The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203204 91177308-0d34-0410-b5e6-96231b3b80d8
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203083 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, it is currently impossible to use a PatFrag as part of an output
pattern (the part of the pattern that has instructions in it) in TableGen.
Looking at the current implementation, this was clearly intended to work (there
is already code in place to expand patterns in the output DAG), but is
currently broken by the baked-in type-checking assumption and the order in which
the pattern fragments are processed (output pattern fragments need to be
processed after the instruction definitions are processed).
Fixing this is fairly simple, but requires some way of differentiating output
patterns from the existing input patterns. The simplest way to handle this
seems to be to create a subclass of PatFrag, and so that's what I've done here.
As a simple example, this allows us to write:
def crnot : OutPatFrag<(ops node:$in),
(CRNOR $in, $in)>;
def : Pat<(not i1:$in),
(crnot $in)>;
which captures the core use case: handling of repeated subexpressions inside
of complicated output patterns.
This will be used by an upcoming commit to the PowerPC backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202450 91177308-0d34-0410-b5e6-96231b3b80d8
should not be marked nounwind.
Marking them nounwind caused crashes in the WebKit FTL JIT, because if we enable
sufficient optimizations, LLVM starts eliding compact_unwind sections (or any unwind
data for that matter), making deoptimization via stackmaps impossible.
This changes the stackmap intrinsic to be may-throw, adds a test for exactly the
sympton that WebKit saw, and fixes TableGen to handle un-attributed intrinsics.
Thanks to atrick and philipreames for reviewing this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201826 91177308-0d34-0410-b5e6-96231b3b80d8
Original commits messages:
Add MRMXr/MRMXm form to X86 for use by instructions which treat the 'reg' field of modrm byte as a don't care value. Will allow for simplification of disassembler code.
Simplify a bunch of code by removing the need for the x86 disassembler table builder to know about extended opcodes. The modrm forms are sufficient to convey the information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201065 91177308-0d34-0410-b5e6-96231b3b80d8
r201059 appears to cause a crash in a bootstrapped build of clang. Craig
isn't available to look at it right now, so I'm reverting it while he
investigates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201064 91177308-0d34-0410-b5e6-96231b3b80d8
According to the AAPCS, when a CPRC is allocated to the stack, all other
VFP registers should be marked as unavailable.
I have also modified the rules for allocating non-CPRCs to the stack, to make
it more explicit that all GPRs must be made unavailable. I cannot think of a
case where the old version would produce incorrect answers, so there is no test
for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200970 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
The addition of IC_OPSIZE_ADSIZE in r198759 wasn't quite complete. It
also turns out to have been unnecessary. The disassembler handles the
AdSize prefix for itself, and doesn't care about the difference between
(e.g.) MOV8ao8 and MOB8ao8_16 definitions. So just let them coexist and
don't worry about it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199654 91177308-0d34-0410-b5e6-96231b3b80d8
promotion code, Tablegen will now select FPExt for floating point promotions
(previously it had returned AExt, which is not valid for floating point types).
Any out-of-tree targets that were relying on AExt being returned for FP
promotions will need to update their code check for FPExt instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199252 91177308-0d34-0410-b5e6-96231b3b80d8
This should allow SSE instructions to be encoded correctly in 16-bit mode which r198586 probably broke.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199193 91177308-0d34-0410-b5e6-96231b3b80d8
To declare or define reserved identifers is undefined behaviour in standard
C++. This needs to be addressed in compiler-rt before it can be used in LLVM.
See the list discussion for details.
This reverts commit r198858.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198884 91177308-0d34-0410-b5e6-96231b3b80d8
It seems there is no separate instruction class for having AdSize *and*
OpSize bits set, which is required in order to disambiguate between all
these instructions. So add that to the disassembler.
Hm, perhaps we do need an AdSize16 bit after all?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198759 91177308-0d34-0410-b5e6-96231b3b80d8
A ValueType in a pattern dag is a type cast, and GetNumNodeResults should
handle it (the type cast has only one result).
This comes up, for example, during the type checking of pattern fragments, for
example, AArch64's Neon_combine_2d fragment is:
dag Operands = (ops node:$Rm, node:$Rn);
dag Fragment = (v2f64 (concat_vectors (v1f64 node:$Rm), (v1f64 node:$Rn)));
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198347 91177308-0d34-0410-b5e6-96231b3b80d8
That's what it actually means, and with 16-bit support it's going to be
a little more relevant since in a few corner cases we may actually want
to distinguish between 16-bit and 32-bit mode (for example the bare 'push'
aliases to pushw/pushl etc.)
Patch by David Woodhouse
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197768 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, the PowerPC instruction definitions make heavy use of the
positional operand encoding heuristic to map operands onto bitfield variables
in the instruction definitions. Changing this to use name-based mapping is not
trivial, however, because additional infrastructure needs to be designed to
handle mapping of complex operands (with multiple suboperands) onto multiple
bitfield variables.
In the mean time, this adds support for positionally encoded operands to
FixedLenDecoderEmitter, so that we can generate a disassembler for the PowerPC
backend. To prevent an accidental reliance on this feature, and to prevent an
undesirable interaction with existing disassemblers, a backend must opt-in to
this support by setting the new decodePositionallyEncodedOperands
instruction-set bit to true.
When enabled, this iterates the variables that contribute to the instruction
encoding, just as the encoder does, and emulates the procedure the encoder uses
to map "numbered" operands to variables. The bit range for each variable is
also determined as the encoder determines them. This map is then consulted
during the decoder-generator's loop over operands to decode, allowing the
decoder to understand both position-based and name-based operand-to-variable
mappings.
As noted in the comment on the decodePositionallyEncodedOperands definition,
this support should be removed once it is no longer needed. There should be no
change to existing disassemblers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197691 91177308-0d34-0410-b5e6-96231b3b80d8
This is more prep for adding the PowerPC disassembler. FixedLenDecoderEmitter
should recognize PointerLikeRegClass operands as register types, and generate
register-like decoding calls instead of treating them like immediates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197680 91177308-0d34-0410-b5e6-96231b3b80d8
The convention used to specify the PowerPC ISA is that bits are numbered in
reverse order (0 is the index of the high bit). To support this "little endian"
encoding convention, CodeEmitterGen will reverse the bit numberings prior to
generating the encoding tables. In order to generate a disassembler,
FixedLenDecoderEmitter needs to do the same.
This moves the bit reversal logic out of CodeEmitterGen and into CodeGenTarget
(where it can be used by both CodeEmitterGen and FixedLenDecoderEmitter). This
is prep work for disassembly support in the PPC backend (which is the only
in-tree user of this little-endian encoding support).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197532 91177308-0d34-0410-b5e6-96231b3b80d8
Added scalar compare VCMPSS, VCMPSD.
Implemented LowerSELECT for scalar FP operations.
I replaced FSETCCss, FSETCCsd with one node type FSETCCs.
Node extract_vector_elt(v16i1/v8i1, idx) returns an element of type i1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197384 91177308-0d34-0410-b5e6-96231b3b80d8
This patch tries to avoid unrelated changes other than fixing a few
hyphen-related ambiguities and contractions in nearby lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196471 91177308-0d34-0410-b5e6-96231b3b80d8
This patch places class definitions in implementation files into anonymous
namespaces to prevent weak vtables. This eliminates the need of providing an
out-of-line definition to pin the vtable explicitly to the file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195092 91177308-0d34-0410-b5e6-96231b3b80d8
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195064 91177308-0d34-0410-b5e6-96231b3b80d8
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194997 91177308-0d34-0410-b5e6-96231b3b80d8
These used to be referenced by the CGI->AWI map (in AsmWriterEmitter), but
stored in a vector local to EmitPrintInstruction. Move the vector to
AsmWriterEmitter too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193525 91177308-0d34-0410-b5e6-96231b3b80d8
This is useful for some ARM intrinsics such as VCVTN which does a <4 x float> <-> <4 x half> conversion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191870 91177308-0d34-0410-b5e6-96231b3b80d8
The old code skipped one of the sorting criteria if either pattern had
no types. This could lead to cycles of the form X < Y, Y < Z, Z < X.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191735 91177308-0d34-0410-b5e6-96231b3b80d8
Add VEX_LIG to scalar FMA4 instructions.
Use VEX_LIG in some of the inheriting checks in disassembler table generator.
Make use of VEX_L_W, VEX_L_W_XS, VEX_L_W_XD contexts.
Don't let VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE inherit from their non-L forms unless VEX_LIG is set.
Let VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE inherit from all of their non-L or non-W cases.
Increase ranking on VEX_L_W, VEX_L_W_XS, VEX_L_W_XD, VEX_L_W_OPSIZE so they get chosen over non-L/non-W forms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191649 91177308-0d34-0410-b5e6-96231b3b80d8
Ideally, the machinel model is added at the time the instructions are
defined. But many instructions in X86InstrSSE.td still need a model.
Without this workaround the scheduler asserts because x86 already has
itinerary classes for these instructions, indicating they should be
modeled by the scheduler. Since we use the new machine model for other
instructions, it expects a new machine model for these too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191391 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Ana Pazos.
1.Added support for v1ix and v1fx types.
2.Added Scalar Pairwise Reduce instructions.
3.Added initial implementation of Scalar Arithmetic instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191263 91177308-0d34-0410-b5e6-96231b3b80d8