MachineTypes::MappedKeyboardMachine,
public MachineTypes::MediaTarget,
2021-02-17 00:39:22 +00:00
public MachineTypes::MouseMachine,
public MachineTypes::ScanProducer,
public MachineTypes::TimedMachine,
public CPU::MOS6502Esque::BusHandler<uint32_t> {
public:
ConcreteMachine(const Analyser::Static::AppleIIgs::Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
m65816_(*this),
2020-11-13 02:44:51 +00:00
iwm_(CLOCK_RATE / 2),
drives35_{
2020-11-12 23:09:31 +00:00
{CLOCK_RATE / 2, true},
{CLOCK_RATE / 2, true}
2020-11-12 02:04:38 +00:00
},
drives525_{
{CLOCK_RATE / 2},
{CLOCK_RATE / 2}
},
sound_glu_(audio_queue_),
2020-11-12 02:04:38 +00:00
audio_toggle_(audio_queue_),
mixer_(sound_glu_, audio_toggle_),
speaker_(mixer_) {
set_clock_rate(double(CLOCK_RATE));
2020-11-12 02:04:38 +00:00
speaker_.set_input_rate(float(CLOCK_RATE) / float(audio_divider));
using Target = Analyser::Static::AppleIIgs::Target;
std::vector<ROMMachine::ROM> rom_descriptions;
const std::string machine_name = "AppleIIgs";
switch(target.model) {
case Target::Model::ROM00:
/* TODO */
case Target::Model::ROM01:
rom_descriptions.emplace_back(machine_name, "the Apple IIgs ROM01", "apple2gs.rom", 128*1024, 0x42f124b0);
break;
case Target::Model::ROM03:
rom_descriptions.emplace_back(machine_name, "the Apple IIgs ROM03", "apple2gs.rom2", 256*1024, 0xde7ddf29);
break;
}
rom_descriptions.push_back(video_->rom_description(Video::Video::CharacterROM::EnhancedIIe));
// TODO: pick a different ADB ROM for earlier machine revisions?
rom_descriptions.emplace_back(machine_name, "the Apple IIgs ADB microcontroller ROM", "341s0632-2", 4*1024, 0xe1c11fb0);
const auto roms = rom_fetcher(rom_descriptions);
if(!roms[0] || !roms[1] || !roms[2]) {
throw ROMMachine::Error::MissingROMs;
}
rom_ = *roms[0];
video_->set_character_rom(*roms[1]);
adb_glu_->set_microcontroller_rom(*roms[2]);
// Run only the currently-interesting self test.
// rom_[0x36402] = 2;
// rom_[0x36403] = 0x7c; // ROM_CHECKSUM [working, when hacks like this are removed]
// rom_[0x36404] = 0x6c;
// rom_[0x36403] = 0x82; // MOVIRAM [working]
// rom_[0x36404] = 0x67;
// rom_[0x36403] = 0x2c; // SOFT_SW [working]
// rom_[0x36404] = 0x6a;
// rom_[0x36403] = 0xe8; // RAM_ADDR [working]
// rom_[0x36404] = 0x6f;
// rom_[0x36403] = 0xc7; // FPI_SPEED [working]
// rom_[0x36404] = 0x6a;
// rom_[0x36403] = 0xd7; // SER_TST [broken]
// rom_[0x36404] = 0x68;
// rom_[0x36403] = 0xdc; // CLOCK [broken]
// rom_[0x36404] = 0x6c;
// rom_[0x36403] = 0x1b; // BAT_RAM [broken]
// rom_[0x36404] = 0x6e;
// rom_[0x36403] = 0x11; // FDB (/ADB?) [broken]
// rom_[0x36404] = 0x6f;
// rom_[0x36403] = 0x41; // SHADOW_TST [working]
// rom_[0x36404] = 0x6d;
// rom_[0x36403] = 0x09; // CUSTOM_IRQ [broken?]
// rom_[0x36404] = 0x6b;
// rom_[0x36403] = 0xf4; // DOC_EXEC
// rom_[0x36404] = 0x70;
// rom_[0x36403] = 0xab; // ECT_SEQ
// rom_[0x36404] = 0x64;
2021-03-06 22:11:06 +00:00
rom_[0xfc146f] = rom_[0xfc1470] = 0xea;
size_t ram_size = 0;
switch(target.memory_model) {
case Target::MemoryModel::TwoHundredAndFiftySixKB:
ram_size = 256;
break;
case Target::MemoryModel::OneMB:
ram_size = 128 + 1024;
break;
case Target::MemoryModel::EightMB:
ram_size = 128 + 8 * 1024;
break;
}
ram_.resize(ram_size * 1024);
memory_.set_storage(ram_, rom_);
video_->set_internal_ram(&ram_[ram_.size() - 128*1024]);
2020-10-29 01:23:45 +00:00
// Attach drives to the IWM.
iwm_->set_drive(0, &drives35_[0]);
iwm_->set_drive(1, &drives35_[1]);
// Randomise RAM contents.
// std::srand(23);
Memory::Fuzz(ram_);
2020-10-29 01:23:45 +00:00
// Sync up initial values.
memory_.set_speed_register(speed_register_ ^ 0x80);
insert_media(target.media);
}
2020-11-13 02:44:51 +00:00
~ConcreteMachine() {
audio_queue_.flush();
}
void run_for(const Cycles cycles) override {
m65816_.run_for(cycles);
}
void flush() {
video_.flush();
iwm_.flush();
adb_glu_.flush();
AudioUpdater updater(this);
2020-11-12 02:04:38 +00:00
audio_queue_.perform();
}
void set_scan_target(Outputs::Display::ScanTarget *target) override {
video_->set_scan_target(target);
}
Outputs::Display::ScanStatus get_scaled_scan_status() const override {
return video_->get_scaled_scan_status() * 2.0f; // TODO: expose multiplier and divider via the JustInTime template?
}
void set_display_type(Outputs::Display::DisplayType display_type) final {
video_->set_display_type(display_type);
}
Outputs::Display::DisplayType get_display_type() const final {
return video_->get_display_type();
}
2020-11-12 02:04:38 +00:00
Outputs::Speaker::Speaker *get_speaker() final {
return &speaker_;
}
// MARK: MediaTarget.
bool insert_media(const Analyser::Static::Media &media) final {
if(!media.disks.empty()) {
const auto disk = media.disks[0];
if(disk->get_maximum_head_position().as_int() > 35) {
drives35_[0].set_disk(media.disks[0]);
} else {
drives525_[0].set_disk(media.disks[0]);
}
}
return true;
}
2020-11-14 23:00:06 +00:00
// MARK: Activity::Source
void set_activity_observer(Activity::Observer *observer) final {
drives35_[0].set_activity_observer(observer, "First 3.5\" Drive", true);
drives35_[1].set_activity_observer(observer, "Second 3.5\" Drive", true);
drives525_[0].set_activity_observer(observer, "First 5.25\" Drive", true);
drives525_[1].set_activity_observer(observer, "Second 5.25\" Drive", true);
2020-11-14 23:00:06 +00:00
}
// MARK: BusHandler.
uint64_t total = 0;
forceinline Cycles perform_bus_operation(const CPU::WDC65816::BusOperation operation, const uint32_t address, uint8_t *const value) {
const auto &region = MemoryMapRegion(memory_, address);
static bool log = false;
bool is_1Mhz = false;
if(operation == CPU::WDC65816::BusOperation::ReadVector && !(memory_.get_shadow_register()&0x40)) {
// I think vector pulls always go to ROM?
// That's slightly implied in the documentation, and doing so makes GS/OS boot, so...
// TODO: but is my guess above re: not doing that if IOLC shadowing is disabled correct?
assert(address <= 0xffff && address >= 0xffe4);
*value = rom_[rom_.size() - 65536 + address];
} else if(region.flags & MemoryMap::Region::IsIO) {
// Ensure classic auxiliary and language card accesses have effect.
const bool is_read = isReadOperation(operation);
memory_.access(uint16_t(address), is_read);
const auto address_suffix = address & 0xffff;
assert(address_suffix >= 0xc000 && address_suffix < 0xd000);
2020-11-14 23:23:31 +00:00
#define ReadWrite(x) (x) | (is_read * 0x10000)
#define Read(x) (x) | 0x10000
#define Write(x) (x)
switch(ReadWrite(address_suffix)) {
// New video register.
2020-11-14 23:23:31 +00:00
case Read(0xc029):
*value = video_->get_new_video();
2020-11-14 23:23:31 +00:00
break;
case Write(0xc029):
video_->set_new_video(*value);
assert(*value & 1);
2020-11-14 23:23:31 +00:00
// TODO: I think bits 7 and 0 might also affect the memory map.
// The descripton isn't especially clear — P.90 of the Hardware Reference.
// Revisit if necessary.
break;
// Video [and clock] interrupt register.
2020-11-14 23:23:31 +00:00
case Read(0xc023):
*value = video_->get_interrupt_register();
break;
case Write(0xc023):
video_->set_interrupt_register(*value);
break;
2020-11-14 23:23:31 +00:00
// Video interrupt-clear register.
case Write(0xc032):
video_->clear_interrupts(*value);
break;
case Read(0xc032):
// TODO: this seems to be undocumented, but used. What value is likely?
*value = 0xff;
break;
// Shadow register.
2020-11-14 23:23:31 +00:00
case Read(0xc035):
*value = memory_.get_shadow_register();
break;
case Write(0xc035):
memory_.set_shadow_register(*value);
break;
// Clock data.
2020-11-14 23:23:31 +00:00
case Read(0xc033):
*value = clock_.get_data();
break;
case Write(0xc033):
clock_.set_data(*value);
break;
// Clock and border control.
2020-11-14 23:23:31 +00:00
case Read(0xc034):
2020-11-26 18:13:48 +00:00
*value = (clock_.get_control() & 0xf0) | (video_.last_valid()->get_border_colour() & 0x0f);
2020-11-14 23:23:31 +00:00
break;
case Write(0xc034):
clock_.set_control(*value);
video_->set_border_colour(*value);
break;
// Colour text control.
2020-11-14 23:23:31 +00:00
case Write(0xc022):
video_->set_text_colour(*value);
break;
case Read(0xc022):
*value = video_.last_valid()->get_text_colour();
break;
2020-10-29 01:23:45 +00:00
// Speed register.
2020-11-14 23:23:31 +00:00
case Read(0xc036):
*value = speed_register_ ^ 0x80;
2020-11-14 23:23:31 +00:00
break;
case Write(0xc036):
// b7: 1 => operate at 2.8Mhz; 0 => 1Mhz.
// b6: power-on status; 1 => system has been turned on by the power switch (TODO: what clears this?)
// b5: reserved
// b4: [bank shadowing bit; cf. the memory map]
// b03: motor on-off speed detectors;
// 1 => switch to 1Mhz if motor is on; 0 => don't;
// b0 = slot 4 (i.e. watches addresses c0c9, c0c8)
// b1 = slot 5 (i.e. c0d9, c0d8)
// b2 = slot 6 (i.e. c0e9, c0e8)
// b3 = slot 7 (i.e. c0f9, c0f8)
2020-11-14 23:23:31 +00:00
memory_.set_speed_register(*value);
speed_register_ = *value ^ 0x80;
2020-10-29 01:23:45 +00:00
break;
// [Memory] State register.
2020-11-14 23:23:31 +00:00
case Read(0xc068):
*value = memory_.get_state_register();
break;
case Write(0xc068):
memory_.set_state_register(*value);
video_->set_page2(*value & 0x40);
break;
// Various independent memory switch reads [TODO: does the IIe-style keyboard provide the low seven?].
#define SwitchRead(s) *value = memory_.s ? 0x80 : 0x00; is_1Mhz = true;
#define LanguageRead(s) SwitchRead(language_card_switches().state().s)
#define AuxiliaryRead(s) SwitchRead(auxiliary_switches().switches().s)
#define VideoRead(s) *value = video_.last_valid()->s ? 0x80 : 0x00; is_1Mhz = true;
case Read(0xc011): LanguageRead(bank2); break;
2020-11-14 23:23:31 +00:00
case Read(0xc012): LanguageRead(read); break;
case Read(0xc013): AuxiliaryRead(read_auxiliary_memory); break;
case Read(0xc014): AuxiliaryRead(write_auxiliary_memory); break;
case Read(0xc015): AuxiliaryRead(internal_CX_rom); break;
case Read(0xc016): AuxiliaryRead(alternative_zero_page); break;
case Read(0xc017): AuxiliaryRead(slot_C3_rom); break;
case Read(0xc018): VideoRead(get_80_store()); break;
2020-11-17 02:55:41 +00:00
case Read(0xc019):
VideoRead(get_is_vertical_blank(video_.time_since_flush()));
break;
2020-11-14 23:23:31 +00:00
case Read(0xc01a): VideoRead(get_text()); break;
case Read(0xc01b): VideoRead(get_mixed()); break;
case Read(0xc01c): VideoRead(get_page2()); break;
case Read(0xc01d): VideoRead(get_high_resolution()); break;
case Read(0xc01e): VideoRead(get_alternative_character_set()); break;
case Read(0xc01f): VideoRead(get_80_columns()); break;
2020-11-01 00:39:32 +00:00
#undef VideoRead
#undef AuxiliaryRead
#undef LanguageRead
#undef SwitchRead
// Video switches (and annunciators).
2020-11-14 23:23:31 +00:00
case Read(0xc050): case Read(0xc051):
case Write(0xc050): case Write(0xc051):
video_->set_text(address & 1);
is_1Mhz = true;
2020-11-01 00:39:32 +00:00
break;
2020-11-14 23:23:31 +00:00
case Read(0xc052): case Read(0xc053):
case Write(0xc052): case Write(0xc053):
video_->set_mixed(address & 1);
is_1Mhz = true;
2020-11-01 00:39:32 +00:00
break;
2020-11-14 23:23:31 +00:00
case Read(0xc054): case Read(0xc055):
case Write(0xc054): case Write(0xc055):
video_->set_page2(address & 1);
is_1Mhz = true;
2020-11-01 00:39:32 +00:00
break;
2020-11-14 23:23:31 +00:00
case Read(0xc056): case Read(0xc057):
case Write(0xc056): case Write(0xc057):
video_->set_high_resolution(address&1);
is_1Mhz = true;
2020-11-01 00:39:32 +00:00
break;
2020-11-14 23:23:31 +00:00
case Read(0xc058): case Read(0xc059):
case Write(0xc058): case Write(0xc059):
case Read(0xc05a): case Read(0xc05b):
case Write(0xc05a): case Write(0xc05b):
case Read(0xc05c): case Read(0xc05d):
case Write(0xc05c): case Write(0xc05d):
// Annunciators 0, 1 and 2.
is_1Mhz = true;
break;
2020-11-14 23:23:31 +00:00
case Read(0xc05e): case Read(0xc05f):
case Write(0xc05e): case Write(0xc05f):
video_->set_annunciator_3(!(address&1));
is_1Mhz = true;
2020-11-01 00:39:32 +00:00
break;
2020-11-14 23:23:31 +00:00
case Write(0xc000): case Write(0xc001):
video_->set_80_store(address & 1);
is_1Mhz = true;
2020-11-01 01:00:15 +00:00
break;
2020-11-14 23:23:31 +00:00
case Write(0xc00c): case Write(0xc00d):
video_->set_80_columns(address & 1);
is_1Mhz = true;
2020-11-01 01:00:15 +00:00
break;
2020-11-14 23:23:31 +00:00
case Write(0xc00e): case Write(0xc00f):
video_->set_alternative_character_set(address & 1);
is_1Mhz = true;
2020-11-01 01:00:15 +00:00
break;
// ADB and keyboard.
2020-11-14 23:23:31 +00:00
case Read(0xc000):
*value = adb_glu_->get_keyboard_data();
2020-11-01 01:00:15 +00:00
break;
2020-11-14 23:23:31 +00:00
case Read(0xc010):
*value = adb_glu_->get_any_key_down() ? 0x80 : 0x00;
2020-11-14 23:23:31 +00:00
[[fallthrough]];
case Write(0xc010):
adb_glu_->clear_key_strobe();
break;
2020-11-14 23:23:31 +00:00
case Read(0xc024):
*value = adb_glu_->get_mouse_data();
2020-11-01 01:00:15 +00:00
break;
2020-11-14 23:23:31 +00:00
case Read(0xc025):
*value = adb_glu_->get_modifier_status();
2020-11-01 01:00:15 +00:00
break;
2020-11-14 23:23:31 +00:00
case Read(0xc026):
*value = adb_glu_->get_data();
2020-11-01 01:00:15 +00:00
break;
2020-11-14 23:23:31 +00:00
case Write(0xc026):
adb_glu_->set_command(*value);
2020-11-14 23:23:31 +00:00
break;
case Read(0xc027):
*value = adb_glu_->get_status();
2020-11-14 23:23:31 +00:00
break;
case Write(0xc027):
adb_glu_->set_status(*value);
2020-11-01 01:00:15 +00:00
break;
2020-11-01 00:39:32 +00:00
// The SCC.
2020-11-14 23:23:31 +00:00
case Read(0xc038): case Read(0xc039): case Read(0xc03a): case Read(0xc03b):
*value = scc_.read(int(address));
break;
case Write(0xc038): case Write(0xc039): case Write(0xc03a): case Write(0xc03b):
scc_.write(int(address), *value);
break;
// The audio GLU.
case Read(0xc03c): {
AudioUpdater updater(this);
2020-11-14 23:23:31 +00:00
*value = sound_glu_.get_control();
} break;
case Write(0xc03c): {
AudioUpdater updater(this);
2020-11-14 23:23:31 +00:00
sound_glu_.set_control(*value);
} break;
case Read(0xc03d): {
AudioUpdater updater(this);
2020-11-14 23:23:31 +00:00
*value = sound_glu_.get_data();
} break;
case Write(0xc03d): {
AudioUpdater updater(this);
2020-11-14 23:23:31 +00:00
sound_glu_.set_data(*value);
} break;
case Read(0xc03e): {
AudioUpdater updater(this);
2020-11-14 23:23:31 +00:00
*value = sound_glu_.get_address_low();
} break;
case Write(0xc03e): {
AudioUpdater updater(this);
2020-11-14 23:23:31 +00:00
sound_glu_.set_address_low(*value);
} break;
case Read(0xc03f): {
AudioUpdater updater(this);
2020-11-14 23:23:31 +00:00
*value = sound_glu_.get_address_high();
} break;
case Write(0xc03f): {
AudioUpdater updater(this);
2020-11-14 23:23:31 +00:00
sound_glu_.set_address_high(*value);
} break;
// These were all dealt with by the call to memory_.access.
// TODO: subject to read data? Does vapour lock apply?
case Read(0xc002): case Read(0xc003): case Read(0xc004): case Read(0xc005):
case Read(0xc006): case Read(0xc007): case Read(0xc008): case Read(0xc009): case Read(0xc00a): case Read(0xc00b):
*value = 0xff;
break;
case Write(0xc002): case Write(0xc003): case Write(0xc004): case Write(0xc005):
case Write(0xc006): case Write(0xc007): case Write(0xc008): case Write(0xc009): case Write(0xc00a): case Write(0xc00b):
break;
2020-10-31 01:42:43 +00:00
// Interrupt ROM addresses; Cf. P25 of the Hardware Reference.
2020-11-14 23:23:31 +00:00
case Read(0xc071): case Read(0xc072): case Read(0xc073):
case Read(0xc074): case Read(0xc075): case Read(0xc076): case Read(0xc077):
case Read(0xc078): case Read(0xc079): case Read(0xc07a): case Read(0xc07b):
case Read(0xc07c): case Read(0xc07d): case Read(0xc07e): case Read(0xc07f):
*value = rom_[rom_.size() - 65536 + address_suffix];
break;
2021-02-17 00:39:22 +00:00
// Analogue inputs.
2021-02-15 02:15:31 +00:00
case Read(0xc061):
2021-02-17 00:39:22 +00:00
*value = (adb_glu_->get_command_button() || joysticks_.button(0)) ? 0x80 : 0x00;
2021-02-15 02:15:31 +00:00
is_1Mhz = true;
break;
case Read(0xc062):
2021-02-17 00:39:22 +00:00
*value = (adb_glu_->get_option_button() || joysticks_.button(1)) ? 0x80 : 0x00;
2021-02-15 02:15:31 +00:00
is_1Mhz = true;
break;
case Read(0xc063):
2021-02-17 00:39:22 +00:00
*value = joysticks_.button(2) ? 0x80 : 0x00;
is_1Mhz = true;
break;
2021-02-17 00:39:22 +00:00
case Read(0xc064):
case Read(0xc065):
case Read(0xc066):
case Read(0xc067): {
// Analogue inputs.
2021-02-17 00:39:22 +00:00
const size_t input = address_suffix - 0xc064;
*value = joysticks_.analogue_channel_is_discharged(input) ? 0x00 : 0x80;
is_1Mhz = true;
2021-02-17 00:39:22 +00:00
} break;
2020-11-14 23:23:31 +00:00
case Read(0xc070): case Write(0xc070):
2021-02-17 00:39:22 +00:00
joysticks_.access_c070();
is_1Mhz = true;
break;
// Monochome/colour register.
2020-11-14 23:23:31 +00:00
case Read(0xc021):
// "Uses bit 7 to determine whether composite output is colour 9) or gray scale (1)."
*value = video_.last_valid()->get_composite_is_colour() ? 0x00 : 0x80;
2020-11-14 23:23:31 +00:00
break;
case Write(0xc021):
video_->set_composite_is_colour(!(*value & 0x80));
break;
case Read(0xc02e):
*value = video_.last_valid()->get_vertical_counter(video_.time_since_flush());
is_1Mhz = true;
break;
case Read(0xc02f):
*value = video_.last_valid()->get_horizontal_counter(video_.time_since_flush());
is_1Mhz = true;
break;
// C037 seems to be just a full-speed storage register.
case Read(0xc037):
*value = c037_;
break;
case Write(0xc037):
c037_ = *value;
break;
case Read(0xc041):
*value = megaii_interrupt_mask_;
is_1Mhz = true;
break;
case Write(0xc041):
megaii_interrupt_mask_ = *value;
video_->set_megaii_interrupts_enabled(*value);
is_1Mhz = true;
break;
case Read(0xc044):
// MMDELTAX byte.
*value = 0;
is_1Mhz = true;
break;
case Read(0xc045):
// MMDELTAX byte.
*value = 0;
is_1Mhz = true;
break;
case Read(0xc046):
*value = video_->get_megaii_interrupt_status();
is_1Mhz = true;
break;
case Read(0xc047): case Write(0xc047):
video_->clear_megaii_interrupts();
is_1Mhz = true;
break;
case Read(0xc048): case Write(0xc048):
// No-op: Clear Mega II mouse interrupt flags
is_1Mhz = true;
break;
// Language select.
// b7, b6, b5: character generator language select;
// b4: NTSC/PAL (0 = NTC);
// b3: language select — primary or secondary.
2020-11-14 23:23:31 +00:00
case Read(0xc02b):
*value = language_;
break;
case Write(0xc02b):
language_ = *value;
break;
// TODO: 0xc02c is "Addr for tst mode read of character ROM". So it reads... what?
// Slot select.
2020-11-14 23:23:31 +00:00
case Read(0xc02d):
// b7: 0 = internal ROM code for slot 7;
// b6: 0 = internal ROM code for slot 6;
// b5: 0 = internal ROM code for slot 5;
// b4: 0 = internal ROM code for slot 4;
// b3: reserved;
// b2: internal ROM code for slot 2;
// b1: internal ROM code for slot 1;
// b0: reserved.
2020-11-14 23:23:31 +00:00
*value = card_mask_;
break;
case Write(0xc02d):
card_mask_ = *value;
break;
case Read(0xc030): case Write(0xc030): {
AudioUpdater updater(this);
2020-11-12 02:04:38 +00:00
audio_toggle_.set_output(!audio_toggle_.get_output());
} break;
// 'Test Mode', whatever that is (?)
2020-11-14 23:23:31 +00:00
case Read(0xc06e): case Read(0xc06f):
case Write(0xc06e): case Write(0xc06f):
test_mode_ = address & 1;
break;
2020-11-14 23:23:31 +00:00
case Read(0xc06d):
*value = test_mode_ * 0x80;
2020-10-31 01:42:43 +00:00
break;
// Disk drive controls additional to the IWM.
2020-11-14 23:23:31 +00:00
case Read(0xc031):
*value = disk_select_;
break;
case Write(0xc031):
// b7: 0 = use head 0; 1 = use head 1.
// b6: 0 = use 5.25" disks; 1 = use 3.5".
2020-11-14 23:23:31 +00:00
disk_select_ = *value;
iwm_->set_select(*value & 0x80);
// Presumably bit 6 selects between two 5.25" drives rather than the two 3.5"?
if(*value & 0x40) {
iwm_->set_drive(0, &drives35_[0]);
iwm_->set_drive(1, &drives35_[1]);
2020-11-10 23:59:23 +00:00
} else {
iwm_->set_drive(0, &drives525_[0]);
iwm_->set_drive(1, &drives525_[1]);
2020-11-10 23:59:23 +00:00
}
break;
// Addresses on other Apple II devices which do nothing on the GS.
case Read(0xc020): case Write(0xc020): // Reserved for future system expansion.
case Read(0xc028): case Write(0xc028): // ROMBANK; "not used in Apple IIGS".
case Read(0xc02a): case Write(0xc02a): // Reserved for future system expansion.
case Read(0xc040): case Write(0xc040): // Reserved for future system expansion.
case Read(0xc042): case Write(0xc042): // Reserved for future system expansion.
case Read(0xc043): case Write(0xc043): // Reserved for future system expansion.
case Read(0xc049): case Write(0xc049): // Reserved for future system expansion.
case Read(0xc04a): case Write(0xc04a): // Reserved for future system expansion.
case Read(0xc04b): case Write(0xc04b): // Reserved for future system expansion.
case Read(0xc04c): case Write(0xc04c): // Reserved for future system expansion.
case Read(0xc04d): case Write(0xc04d): // Reserved for future system expansion.
case Read(0xc04e): case Write(0xc04e): // Reserved for future system expansion.
case Read(0xc04f): case Write(0xc04f): // Reserved for future system expansion.
case Read(0xc06b): case Write(0xc06b): // Reserved for future system expansion.
case Read(0xc06c): case Write(0xc06c): // Reserved for future system expansion.
case Write(0xc07e):
break;
default:
// Update motor mask bits.
switch(address_suffix) {
case 0xc0c8: motor_flags_ &= ~0x01; break;
case 0xc0c9: motor_flags_ |= 0x01; break;
case 0xc0d8: motor_flags_ &= ~0x02; break;
case 0xc0d9: motor_flags_ |= 0x02; break;
case 0xc0e8: motor_flags_ &= ~0x04; break;
case 0xc0e9: motor_flags_ |= 0x04; break;
case 0xc0f8: motor_flags_ &= ~0x08; break;
case 0xc0f9: motor_flags_ |= 0x08; break;
}
// Check for a card access.
if(address_suffix >= 0xc080 && address_suffix < 0xc800) {
// This is an abridged version of the similar code in AppleII.cpp from
// line 653; it would be good to factor that out and support cards here.
// For now just either supply the internal ROM or nothing as per the
// current card mask.
size_t card_number = 0;
if(address_suffix >= 0xc100) {
/*
Decode the area conventionally used by cards for ROMs:
0xCn00 to 0xCnff: card n.
*/
card_number = (address_suffix - 0xc000) >> 8;
} else {
/*
Decode the area conventionally used by cards for registers:
C0n0 to C0nF: card n - 8.
*/
card_number = (address_suffix - 0xc080) >> 4;
}
const uint8_t permitted_card_mask_ = card_mask_ & 0xf6;
if(permitted_card_mask_ & (1 << card_number)) {
// TODO: Access an actual card.
assert(operation != CPU::WDC65816::BusOperation::ReadOpcode);
if(is_read) {
*value = 0xff;
}
} else {
switch(address_suffix) {
default:
// Temporary: log _potential_ mistakes.
if((address_suffix < 0xc100 && address_suffix >= 0xc090) || (address_suffix < 0xc080)) {
printf("Internal card-area access: %04x\n", address_suffix);
// log |= operation == CPU::WDC65816::BusOperation::ReadOpcode;
}
if(is_read) {
*value = rom_[rom_.size() - 65536 + address_suffix];
}
break;
// IWM.
case 0xc0e0: case 0xc0e1: case 0xc0e2: case 0xc0e3:
case 0xc0e4: case 0xc0e5: case 0xc0e6: case 0xc0e7:
case 0xc0e8: case 0xc0e9: case 0xc0ea: case 0xc0eb:
case 0xc0ec: case 0xc0ed: case 0xc0ee: case 0xc0ef:
if(is_read) {
*value = iwm_->read(int(address_suffix));
} else {
iwm_->write(int(address_suffix), *value);
}
break;
}
}
2020-11-14 23:23:31 +00:00
#undef ReadWrite
#undef Read
#undef Write
} else {
// Access the internal ROM.
//
// TODO: should probably occur only if there was a preceding access to a built-in
// card ROM?
if(is_read) {
*value = rom_[rom_.size() - 65536 + address_suffix];
}
if(address_suffix < 0xc080) {
// TODO: all other IO accesses.
2020-11-14 23:23:31 +00:00
printf("Unhandled IO %s: %04x\n", is_read ? "read" : "write", address_suffix);
// assert(false);
}
}
}
} else {
2020-10-31 00:11:55 +00:00
// For debugging purposes; if execution heads off into an unmapped page then
// it's pretty certain that my 65816 still has issues.
assert(operation != CPU::WDC65816::BusOperation::ReadOpcode || region.read);
is_1Mhz = region.flags & MemoryMap::Region::Is1Mhz;
2020-10-31 00:11:55 +00:00
if(isReadOperation(operation)) {
MemoryMapRead(region, address, value);
} else {
// Shadowed writes also occur "at 1Mhz".
// TODO: this is probably an approximation. I'm assuming that there's the ability asynchronously to post
// both a 1Mhz cycle and a 2.8Mhz cycle and since the latter always fits into the former, this is sufficiently
// descriptive. I suspect this isn't true as it wouldn't explain the speed boost that Wolfenstein and others
// get by adding periodic NOPs within their copy-to-shadow step.
//
// Maybe the interaction with 2.8Mhz refresh isn't as straightforward as I think?
const bool is_shadowed = IsShadowed(memory_, region, address);
is_1Mhz |= is_shadowed;
// Use a very broad test for flushing video: any write to $e0 or $e1, or any write that is shadowed.
// TODO: at least restrict the e0/e1 test to possible video buffers!
if((address >= 0xe0'0400 && address < 0xe1'a000) || is_shadowed) {
video_.flush();
}
MemoryMapWrite(memory_, region, address, value);
}
}
2021-03-04 01:52:14 +00:00
2021-03-06 22:11:06 +00:00
if(operation == CPU::WDC65816::BusOperation::ReadOpcode) {
// if(total >= 92168628 && !validate_memory_manager(false) && address < 0xe10000) {
// printf("@%llu\n", static_cast<unsigned long long>(total));
// validate_memory_manager(true);
// }
// assert(address);
}
2021-03-06 22:11:06 +00:00
// if(total == 132222166 || total == 467891275 || total == 491026055) {
// validate_memory_manager(true);
// }
// if(operation == CPU::WDC65816::BusOperation::Write && (
// (address >= 0xe11700 && address <= 0xe11aff) ||
// address == 0xe11624 || (address >= 0xe1160c && address < 0xe1161c))
// ) {
// // Test for breakages in the chain.
// if(!dump_memory_manager()) {
// printf("Broken at %llu\n", static_cast<unsigned long long>(total));
// } else {
// printf("Correct at %llu\n", static_cast<unsigned long long>(total));
// }
// }
2021-03-04 01:52:14 +00:00
if(operation == CPU::WDC65816::BusOperation::ReadOpcode) {
2021-03-06 22:11:06 +00:00
if(total > 482342960 && total < 482352960 && address == 0xe10000) {
printf("entry: %llu\n", static_cast<unsigned long long>(total));
2021-03-04 01:52:14 +00:00
}
2021-03-06 22:11:06 +00:00
// log |= address == 0xfc144f;
// log &= !((address < 0xfc144f) || (address >= 0xfc1490));
2021-03-06 22:11:06 +00:00
// if(address == 0xfc02b1) {
// dump_memory_manager();
// }
}
if(log) {
printf("%06x %s %02x [%s]", address, isReadOperation(operation) ? "->" : "<-", *value, (is_1Mhz || (speed_register_ & motor_flags_)) ? "1.0" : "2.8");
if(operation == CPU::WDC65816::BusOperation::ReadOpcode) {
printf(" a:%04x x:%04x y:%04x s:%04x e:%d p:%02x db:%02x pb:%02x d:%04x [tot:%llu]\n",
m65816_.get_value_of_register(CPU::WDC65816::Register::A),
m65816_.get_value_of_register(CPU::WDC65816::Register::X),
m65816_.get_value_of_register(CPU::WDC65816::Register::Y),
m65816_.get_value_of_register(CPU::WDC65816::Register::StackPointer),
m65816_.get_value_of_register(CPU::WDC65816::Register::EmulationFlag),
m65816_.get_value_of_register(CPU::WDC65816::Register::Flags),
m65816_.get_value_of_register(CPU::WDC65816::Register::DataBank),
m65816_.get_value_of_register(CPU::WDC65816::Register::ProgramBank),
m65816_.get_value_of_register(CPU::WDC65816::Register::Direct),
static_cast<unsigned long long>(total)
);
} else printf("\n");
}
2020-10-31 00:11:55 +00:00
Cycles duration;
// In preparation for this test: the top bit of speed_register_ has been inverted,
// so 1 => 1Mhz, 0 => 2.8Mhz, and motor_flags_ always has that bit set.
if(is_1Mhz || (speed_register_ & motor_flags_)) {
// TODO: this is very implicitly linked to the video timing; make that overt somehow. Even if it's just with a redundant video setter at construction.
const int current_length = 14 + 2*(slow_access_phase_ / 896); // Length of cycle currently ongoing.
const int phase_adjust = (current_length - slow_access_phase_%14)%current_length; // Amount of time to expand waiting until end of cycle, if not actually at start.
const int access_phase = (slow_access_phase_ + phase_adjust)%912; // Phase at which access will begin.
const int next_length = 14 + 2*(access_phase / 896); // Length of cycle that this access will occur within.
duration = Cycles(next_length + phase_adjust);
} else {
// Clues as to 'fast' refresh timing:
//
// (i) "The time required for the refresh cycles reduces the effective
// processor speed for programs in RAM by about 8 percent.";
// (ii) "These cycles occur approximately every 3.5 microseconds"
//
// 3.5µs @ 14,318,180Hz => one every 50.11 cycles. Safe to assume every 10th fast cycle
// is refresh? That feels like a lot.
//
// (and the IIgs is smart enough that refresh is applicable only to RAM accesses).
const int phase_adjust = (5 - fast_access_phase_%5)%5;
const int refresh = (fast_access_phase_ / 45) * bool(region.write) * 5;
duration = Cycles(5 + phase_adjust + refresh);
}
// TODO: lookup tables to avoid the above? LCM of the two phases is 22,800 so probably 912+50 bytes plus two counters.
fast_access_phase_ = (fast_access_phase_ + duration.as<int>()) % 50;
slow_access_phase_ = (slow_access_phase_ + duration.as<int>()) % 912;
// Propagate time far and wide.
cycles_since_clock_tick_ += duration;
auto ticks = cycles_since_clock_tick_.divide(Cycles(CLOCK_RATE)).as_integral();
while(ticks--) {
clock_.update();
video_.last_valid()->notify_clock_tick(); // The video controller marshalls the one-second interrupt.
// TODO: I think I may have made a false assumption here; does
// the VGC have an independent 1-second interrupt?
update_interrupts();
}
// if(operation == CPU::WDC65816::BusOperation::ReadOpcode && *value == 0x00) {
// printf("%06x: %02x\n", address, *value);
// }
video_ += duration;
iwm_ += duration;
2020-11-12 02:04:38 +00:00
cycles_since_audio_update_ += duration;
adb_glu_ += duration;
total += decltype(total)(duration.as_integral());
if(cycles_since_audio_update_ >= cycles_until_audio_event_) {
AudioUpdater updater(this);
update_interrupts();
}
if(video_.did_flush()) {
update_interrupts();
const bool is_vertical_blank = video_.last_valid()->get_is_vertical_blank(video_.time_since_flush());
2021-02-16 01:49:16 +00:00
if(is_vertical_blank != adb_glu_.last_valid()->get_vertical_blank()) {
adb_glu_->set_vertical_blank(is_vertical_blank);
}
}
2021-02-17 00:39:22 +00:00
joysticks_.update_charge(duration.as<float>() / 14.0f);
return duration;
}
void update_interrupts() {
// Update the interrupt line.
2021-03-06 23:53:39 +00:00
// TODO: add ADB controller as event source.
m65816_.set_irq_line(video_.last_valid()->get_interrupt_line() || sound_glu_.get_interrupt_line());
}
2021-02-16 01:49:16 +00:00
// MARK: - Input.
2021-02-15 20:00:12 +00:00
KeyboardMapper *get_keyboard_mapper() final {
return &keyboard_mapper_;
}
void set_key_state(uint16_t key, bool is_pressed) final {
adb_glu_.last_valid()->keyboard().set_key_pressed(Apple::ADB::Key(key), is_pressed);
}
void clear_all_keys() final {
adb_glu_.last_valid()->keyboard().clear_all_keys();
}
2021-02-16 01:49:16 +00:00
Inputs::Mouse &get_mouse() final {
return adb_glu_.last_valid()->get_mouse();
}
2021-02-17 00:39:22 +00:00
const std::vector<std::unique_ptr<Inputs::Joystick>> &get_joysticks() final {
return joysticks_.get_joysticks();
}
private:
CPU::WDC65816::Processor<ConcreteMachine, false> m65816_;
MemoryMap memory_;
2020-11-01 00:39:32 +00:00
// MARK: - Timing.
int fast_access_phase_ = 0;
int slow_access_phase_ = 0;
2020-10-31 01:50:39 +00:00
uint8_t speed_register_ = 0x40; // i.e. Power-on status. (TODO: only if ROM03?)
uint8_t motor_flags_ = 0x80;
2020-10-29 01:23:45 +00:00
// MARK: - Memory storage.
std::vector<uint8_t> ram_;
std::vector<uint8_t> rom_;
uint8_t c037_ = 0;
// MARK: - Other components.
Apple::Clock::ParallelClock clock_;
JustInTimeActor<Apple::IIgs::Video::Video, Cycles, 1, 2> video_; // i.e. run video at 7Mhz.
JustInTimeActor<Apple::IIgs::ADB::GLU, Cycles, 1, 4> adb_glu_; // i.e. 3,579,545Mhz.
Zilog::SCC::z8530 scc_;
JustInTimeActor<Apple::IWM, Cycles, 1, 2> iwm_;
Cycles cycles_since_clock_tick_;
Apple::Macintosh::DoubleDensityDrive drives35_[2];
Apple::Disk::DiskIIDrive drives525_[2];
2020-11-12 02:04:38 +00:00
// The audio parts.
Concurrency::DeferringAsyncTaskQueue audio_queue_;
Apple::IIgs::Sound::GLU sound_glu_;
2020-11-12 02:04:38 +00:00
Audio::Toggle audio_toggle_;
using AudioSource = Outputs::Speaker::CompoundSource<Apple::IIgs::Sound::GLU, Audio::Toggle>;
AudioSource mixer_;
Outputs::Speaker::LowpassSpeaker<AudioSource> speaker_;
2020-11-12 02:04:38 +00:00
Cycles cycles_since_audio_update_;
Cycles cycles_until_audio_event_;
static constexpr int audio_divider = 16;
2020-11-12 02:04:38 +00:00
void update_audio() {
const auto divided_cycles = cycles_since_audio_update_.divide(Cycles(audio_divider));
sound_glu_.run_for(divided_cycles);
speaker_.run_for(audio_queue_, divided_cycles);
2020-11-12 02:04:38 +00:00
}
class AudioUpdater {
public:
AudioUpdater(ConcreteMachine *machine) : machine_(machine) {
machine_->update_audio();
}
~AudioUpdater() {
machine_->cycles_until_audio_event_ = machine_->sound_glu_.get_next_sequence_point();
}
private:
ConcreteMachine *machine_;
};
friend AudioUpdater;
2020-11-12 02:04:38 +00:00
2021-02-17 00:39:22 +00:00
// MARK: - Keyboard and joystick.
2021-02-15 20:00:12 +00:00
Apple::ADB::KeyboardMapper keyboard_mapper_;
2021-02-17 00:39:22 +00:00
Apple::II::JoystickPair joysticks_;
2021-02-15 20:00:12 +00:00
// MARK: - Cards.
// TODO: most of cards.
uint8_t card_mask_ = 0x00;
bool test_mode_ = false;
uint8_t language_ = 0;
2020-11-10 23:59:23 +00:00
uint8_t disk_select_ = 0;
uint8_t megaii_interrupt_mask_ = 0;
};
}
}
using namespace Apple::IIgs;
Machine *Machine::AppleIIgs(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
return new ConcreteMachine(*dynamic_cast<const Analyser::Static::AppleIIgs::Target *>(target), rom_fetcher);
}
Machine::~Machine() {}