llvm-6502/lib/Target/PowerPC/PPCInstrInfo.td

833 lines
35 KiB
TableGen
Raw Normal View History

//===- PowerPCInstrInfo.td - The PowerPC Instruction Set -----*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the subset of the 32-bit PowerPC instruction set, as used
// by the PowerPC instruction selector.
//
//===----------------------------------------------------------------------===//
include "PowerPCInstrFormats.td"
//===----------------------------------------------------------------------===//
// Selection DAG Type Constraint definitions.
//
// Note that the semantics of these constraints are hard coded into tblgen. To
// modify or add constraints, you have to hack tblgen.
//
class SDTypeConstraint<int opnum> {
int OperandNum = opnum;
}
// SDTCisVT - The specified operand has exactly this VT.
class SDTCisVT <int OpNum, ValueType vt> : SDTypeConstraint<OpNum> {
ValueType VT = vt;
}
// SDTCisInt - The specified operand is has integer type.
class SDTCisInt<int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisFP - The specified operand is has floating point type.
class SDTCisFP <int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisSameAs - The two specified operands have identical types.
class SDTCisSameAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> {
int OtherOperandNum = OtherOp;
}
// SDTCisVTSmallerThanOp - The specified operand is a VT SDNode, and its type is
// smaller than the 'Other' operand.
class SDTCisVTSmallerThanOp<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> {
int OtherOperandNum = OtherOp;
}
//===----------------------------------------------------------------------===//
// Selection DAG Type Profile definitions.
//
// These use the constraints defined above to describe the type requirements of
// the various nodes. These are not hard coded into tblgen, allowing targets to
// add their own if needed.
//
// SDTypeProfile - This profile describes the type requirements of a Selection
// DAG node.
class SDTypeProfile<int numresults, int numoperands,
list<SDTypeConstraint> constraints> {
int NumResults = numresults;
int NumOperands = numoperands;
list<SDTypeConstraint> Constraints = constraints;
}
// Builtin profiles.
def SDTImm : SDTypeProfile<1, 0, [SDTCisInt<0>]>; // for 'imm'.
def SDTVT : SDTypeProfile<1, 0, [SDTCisVT<0, OtherVT>]>; // for 'vt'
def SDTIntBinOp : SDTypeProfile<1, 2, [ // add, and, or, xor, udiv, etc.
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>
]>;
def SDTFPBinOp : SDTypeProfile<1, 2, [ // fadd, fmul, etc.
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0>
]>;
def SDTIntUnaryOp : SDTypeProfile<1, 1, [ // ctlz
SDTCisSameAs<0, 1>, SDTCisInt<0>
]>;
def SDTExtInreg : SDTypeProfile<1, 2, [ // sext_inreg
SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisVT<2, OtherVT>,
SDTCisVTSmallerThanOp<2, 1>
]>;
//===----------------------------------------------------------------------===//
// Selection DAG Node Properties.
//
// Note: These are hard coded into tblgen.
//
class SDNodeProperty;
def SDNPCommutative : SDNodeProperty; // X op Y == Y op X
def SDNPAssociative : SDNodeProperty; // (X op Y) op Z == X op (Y op Z)
//===----------------------------------------------------------------------===//
// Selection DAG Node definitions.
//
class SDNode<string opcode, SDTypeProfile typeprof,
list<SDNodeProperty> props = [], string sdclass = "SDNode"> {
string Opcode = opcode;
string SDClass = sdclass;
list<SDNodeProperty> Properties = props;
SDTypeProfile TypeProfile = typeprof;
}
def set;
def node;
def imm : SDNode<"ISD::Constant" , SDTImm , [], "ConstantSDNode">;
def vt : SDNode<"ISD::VALUETYPE" , SDTVT , [], "VTSDNode">;
def add : SDNode<"ISD::ADD" , SDTIntBinOp ,
[SDNPCommutative, SDNPAssociative]>;
def sub : SDNode<"ISD::SUB" , SDTIntBinOp>;
def mul : SDNode<"ISD::MUL" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def mulhs : SDNode<"ISD::MULHS" , SDTIntBinOp, [SDNPCommutative]>;
def mulhu : SDNode<"ISD::MULHU" , SDTIntBinOp, [SDNPCommutative]>;
def sdiv : SDNode<"ISD::SDIV" , SDTIntBinOp>;
def udiv : SDNode<"ISD::UDIV" , SDTIntBinOp>;
def srem : SDNode<"ISD::SREM" , SDTIntBinOp>;
def urem : SDNode<"ISD::UREM" , SDTIntBinOp>;
def and : SDNode<"ISD::AND" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def or : SDNode<"ISD::OR" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def xor : SDNode<"ISD::XOR" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def fadd : SDNode<"ISD::FADD" , SDTFPBinOp, [SDNPCommutative]>;
def fsub : SDNode<"ISD::FSUB" , SDTFPBinOp>;
def fmul : SDNode<"ISD::FMUL" , SDTFPBinOp, [SDNPCommutative]>;
def fdiv : SDNode<"ISD::FDIV" , SDTFPBinOp>;
def frem : SDNode<"ISD::FREM" , SDTFPBinOp>;
def sext_inreg : SDNode<"ISD::SIGN_EXTEND_INREG", SDTExtInreg>;
def ctlz : SDNode<"ISD::CTLZ" , SDTIntUnaryOp>;
//===----------------------------------------------------------------------===//
// Selection DAG Node Transformation Functions.
//
// This mechanism allows targets to manipulate nodes in the output DAG once a
// match has been formed. This is typically used to manipulate immediate
// values.
//
class SDNodeXForm<SDNode opc, code xformFunction> {
SDNode Opcode = opc;
code XFormFunction = xformFunction;
}
def NOOP_SDNodeXForm : SDNodeXForm<imm, [{}]>;
//===----------------------------------------------------------------------===//
// Selection DAG Pattern Fragments.
//
// Pattern fragments are reusable chunks of dags that match specific things.
// They can take arguments and have C++ predicates that control whether they
// match. They are intended to make the patterns for common instructions more
// compact and readable.
//
/// PatFrag - Represents a pattern fragment. This can match something on the
/// DAG, frame a single node to multiply nested other fragments.
///
class PatFrag<dag ops, dag frag, code pred = [{}],
SDNodeXForm xform = NOOP_SDNodeXForm> {
dag Operands = ops;
dag Fragment = frag;
code Predicate = pred;
SDNodeXForm OperandTransform = xform;
}
// PatLeaf's are pattern fragments that have no operands. This is just a helper
// to define immediates and other common things concisely.
class PatLeaf<dag frag, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm>
: PatFrag<(ops), frag, pred, xform>;
// Leaf fragments.
def immAllOnes : PatLeaf<(imm), [{ return N->isAllOnesValue(); }]>;
def immZero : PatLeaf<(imm), [{ return N->isNullValue(); }]>;
def vtInt : PatLeaf<(vt), [{ return MVT::isInteger(N->getVT()); }]>;
def vtFP : PatLeaf<(vt), [{ return MVT::isFloatingPoint(N->getVT()); }]>;
// Other helper fragments.
def not : PatFrag<(ops node:$in), (xor node:$in, immAllOnes)>;
def ineg : PatFrag<(ops node:$in), (sub immZero, node:$in)>;
//===----------------------------------------------------------------------===//
// Selection DAG Pattern Support.
//
// Patterns are what are actually matched against the target-flavored
// instruction selection DAG. Instructions defined by the target implicitly
// define patterns in most cases, but patterns can also be explicitly added when
// an operation is defined by a sequence of instructions (e.g. loading a large
// immediate value on RISC targets that do not support immediates as large as
// their GPRs).
//
class Pattern<dag patternToMatch, list<dag> resultInstrs> {
dag PatternToMatch = patternToMatch;
list<dag> ResultInstrs = resultInstrs;
}
// Pat - A simple (but common) form of a pattern, which produces a simple result
// not needing a full list.
class Pat<dag pattern, dag result> : Pattern<pattern, [result]>;
//===----------------------------------------------------------------------===//
// PowerPC specific transformation functions and pattern fragments.
//
def LO16 : SDNodeXForm<imm, [{
// Transformation function: get the low 16 bits.
return getI32Imm((unsigned short)N->getValue());
}]>;
def HI16 : SDNodeXForm<imm, [{
// Transformation function: shift the immediate value down into the low bits.
return getI32Imm((unsigned)N->getValue() >> 16);
}]>;
def immSExt16 : PatLeaf<(imm), [{
// immSExt16 predicate - True if the immediate fits in a 16-bit sign extended
// field. Used by instructions like 'addi'.
return (int)N->getValue() == (short)N->getValue();
}]>;
def immZExt16 : PatLeaf<(imm), [{
// immZExt16 predicate - True if the immediate fits in a 16-bit zero extended
// field. Used by instructions like 'ori'.
return (unsigned)N->getValue() == (unsigned short)N->getValue();
}], LO16>;
def imm16Shifted : PatLeaf<(imm), [{
// imm16Shifted predicate - True if only bits in the top 16-bits of the
// immediate are set. Used by instructions like 'addis'.
return ((unsigned)N->getValue() & 0xFFFF0000U) == (unsigned)N->getValue();
}], HI16>;
/*
// Example of a legalize expander: Only for PPC64.
def : Expander<(set i64:$dst, (fp_to_sint f64:$src)),
[(set f64:$tmp , (FCTIDZ f64:$src)),
(set i32:$tmpFI, (CreateNewFrameIndex 8, 8)),
(store f64:$tmp, i32:$tmpFI),
(set i64:$dst, (load i32:$tmpFI))],
Subtarget_PPC64>;
*/
//===----------------------------------------------------------------------===//
// PowerPC Flag Definitions.
class isPPC64 { bit PPC64 = 1; }
class isVMX { bit VMX = 1; }
class isDOT {
list<Register> Defs = [CR0];
bit RC = 1;
}
//===----------------------------------------------------------------------===//
// PowerPC Operand Definitions.
def u5imm : Operand<i32> {
let PrintMethod = "printU5ImmOperand";
}
def u6imm : Operand<i32> {
let PrintMethod = "printU6ImmOperand";
}
def s16imm : Operand<i32> {
let PrintMethod = "printS16ImmOperand";
}
def u16imm : Operand<i32> {
let PrintMethod = "printU16ImmOperand";
}
def target : Operand<i32> {
let PrintMethod = "printBranchOperand";
}
def piclabel: Operand<i32> {
let PrintMethod = "printPICLabel";
}
def symbolHi: Operand<i32> {
let PrintMethod = "printSymbolHi";
}
def symbolLo: Operand<i32> {
let PrintMethod = "printSymbolLo";
}
def crbitm: Operand<i8> {
let PrintMethod = "printcrbitm";
}
//===----------------------------------------------------------------------===//
// PowerPC Instruction Definitions.
// Pseudo-instructions:
def PHI : Pseudo<(ops variable_ops), "; PHI">;
let isLoad = 1 in {
def ADJCALLSTACKDOWN : Pseudo<(ops u16imm:$amt), "; ADJCALLSTACKDOWN">;
def ADJCALLSTACKUP : Pseudo<(ops u16imm:$amt), "; ADJCALLSTACKUP">;
}
def IMPLICIT_DEF_GPR : Pseudo<(ops GPRC:$rD), "; $rD = IMPLICIT_DEF_GPRC">;
def IMPLICIT_DEF_FP : Pseudo<(ops FPRC:$rD), "; %rD = IMPLICIT_DEF_FP">;
// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded by the
// scheduler into a branch sequence.
let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler.
def SELECT_CC_Int : Pseudo<(ops GPRC:$dst, CRRC:$cond, GPRC:$T, GPRC:$F,
i32imm:$BROPC), "; SELECT_CC PSEUDO!">;
def SELECT_CC_FP : Pseudo<(ops FPRC:$dst, CRRC:$cond, FPRC:$T, FPRC:$F,
i32imm:$BROPC), "; SELECT_CC PSEUDO!">;
}
let isTerminator = 1 in {
let isReturn = 1 in
def BLR : XLForm_2_ext<19, 16, 20, 0, 0, (ops), "blr">;
def BCTR : XLForm_2_ext<19, 528, 20, 0, 0, (ops), "bctr">;
}
let Defs = [LR] in
def MovePCtoLR : Pseudo<(ops piclabel:$label), "bl $label">;
let isBranch = 1, isTerminator = 1 in {
def COND_BRANCH : Pseudo<(ops CRRC:$crS, u16imm:$opc,
target:$true, target:$false),
"; COND_BRANCH">;
def B : IForm<18, 0, 0, (ops target:$func), "b $func">;
//def BA : IForm<18, 1, 0, (ops target:$func), "ba $func">;
def BL : IForm<18, 0, 1, (ops target:$func), "bl $func">;
//def BLA : IForm<18, 1, 1, (ops target:$func), "bla $func">;
// FIXME: 4*CR# needs to be added to the BI field!
// This will only work for CR0 as it stands now
def BLT : BForm<16, 0, 0, 12, 0, (ops CRRC:$crS, target:$block),
"blt $crS, $block">;
def BLE : BForm<16, 0, 0, 4, 1, (ops CRRC:$crS, target:$block),
"ble $crS, $block">;
def BEQ : BForm<16, 0, 0, 12, 2, (ops CRRC:$crS, target:$block),
"beq $crS, $block">;
def BGE : BForm<16, 0, 0, 4, 0, (ops CRRC:$crS, target:$block),
"bge $crS, $block">;
def BGT : BForm<16, 0, 0, 12, 1, (ops CRRC:$crS, target:$block),
"bgt $crS, $block">;
def BNE : BForm<16, 0, 0, 4, 2, (ops CRRC:$crS, target:$block),
"bne $crS, $block">;
}
let isCall = 1,
// All calls clobber the non-callee saved registers...
Defs = [R0,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,
F0,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,
LR,CTR,
CR0,CR1,CR5,CR6,CR7] in {
// Convenient aliases for call instructions
def CALLpcrel : IForm<18, 0, 1, (ops target:$func, variable_ops), "bl $func">;
def CALLindirect : XLForm_2_ext<19, 528, 20, 0, 1,
(ops variable_ops), "bctrl">;
}
// D-Form instructions. Most instructions that perform an operation on a
// register and an immediate are of this type.
//
let isLoad = 1 in {
def LBZ : DForm_1<34, (ops GPRC:$rD, symbolLo:$disp, GPRC:$rA),
"lbz $rD, $disp($rA)">;
def LHA : DForm_1<42, (ops GPRC:$rD, symbolLo:$disp, GPRC:$rA),
"lha $rD, $disp($rA)">;
def LHZ : DForm_1<40, (ops GPRC:$rD, symbolLo:$disp, GPRC:$rA),
"lhz $rD, $disp($rA)">;
def LMW : DForm_1<46, (ops GPRC:$rD, s16imm:$disp, GPRC:$rA),
"lmw $rD, $disp($rA)">;
def LWZ : DForm_1<32, (ops GPRC:$rD, symbolLo:$disp, GPRC:$rA),
"lwz $rD, $disp($rA)">;
def LWZU : DForm_1<35, (ops GPRC:$rD, s16imm:$disp, GPRC:$rA),
"lwzu $rD, $disp($rA)">;
}
def ADDI : DForm_2<14, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm),
"addi $rD, $rA, $imm",
[(set GPRC:$rD, (add GPRC:$rA, immSExt16:$imm))]>;
def ADDIC : DForm_2<12, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm),
"addic $rD, $rA, $imm",
[]>;
def ADDICo : DForm_2<13, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm),
"addic. $rD, $rA, $imm",
[]>;
def ADDIS : DForm_2<15, (ops GPRC:$rD, GPRC:$rA, symbolHi:$imm),
"addis $rD, $rA, $imm",
[(set GPRC:$rD, (add GPRC:$rA, imm16Shifted:$imm))]>;
def LA : DForm_2<14, (ops GPRC:$rD, GPRC:$rA, symbolLo:$sym),
"la $rD, $sym($rA)",
[]>;
def MULLI : DForm_2< 7, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm),
"mulli $rD, $rA, $imm",
[(set GPRC:$rD, (mul GPRC:$rA, immSExt16:$imm))]>;
def SUBFIC : DForm_2< 8, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm),
"subfic $rD, $rA, $imm",
[(set GPRC:$rD, (sub immSExt16:$imm, GPRC:$rA))]>;
def LI : DForm_2_r0<14, (ops GPRC:$rD, s16imm:$imm),
"li $rD, $imm",
[(set GPRC:$rD, immSExt16:$imm)]>;
def LIS : DForm_2_r0<15, (ops GPRC:$rD, symbolHi:$imm),
"lis $rD, $imm",
[(set GPRC:$rD, imm16Shifted:$imm)]>;
let isStore = 1 in {
def STMW : DForm_3<47, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA),
"stmw $rS, $disp($rA)">;
def STB : DForm_3<38, (ops GPRC:$rS, symbolLo:$disp, GPRC:$rA),
"stb $rS, $disp($rA)">;
def STH : DForm_3<44, (ops GPRC:$rS, symbolLo:$disp, GPRC:$rA),
"sth $rS, $disp($rA)">;
def STW : DForm_3<36, (ops GPRC:$rS, symbolLo:$disp, GPRC:$rA),
"stw $rS, $disp($rA)">;
def STWU : DForm_3<37, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA),
"stwu $rS, $disp($rA)">;
}
def ANDIo : DForm_4<28, (ops GPRC:$dst, GPRC:$src1, u16imm:$src2),
"andi. $dst, $src1, $src2",
[]>, isDOT;
def ANDISo : DForm_4<29, (ops GPRC:$dst, GPRC:$src1, u16imm:$src2),
"andis. $dst, $src1, $src2",
[]>, isDOT;
def ORI : DForm_4<24, (ops GPRC:$dst, GPRC:$src1, u16imm:$src2),
"ori $dst, $src1, $src2",
[(set GPRC:$dst, (or GPRC:$src1, immZExt16:$src2))]>;
def ORIS : DForm_4<25, (ops GPRC:$dst, GPRC:$src1, u16imm:$src2),
"oris $dst, $src1, $src2",
[(set GPRC:$dst, (or GPRC:$src1, imm16Shifted:$src2))]>;
def XORI : DForm_4<26, (ops GPRC:$dst, GPRC:$src1, u16imm:$src2),
"xori $dst, $src1, $src2",
[(set GPRC:$dst, (xor GPRC:$src1, immZExt16:$src2))]>;
def XORIS : DForm_4<27, (ops GPRC:$dst, GPRC:$src1, u16imm:$src2),
"xoris $dst, $src1, $src2",
[(set GPRC:$dst, (xor GPRC:$src1, imm16Shifted:$src2))]>;
def NOP : DForm_4_zero<24, (ops), "nop">;
def CMPI : DForm_5<11, (ops CRRC:$crD, i1imm:$L, GPRC:$rA, s16imm:$imm),
"cmpi $crD, $L, $rA, $imm">;
def CMPWI : DForm_5_ext<11, (ops CRRC:$crD, GPRC:$rA, s16imm:$imm),
"cmpwi $crD, $rA, $imm">;
def CMPDI : DForm_5_ext<11, (ops CRRC:$crD, GPRC:$rA, s16imm:$imm),
"cmpdi $crD, $rA, $imm">, isPPC64;
def CMPLI : DForm_6<10, (ops CRRC:$dst, i1imm:$size, GPRC:$src1, u16imm:$src2),
"cmpli $dst, $size, $src1, $src2">;
def CMPLWI : DForm_6_ext<10, (ops CRRC:$dst, GPRC:$src1, u16imm:$src2),
"cmplwi $dst, $src1, $src2">;
def CMPLDI : DForm_6_ext<10, (ops CRRC:$dst, GPRC:$src1, u16imm:$src2),
"cmpldi $dst, $src1, $src2">, isPPC64;
let isLoad = 1 in {
def LFS : DForm_8<48, (ops FPRC:$rD, symbolLo:$disp, GPRC:$rA),
"lfs $rD, $disp($rA)">;
def LFD : DForm_8<50, (ops FPRC:$rD, symbolLo:$disp, GPRC:$rA),
"lfd $rD, $disp($rA)">;
}
let isStore = 1 in {
def STFS : DForm_9<52, (ops FPRC:$rS, symbolLo:$disp, GPRC:$rA),
"stfs $rS, $disp($rA)">;
def STFD : DForm_9<54, (ops FPRC:$rS, symbolLo:$disp, GPRC:$rA),
"stfd $rS, $disp($rA)">;
}
// DS-Form instructions. Load/Store instructions available in PPC-64
//
let isLoad = 1 in {
def LWA : DSForm_1<58, 2, (ops GPRC:$rT, s16imm:$DS, GPRC:$rA),
"lwa $rT, $DS($rA)">, isPPC64;
def LD : DSForm_2<58, 0, (ops GPRC:$rT, s16imm:$DS, GPRC:$rA),
"ld $rT, $DS($rA)">, isPPC64;
}
let isStore = 1 in {
def STD : DSForm_2<62, 0, (ops GPRC:$rT, s16imm:$DS, GPRC:$rA),
"std $rT, $DS($rA)">, isPPC64;
def STDU : DSForm_2<62, 1, (ops GPRC:$rT, s16imm:$DS, GPRC:$rA),
"stdu $rT, $DS($rA)">, isPPC64;
}
// X-Form instructions. Most instructions that perform an operation on a
// register and another register are of this type.
//
let isLoad = 1 in {
def LBZX : XForm_1<31, 87, (ops GPRC:$dst, GPRC:$base, GPRC:$index),
"lbzx $dst, $base, $index">;
def LHAX : XForm_1<31, 343, (ops GPRC:$dst, GPRC:$base, GPRC:$index),
"lhax $dst, $base, $index">;
def LHZX : XForm_1<31, 279, (ops GPRC:$dst, GPRC:$base, GPRC:$index),
"lhzx $dst, $base, $index">;
def LWAX : XForm_1<31, 341, (ops GPRC:$dst, GPRC:$base, GPRC:$index),
"lwax $dst, $base, $index">, isPPC64;
def LWZX : XForm_1<31, 23, (ops GPRC:$dst, GPRC:$base, GPRC:$index),
"lwzx $dst, $base, $index">;
def LDX : XForm_1<31, 21, (ops GPRC:$dst, GPRC:$base, GPRC:$index),
"ldx $dst, $base, $index">, isPPC64;
}
def NAND : XForm_6<31, 476, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"nand $rA, $rS, $rB",
[(set GPRC:$rA, (not (and GPRC:$rS, GPRC:$rB)))]>;
def AND : XForm_6<31, 28, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"and $rA, $rS, $rB",
[(set GPRC:$rA, (and GPRC:$rS, GPRC:$rB))]>;
def ANDo : XForm_6<31, 28, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"and. $rA, $rS, $rB",
[]>, isDOT;
def ANDC : XForm_6<31, 60, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"andc $rA, $rS, $rB",
[(set GPRC:$rA, (and GPRC:$rS, (not GPRC:$rB)))]>;
def OR : XForm_6<31, 444, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"or $rA, $rS, $rB",
[(set GPRC:$rA, (or GPRC:$rS, GPRC:$rB))]>;
def NOR : XForm_6<31, 124, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"nor $rA, $rS, $rB",
[(set GPRC:$rA, (not (or GPRC:$rS, GPRC:$rB)))]>;
def ORo : XForm_6<31, 444, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"or. $rA, $rS, $rB",
[]>, isDOT;
def ORC : XForm_6<31, 412, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"orc $rA, $rS, $rB",
[(set GPRC:$rA, (or GPRC:$rS, (not GPRC:$rB)))]>;
def EQV : XForm_6<31, 284, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"eqv $rA, $rS, $rB",
[(set GPRC:$rA, (not (xor GPRC:$rS, GPRC:$rB)))]>;
def XOR : XForm_6<31, 316, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"xor $rA, $rS, $rB",
[(set GPRC:$rA, (xor GPRC:$rS, GPRC:$rB))]>;
def SLD : XForm_6<31, 27, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"sld $rA, $rS, $rB",
[]>, isPPC64;
def SLW : XForm_6<31, 24, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"slw $rA, $rS, $rB",
[]>;
def SRD : XForm_6<31, 539, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"srd $rA, $rS, $rB",
[]>, isPPC64;
def SRW : XForm_6<31, 536, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"srw $rA, $rS, $rB",
[]>;
def SRAD : XForm_6<31, 794, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"srad $rA, $rS, $rB",
[]>, isPPC64;
def SRAW : XForm_6<31, 792, (ops GPRC:$rA, GPRC:$rS, GPRC:$rB),
"sraw $rA, $rS, $rB",
[]>;
let isStore = 1 in {
def STBX : XForm_8<31, 215, (ops GPRC:$rS, GPRC:$rA, GPRC:$rB),
"stbx $rS, $rA, $rB">;
def STHX : XForm_8<31, 407, (ops GPRC:$rS, GPRC:$rA, GPRC:$rB),
"sthx $rS, $rA, $rB">;
def STWX : XForm_8<31, 151, (ops GPRC:$rS, GPRC:$rA, GPRC:$rB),
"stwx $rS, $rA, $rB">;
def STWUX : XForm_8<31, 183, (ops GPRC:$rS, GPRC:$rA, GPRC:$rB),
"stwux $rS, $rA, $rB">;
def STDX : XForm_8<31, 149, (ops GPRC:$rS, GPRC:$rA, GPRC:$rB),
"stdx $rS, $rA, $rB">, isPPC64;
def STDUX : XForm_8<31, 181, (ops GPRC:$rS, GPRC:$rA, GPRC:$rB),
"stdux $rS, $rA, $rB">, isPPC64;
}
def SRAWI : XForm_10<31, 824, (ops GPRC:$rA, GPRC:$rS, u5imm:$SH),
"srawi $rA, $rS, $SH">;
def CNTLZW : XForm_11<31, 26, (ops GPRC:$rA, GPRC:$rS),
"cntlzw $rA, $rS",
[(set GPRC:$rA, (ctlz GPRC:$rS))]>;
def EXTSB : XForm_11<31, 954, (ops GPRC:$rA, GPRC:$rS),
"extsb $rA, $rS",
[(set GPRC:$rA, (sext_inreg GPRC:$rS, i8))]>;
def EXTSH : XForm_11<31, 922, (ops GPRC:$rA, GPRC:$rS),
"extsh $rA, $rS",
[(set GPRC:$rA, (sext_inreg GPRC:$rS, i16))]>;
def EXTSW : XForm_11<31, 986, (ops GPRC:$rA, GPRC:$rS),
"extsw $rA, $rS",
[]>, isPPC64;
def CMP : XForm_16<31, 0, (ops CRRC:$crD, i1imm:$long, GPRC:$rA, GPRC:$rB),
"cmp $crD, $long, $rA, $rB">;
def CMPL : XForm_16<31, 32, (ops CRRC:$crD, i1imm:$long, GPRC:$rA, GPRC:$rB),
"cmpl $crD, $long, $rA, $rB">;
def CMPW : XForm_16_ext<31, 0, (ops CRRC:$crD, GPRC:$rA, GPRC:$rB),
"cmpw $crD, $rA, $rB">;
def CMPD : XForm_16_ext<31, 0, (ops CRRC:$crD, GPRC:$rA, GPRC:$rB),
"cmpd $crD, $rA, $rB">, isPPC64;
def CMPLW : XForm_16_ext<31, 32, (ops CRRC:$crD, GPRC:$rA, GPRC:$rB),
"cmplw $crD, $rA, $rB">;
def CMPLD : XForm_16_ext<31, 32, (ops CRRC:$crD, GPRC:$rA, GPRC:$rB),
"cmpld $crD, $rA, $rB">, isPPC64;
def FCMPO : XForm_17<63, 32, (ops CRRC:$crD, FPRC:$fA, FPRC:$fB),
"fcmpo $crD, $fA, $fB">;
def FCMPU : XForm_17<63, 0, (ops CRRC:$crD, FPRC:$fA, FPRC:$fB),
"fcmpu $crD, $fA, $fB">;
let isLoad = 1 in {
def LFSX : XForm_25<31, 535, (ops FPRC:$dst, GPRC:$base, GPRC:$index),
"lfsx $dst, $base, $index">;
def LFDX : XForm_25<31, 599, (ops FPRC:$dst, GPRC:$base, GPRC:$index),
"lfdx $dst, $base, $index">;
}
def FCFID : XForm_26<63, 846, (ops FPRC:$frD, FPRC:$frB),
"fcfid $frD, $frB">, isPPC64;
def FCTIDZ : XForm_26<63, 815, (ops FPRC:$frD, FPRC:$frB),
"fctidz $frD, $frB">, isPPC64;
def FCTIWZ : XForm_26<63, 15, (ops FPRC:$frD, FPRC:$frB),
"fctiwz $frD, $frB">;
def FABS : XForm_26<63, 264, (ops FPRC:$frD, FPRC:$frB),
"fabs $frD, $frB">;
def FMR : XForm_26<63, 72, (ops FPRC:$frD, FPRC:$frB),
"fmr $frD, $frB">;
def FNABS : XForm_26<63, 136, (ops FPRC:$frD, FPRC:$frB),
"fnabs $frD, $frB">;
def FNEG : XForm_26<63, 40, (ops FPRC:$frD, FPRC:$frB),
"fneg $frD, $frB">;
def FRSP : XForm_26<63, 12, (ops FPRC:$frD, FPRC:$frB),
"frsp $frD, $frB">;
def FSQRT : XForm_26<63, 22, (ops FPRC:$frD, FPRC:$frB),
"fsqrt $frD, $frB">;
def FSQRTS : XForm_26<59, 22, (ops FPRC:$frD, FPRC:$frB),
"fsqrts $frD, $frB">;
let isStore = 1 in {
def STFSX : XForm_28<31, 663, (ops FPRC:$frS, GPRC:$rA, GPRC:$rB),
"stfsx $frS, $rA, $rB">;
def STFDX : XForm_28<31, 727, (ops FPRC:$frS, GPRC:$rA, GPRC:$rB),
"stfdx $frS, $rA, $rB">;
}
// XL-Form instructions. condition register logical ops.
//
def MCRF : XLForm_3<19, 0, (ops CRRC:$BF, CRRC:$BFA),
"mcrf $BF, $BFA">;
// XFX-Form instructions. Instructions that deal with SPRs
//
// Note that although LR should be listed as `8' and CTR as `9' in the SPR
// field, the manual lists the groups of bits as [5-9] = 0, [0-4] = 8 or 9
// which means the SPR value needs to be multiplied by a factor of 32.
def MFCTR : XFXForm_1_ext<31, 339, 288, (ops GPRC:$rT), "mfctr $rT">;
def MFLR : XFXForm_1_ext<31, 339, 256, (ops GPRC:$rT), "mflr $rT">;
def MFCR : XFXForm_3<31, 19, (ops GPRC:$rT), "mfcr $rT">;
def MTCRF : XFXForm_5<31, 144, (ops crbitm:$FXM, GPRC:$rS),
"mtcrf $FXM, $rS">;
def MFOCRF : XFXForm_5a<31, 19, (ops GPRC:$rT, crbitm:$FXM),
"mfcr $rT, $FXM">;
def MTCTR : XFXForm_7_ext<31, 467, 288, (ops GPRC:$rS), "mtctr $rS">;
def MTLR : XFXForm_7_ext<31, 467, 256, (ops GPRC:$rS), "mtlr $rS">;
// XS-Form instructions. Just 'sradi'
//
def SRADI : XSForm_1<31, 413, (ops GPRC:$rA, GPRC:$rS, u6imm:$SH),
"sradi $rA, $rS, $SH">, isPPC64;
// XO-Form instructions. Arithmetic instructions that can set overflow bit
//
def ADD : XOForm_1<31, 266, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"add $rT, $rA, $rB",
[(set GPRC:$rT, (add GPRC:$rA, GPRC:$rB))]>;
def ADDC : XOForm_1<31, 10, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"addc $rT, $rA, $rB",
[]>;
def ADDE : XOForm_1<31, 138, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"adde $rT, $rA, $rB",
[]>;
def DIVD : XOForm_1<31, 489, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"divd $rT, $rA, $rB",
[]>, isPPC64;
def DIVDU : XOForm_1<31, 457, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"divdu $rT, $rA, $rB",
[]>, isPPC64;
def DIVW : XOForm_1<31, 491, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"divw $rT, $rA, $rB",
[(set GPRC:$rT, (sdiv GPRC:$rA, GPRC:$rB))]>;
def DIVWU : XOForm_1<31, 459, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"divwu $rT, $rA, $rB",
[(set GPRC:$rT, (udiv GPRC:$rA, GPRC:$rB))]>;
def MULHW : XOForm_1<31, 75, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"mulhw $rT, $rA, $rB",
[(set GPRC:$rT, (mulhs GPRC:$rA, GPRC:$rB))]>;
def MULHWU : XOForm_1<31, 11, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"mulhwu $rT, $rA, $rB",
[(set GPRC:$rT, (mulhu GPRC:$rA, GPRC:$rB))]>;
def MULLD : XOForm_1<31, 233, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"mulld $rT, $rA, $rB",
[]>, isPPC64;
def MULLW : XOForm_1<31, 235, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"mullw $rT, $rA, $rB",
[(set GPRC:$rT, (mul GPRC:$rA, GPRC:$rB))]>;
def SUBF : XOForm_1<31, 40, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"subf $rT, $rA, $rB",
[(set GPRC:$rT, (sub GPRC:$rB, GPRC:$rA))]>;
def SUBFC : XOForm_1<31, 8, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"subfc $rT, $rA, $rB",
[]>;
def SUBFE : XOForm_1<31, 136, 0, (ops GPRC:$rT, GPRC:$rA, GPRC:$rB),
"subfe $rT, $rA, $rB",
[]>;
def ADDME : XOForm_3<31, 234, 0, (ops GPRC:$rT, GPRC:$rA),
"addme $rT, $rA",
[]>;
def ADDZE : XOForm_3<31, 202, 0, (ops GPRC:$rT, GPRC:$rA),
"addze $rT, $rA",
[]>;
def NEG : XOForm_3<31, 104, 0, (ops GPRC:$rT, GPRC:$rA),
"neg $rT, $rA",
[(set GPRC:$rT, (ineg GPRC:$rA))]>;
def SUBFZE : XOForm_3<31, 200, 0, (ops GPRC:$rT, GPRC:$rA),
"subfze $rT, $rA",
[]>;
// A-Form instructions. Most of the instructions executed in the FPU are of
// this type.
//
def FMADD : AForm_1<63, 29,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRC, FPRC:$FRB),
"fmadd $FRT, $FRA, $FRC, $FRB">;
def FMADDS : AForm_1<59, 29,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRC, FPRC:$FRB),
"fmadds $FRT, $FRA, $FRC, $FRB">;
def FMSUB : AForm_1<63, 28,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRC, FPRC:$FRB),
"fmsub $FRT, $FRA, $FRC, $FRB">;
def FMSUBS : AForm_1<59, 28,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRC, FPRC:$FRB),
"fmsubs $FRT, $FRA, $FRC, $FRB">;
def FNMADD : AForm_1<63, 31,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRC, FPRC:$FRB),
"fnmadd $FRT, $FRA, $FRC, $FRB">;
def FNMADDS : AForm_1<59, 31,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRC, FPRC:$FRB),
"fnmadds $FRT, $FRA, $FRC, $FRB">;
def FNMSUB : AForm_1<63, 30,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRC, FPRC:$FRB),
"fnmsub $FRT, $FRA, $FRC, $FRB">;
def FNMSUBS : AForm_1<59, 30,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRC, FPRC:$FRB),
"fnmsubs $FRT, $FRA, $FRC, $FRB">;
def FSEL : AForm_1<63, 23,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRC, FPRC:$FRB),
"fsel $FRT, $FRA, $FRC, $FRB">;
def FADD : AForm_2<63, 21,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRB),
"fadd $FRT, $FRA, $FRB">;
def FADDS : AForm_2<59, 21,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRB),
"fadds $FRT, $FRA, $FRB">;
def FDIV : AForm_2<63, 18,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRB),
"fdiv $FRT, $FRA, $FRB">;
def FDIVS : AForm_2<59, 18,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRB),
"fdivs $FRT, $FRA, $FRB">;
def FMUL : AForm_3<63, 25,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRB),
"fmul $FRT, $FRA, $FRB">;
def FMULS : AForm_3<59, 25,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRB),
"fmuls $FRT, $FRA, $FRB">;
def FSUB : AForm_2<63, 20,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRB),
"fsub $FRT, $FRA, $FRB">;
def FSUBS : AForm_2<59, 20,
(ops FPRC:$FRT, FPRC:$FRA, FPRC:$FRB),
"fsubs $FRT, $FRA, $FRB">;
// M-Form instructions. rotate and mask instructions.
//
let isTwoAddress = 1, isCommutable = 1 in {
// RLWIMI can be commuted if the rotate amount is zero.
def RLWIMI : MForm_2<20,
(ops GPRC:$rA, GPRC:$rSi, GPRC:$rS, u5imm:$SH, u5imm:$MB,
u5imm:$ME), "rlwimi $rA, $rS, $SH, $MB, $ME">;
}
def RLWINM : MForm_2<21,
(ops GPRC:$rA, GPRC:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME),
"rlwinm $rA, $rS, $SH, $MB, $ME">;
def RLWINMo : MForm_2<21,
(ops GPRC:$rA, GPRC:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME),
"rlwinm. $rA, $rS, $SH, $MB, $ME">, isDOT;
def RLWNM : MForm_2<23,
(ops GPRC:$rA, GPRC:$rS, GPRC:$rB, u5imm:$MB, u5imm:$ME),
"rlwnm $rA, $rS, $rB, $MB, $ME">;
// MD-Form instructions. 64 bit rotate instructions.
//
def RLDICL : MDForm_1<30, 0,
(ops GPRC:$rA, GPRC:$rS, u6imm:$SH, u6imm:$MB),
"rldicl $rA, $rS, $SH, $MB">, isPPC64;
def RLDICR : MDForm_1<30, 1,
(ops GPRC:$rA, GPRC:$rS, u6imm:$SH, u6imm:$ME),
"rldicr $rA, $rS, $SH, $ME">, isPPC64;
//===----------------------------------------------------------------------===//
// PowerPC Instruction Patterns
//
// Arbitrary immediate support. Implement in terms of LIS/ORI.
def : Pat<(i32 imm:$imm),
(ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Implement the 'not' operation with the NOR instruction.
def NOT : Pat<(not GPRC:$in),
(NOR GPRC:$in, GPRC:$in)>;
// EQV patterns
def EQV1 : Pat<(xor (not GPRC:$in1), GPRC:$in2),
(EQV GPRC:$in1, GPRC:$in2)>;
// FIXME: This should be autogenerated from the above due to xor commutativity.
def EQV2 : Pat<(xor GPRC:$in1, (not GPRC:$in2)),
(EQV GPRC:$in1, GPRC:$in2)>;
// or by an arbitrary immediate.
def : Pat<(or GPRC:$in, imm:$imm),
(ORIS (ORI GPRC:$in, (LO16 imm:$imm)), (HI16 imm:$imm))>;
// xor by an arbitrary immediate.
def : Pat<(xor GPRC:$in, imm:$imm),
(XORIS (XORI GPRC:$in, (LO16 imm:$imm)), (HI16 imm:$imm))>;
// Same as above, but using a temporary. FIXME: implement temporaries :)
/*
def : Pattern<(xor GPRC:$in, imm:$imm),
[(set GPRC:$tmp, (XORI GPRC:$in, (LO16 imm:$imm))),
(XORIS GPRC:$tmp, (HI16 imm:$imm))]>;
*/
//===----------------------------------------------------------------------===//
// PowerPCInstrInfo Definition
//
def PowerPCInstrInfo : InstrInfo {
let PHIInst = PHI;
let TSFlagsFields = [ "VMX", "PPC64" ];
let TSFlagsShifts = [ 0, 1 ];
let isLittleEndianEncoding = 1;
}