llvm-6502/lib/Target/ARM/ARMISelDAGToDAG.cpp

653 lines
21 KiB
C++
Raw Normal View History

//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the ARM target.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMTargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Constants.h"
#include "llvm/Intrinsics.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/Debug.h"
#include <iostream>
#include <queue>
#include <set>
using namespace llvm;
namespace {
class ARMTargetLowering : public TargetLowering {
int VarArgsFrameIndex; // FrameIndex for start of varargs area.
public:
ARMTargetLowering(TargetMachine &TM);
virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
virtual const char *getTargetNodeName(unsigned Opcode) const;
};
}
ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
: TargetLowering(TM) {
addRegisterClass(MVT::i32, ARM::IntRegsRegisterClass);
addRegisterClass(MVT::f32, ARM::FPRegsRegisterClass);
addRegisterClass(MVT::f64, ARM::DFPRegsRegisterClass);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::RET, MVT::Other, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
setSchedulingPreference(SchedulingForRegPressure);
computeRegisterProperties();
}
namespace llvm {
namespace ARMISD {
enum NodeType {
// Start the numbering where the builting ops and target ops leave off.
FIRST_NUMBER = ISD::BUILTIN_OP_END+ARM::INSTRUCTION_LIST_END,
/// CALL - A direct function call.
CALL,
/// Return with a flag operand.
RET_FLAG,
CMP,
SELECT,
BR,
FSITOS,
FSITOD,
FMRRD
};
}
}
/// DAGCCToARMCC - Convert a DAG integer condition code to an ARM CC
static ARMCC::CondCodes DAGCCToARMCC(ISD::CondCode CC) {
switch (CC) {
default:
std::cerr << "CC = " << CC << "\n";
assert(0 && "Unknown condition code!");
case ISD::SETUGT: return ARMCC::HI;
case ISD::SETULE: return ARMCC::LS;
case ISD::SETLE: return ARMCC::LE;
case ISD::SETLT: return ARMCC::LT;
case ISD::SETGT: return ARMCC::GT;
case ISD::SETNE: return ARMCC::NE;
case ISD::SETEQ: return ARMCC::EQ;
case ISD::SETGE: return ARMCC::GE;
case ISD::SETUGE: return ARMCC::CS;
case ISD::SETULT: return ARMCC::CC;
}
}
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return 0;
case ARMISD::CALL: return "ARMISD::CALL";
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
case ARMISD::SELECT: return "ARMISD::SELECT";
case ARMISD::CMP: return "ARMISD::CMP";
case ARMISD::BR: return "ARMISD::BR";
case ARMISD::FSITOS: return "ARMISD::FSITOS";
case ARMISD::FSITOD: return "ARMISD::FSITOD";
case ARMISD::FMRRD: return "ARMISD::FMRRD";
}
}
// This transforms a ISD::CALL node into a
// callseq_star <- ARMISD:CALL <- callseq_end
// chain
static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
unsigned CallConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
assert(CallConv == CallingConv::C && "unknown calling convention");
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
assert(isTailCall == false && "tail call not supported");
SDOperand Callee = Op.getOperand(4);
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
// Count how many bytes are to be pushed on the stack.
unsigned NumBytes = 0;
// Add up all the space actually used.
for (unsigned i = 4; i < NumOps; ++i)
NumBytes += MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain,
DAG.getConstant(NumBytes, MVT::i32));
SDOperand StackPtr = DAG.getRegister(ARM::R13, MVT::i32);
static const unsigned int num_regs = 4;
static const unsigned regs[num_regs] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
std::vector<SDOperand> MemOpChains;
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
assert(Arg.getValueType() == MVT::i32);
if (i < num_regs)
RegsToPass.push_back(std::make_pair(regs[i], Arg));
else {
unsigned ArgOffset = (i - num_regs) * 4;
SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
Arg, PtrOff, DAG.getSrcValue(NULL)));
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDOperand InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
InFlag);
InFlag = Chain.getValue(1);
}
std::vector<MVT::ValueType> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
// If this is a direct call, pass the chain and the callee.
assert (Callee.Val);
std::vector<SDOperand> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
unsigned CallOpc = ARMISD::CALL;
if (InFlag.Val)
Ops.push_back(InFlag);
Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
std::vector<SDOperand> ResultVals;
NodeTys.clear();
// If the call has results, copy the values out of the ret val registers.
switch (Op.Val->getValueType(0)) {
default: assert(0 && "Unexpected ret value!");
case MVT::Other:
break;
case MVT::i32:
Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1);
ResultVals.push_back(Chain.getValue(0));
NodeTys.push_back(MVT::i32);
}
Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
DAG.getConstant(NumBytes, MVT::i32));
NodeTys.push_back(MVT::Other);
if (ResultVals.empty())
return Chain;
ResultVals.push_back(Chain);
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, &ResultVals[0],
ResultVals.size());
return Res.getValue(Op.ResNo);
}
static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
SDOperand Copy;
SDOperand Chain = Op.getOperand(0);
SDOperand R0 = DAG.getRegister(ARM::R0, MVT::i32);
SDOperand R1 = DAG.getRegister(ARM::R1, MVT::i32);
switch(Op.getNumOperands()) {
default:
assert(0 && "Do not know how to return this many arguments!");
abort();
case 1: {
SDOperand LR = DAG.getRegister(ARM::R14, MVT::i32);
return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Chain);
}
case 3: {
SDOperand Val = Op.getOperand(1);
assert(Val.getValueType() == MVT::i32 ||
Val.getValueType() == MVT::f32 ||
Val.getValueType() == MVT::f64);
if (Val.getValueType() == MVT::f64) {
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag);
SDOperand Ops[] = {Chain, R0, R1, Val};
Copy = DAG.getNode(ARMISD::FMRRD, VTs, Ops, 4);
} else {
if (Val.getValueType() == MVT::f32)
Val = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Val);
Copy = DAG.getCopyToReg(Chain, R0, Val, SDOperand());
}
if (DAG.getMachineFunction().liveout_empty()) {
DAG.getMachineFunction().addLiveOut(ARM::R0);
if (Val.getValueType() == MVT::f64)
DAG.getMachineFunction().addLiveOut(ARM::R1);
}
break;
}
case 5:
Copy = DAG.getCopyToReg(Chain, ARM::R1, Op.getOperand(3), SDOperand());
Copy = DAG.getCopyToReg(Copy, ARM::R0, Op.getOperand(1), Copy.getValue(1));
// If we haven't noted the R0+R1 are live out, do so now.
if (DAG.getMachineFunction().liveout_empty()) {
DAG.getMachineFunction().addLiveOut(ARM::R0);
DAG.getMachineFunction().addLiveOut(ARM::R1);
}
break;
}
//We must use RET_FLAG instead of BRIND because BRIND doesn't have a flag
return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
}
static SDOperand LowerFORMAL_ARGUMENT(SDOperand Op, SelectionDAG &DAG,
unsigned *vRegs,
unsigned ArgNo) {
MachineFunction &MF = DAG.getMachineFunction();
MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
assert (ObjectVT == MVT::i32);
SDOperand Root = Op.getOperand(0);
SSARegMap *RegMap = MF.getSSARegMap();
unsigned num_regs = 4;
static const unsigned REGS[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
if(ArgNo < num_regs) {
unsigned VReg = RegMap->createVirtualRegister(&ARM::IntRegsRegClass);
MF.addLiveIn(REGS[ArgNo], VReg);
vRegs[ArgNo] = VReg;
return DAG.getCopyFromReg(Root, VReg, MVT::i32);
} else {
// If the argument is actually used, emit a load from the right stack
// slot.
if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
unsigned ArgOffset = (ArgNo - num_regs) * 4;
MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
return DAG.getLoad(ObjectVT, Root, FIN,
DAG.getSrcValue(NULL));
} else {
// Don't emit a dead load.
return DAG.getNode(ISD::UNDEF, ObjectVT);
}
}
}
static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
Constant *C = CP->getConstVal();
SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
return CPI;
}
static SDOperand LowerGlobalAddress(SDOperand Op,
SelectionDAG &DAG) {
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
int alignment = 2;
SDOperand CPAddr = DAG.getConstantPool(GV, MVT::i32, alignment);
return DAG.getLoad(MVT::i32, DAG.getEntryNode(), CPAddr,
DAG.getSrcValue(NULL));
}
static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
unsigned VarArgsFrameIndex) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
Op.getOperand(1), Op.getOperand(2));
}
static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
int &VarArgsFrameIndex) {
std::vector<SDOperand> ArgValues;
SDOperand Root = Op.getOperand(0);
unsigned VRegs[4];
unsigned NumArgs = Op.Val->getNumValues()-1;
for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) {
SDOperand ArgVal = LowerFORMAL_ARGUMENT(Op, DAG, VRegs, ArgNo);
ArgValues.push_back(ArgVal);
}
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
if (isVarArg) {
MachineFunction &MF = DAG.getMachineFunction();
SSARegMap *RegMap = MF.getSSARegMap();
MachineFrameInfo *MFI = MF.getFrameInfo();
VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(MVT::i32)/8,
-16 + NumArgs * 4);
static const unsigned REGS[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
// If this function is vararg, store r0-r3 to their spots on the stack
// so that they may be loaded by deferencing the result of va_next.
SmallVector<SDOperand, 4> MemOps;
for (unsigned ArgNo = 0; ArgNo < 4; ++ArgNo) {
int ArgOffset = - (4 - ArgNo) * 4;
int FI = MFI->CreateFixedObject(MVT::getSizeInBits(MVT::i32)/8,
ArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
unsigned VReg;
if (ArgNo < NumArgs)
VReg = VRegs[ArgNo];
else
VReg = RegMap->createVirtualRegister(&ARM::IntRegsRegClass);
if (ArgNo >= NumArgs)
MF.addLiveIn(REGS[ArgNo], VReg);
SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32);
SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
Val, FIN, DAG.getSrcValue(NULL));
MemOps.push_back(Store);
}
Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
}
ArgValues.push_back(Root);
// Return the new list of results.
std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
}
static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
SDOperand LHS = Op.getOperand(0);
SDOperand RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDOperand TrueVal = Op.getOperand(2);
SDOperand FalseVal = Op.getOperand(3);
SDOperand ARMCC = DAG.getConstant(DAGCCToARMCC(CC), MVT::i32);
SDOperand Cmp = DAG.getNode(ARMISD::CMP, MVT::Flag, LHS, RHS);
return DAG.getNode(ARMISD::SELECT, MVT::i32, TrueVal, FalseVal, ARMCC, Cmp);
}
static SDOperand LowerBR_CC(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDOperand LHS = Op.getOperand(2);
SDOperand RHS = Op.getOperand(3);
SDOperand Dest = Op.getOperand(4);
SDOperand ARMCC = DAG.getConstant(DAGCCToARMCC(CC), MVT::i32);
SDOperand Cmp = DAG.getNode(ARMISD::CMP, MVT::Flag, LHS, RHS);
return DAG.getNode(ARMISD::BR, MVT::Other, Chain, Dest, ARMCC, Cmp);
}
static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
SDOperand IntVal = Op.getOperand(0);
assert(IntVal.getValueType() == MVT::i32);
MVT::ValueType vt = Op.getValueType();
assert(vt == MVT::f32 ||
vt == MVT::f64);
SDOperand Tmp = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, IntVal);
ARMISD::NodeType op = vt == MVT::f32 ? ARMISD::FSITOS : ARMISD::FSITOD;
return DAG.getNode(op, vt, Tmp);
}
SDOperand ARMTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
default:
assert(0 && "Should not custom lower this!");
abort();
case ISD::ConstantPool:
return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress:
return LowerGlobalAddress(Op, DAG);
case ISD::SINT_TO_FP:
return LowerSINT_TO_FP(Op, DAG);
case ISD::FORMAL_ARGUMENTS:
return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
case ISD::CALL:
return LowerCALL(Op, DAG);
case ISD::RET:
return LowerRET(Op, DAG);
case ISD::SELECT_CC:
return LowerSELECT_CC(Op, DAG);
case ISD::BR_CC:
return LowerBR_CC(Op, DAG);
case ISD::VASTART:
return LowerVASTART(Op, DAG, VarArgsFrameIndex);
}
}
//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//
//===--------------------------------------------------------------------===//
/// ARMDAGToDAGISel - ARM specific code to select ARM machine
/// instructions for SelectionDAG operations.
///
namespace {
class ARMDAGToDAGISel : public SelectionDAGISel {
ARMTargetLowering Lowering;
public:
ARMDAGToDAGISel(TargetMachine &TM)
: SelectionDAGISel(Lowering), Lowering(TM) {
}
SDNode *Select(SDOperand Op);
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
bool SelectAddrRegImm(SDOperand N, SDOperand &Offset, SDOperand &Base);
bool SelectAddrMode1(SDOperand N, SDOperand &Arg, SDOperand &Shift,
SDOperand &ShiftType);
// Include the pieces autogenerated from the target description.
#include "ARMGenDAGISel.inc"
};
void ARMDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
DEBUG(BB->dump());
DAG.setRoot(SelectRoot(DAG.getRoot()));
DAG.RemoveDeadNodes();
ScheduleAndEmitDAG(DAG);
}
static bool isInt12Immediate(SDNode *N, short &Imm) {
if (N->getOpcode() != ISD::Constant)
return false;
int32_t t = cast<ConstantSDNode>(N)->getValue();
int max = 1<<12;
int min = -max;
if (t > min && t < max) {
Imm = t;
return true;
}
else
return false;
}
static bool isInt12Immediate(SDOperand Op, short &Imm) {
return isInt12Immediate(Op.Val, Imm);
}
static uint32_t rotateL(uint32_t x) {
uint32_t bit31 = (x & (1 << 31)) >> 31;
uint32_t t = x << 1;
return t | bit31;
}
static bool isUInt8Immediate(uint32_t x) {
return x < (1 << 8);
}
static bool isRotInt8Immediate(uint32_t x) {
int r;
for (r = 0; r < 16; r++) {
if (isUInt8Immediate(x))
return true;
x = rotateL(rotateL(x));
}
return false;
}
bool ARMDAGToDAGISel::SelectAddrMode1(SDOperand N,
SDOperand &Arg,
SDOperand &Shift,
SDOperand &ShiftType) {
switch(N.getOpcode()) {
case ISD::Constant: {
uint32_t val = cast<ConstantSDNode>(N)->getValue();
if(!isRotInt8Immediate(val)) {
const Type *t = MVT::getTypeForValueType(MVT::i32);
Constant *C = ConstantUInt::get(t, val);
int alignment = 2;
SDOperand Addr = CurDAG->getTargetConstantPool(C, MVT::i32, alignment);
SDOperand Z = CurDAG->getTargetConstant(0, MVT::i32);
SDNode *n = CurDAG->getTargetNode(ARM::ldr, MVT::i32, Z, Addr);
Arg = SDOperand(n, 0);
} else
Arg = CurDAG->getTargetConstant(val, MVT::i32);
Shift = CurDAG->getTargetConstant(0, MVT::i32);
ShiftType = CurDAG->getTargetConstant(ARMShift::LSL, MVT::i32);
return true;
}
case ISD::SRA:
Arg = N.getOperand(0);
Shift = N.getOperand(1);
ShiftType = CurDAG->getTargetConstant(ARMShift::ASR, MVT::i32);
return true;
case ISD::SRL:
Arg = N.getOperand(0);
Shift = N.getOperand(1);
ShiftType = CurDAG->getTargetConstant(ARMShift::LSR, MVT::i32);
return true;
case ISD::SHL:
Arg = N.getOperand(0);
Shift = N.getOperand(1);
ShiftType = CurDAG->getTargetConstant(ARMShift::LSL, MVT::i32);
return true;
}
Arg = N;
Shift = CurDAG->getTargetConstant(0, MVT::i32);
ShiftType = CurDAG->getTargetConstant(ARMShift::LSL, MVT::i32);
return true;
}
//register plus/minus 12 bit offset
bool ARMDAGToDAGISel::SelectAddrRegImm(SDOperand N, SDOperand &Offset,
SDOperand &Base) {
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(N)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
if (N.getOpcode() == ISD::ADD) {
short imm = 0;
if (isInt12Immediate(N.getOperand(1), imm)) {
Offset = CurDAG->getTargetConstant(imm, MVT::i32);
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType());
} else {
Base = N.getOperand(0);
}
return true; // [r+i]
}
}
Offset = CurDAG->getTargetConstant(0, MVT::i32);
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType());
}
else
Base = N;
return true; //any address fits in a register
}
SDNode *ARMDAGToDAGISel::Select(SDOperand Op) {
SDNode *N = Op.Val;
switch (N->getOpcode()) {
default:
return SelectCode(Op);
break;
}
return NULL;
}
} // end anonymous namespace
/// createARMISelDag - This pass converts a legalized DAG into a
/// ARM-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createARMISelDag(TargetMachine &TM) {
return new ARMDAGToDAGISel(TM);
}