Hard float for mips16 means essentially to compile as soft float but to
use a runtime library for soft float that is written with native mips32
floating point instructions (those runtime routines run in mips32 hard
float mode).
The patch reviewed by Reed Kotler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195123 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed an inappropriate use of BuildPairF64 when compiling for MIPS32 with FP64
which resulted in an impossible constraint on the register allocation. It now
uses BuildPairF64_64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195007 91177308-0d34-0410-b5e6-96231b3b80d8
Now that FileCheck supports multiple check prefixes, we don't need to keep the
little and big endian versions of this test separate anymore. Merge them back
together.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194826 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When getConstant() is called for an expanded vector type, it is split into
multiple scalar constants which are then combined using appropriate build_vector
and bitcast operations.
In addition to the usual big/little endian differences, the case where the
element-order of the vector does not have the same endianness as the elements
themselves is also accounted for. For example, for v4i32 on big-endian MIPS,
the byte-order of the vector is <3210,7654,BA98,FEDC>. For little-endian, it is
<0123,4567,89AB,CDEF>.
Handling this case turns out to be a nop since getConstant() returns a splatted
vector (so reversing the element order doesn't change the value)
This fixes a number of cases in MIPS MSA where calling getConstant() during
operation legalization introduces illegal types (e.g. to legalize v2i64 UNDEF
into a v2i64 BUILD_VECTOR of illegal i64 zeros). It should also handle bigger
differences between illegal and legal types such as legalizing v2i64 into v8i16.
lowerMSASplatImm() in the MIPS backend no longer needs to avoid calling
getConstant() so this function has been updated in the same patch.
For the sake of transparency, the steps I've taken since the review are:
* Added 'virtual' to isVectorEltOrderLittleEndian() as requested. This revealed
that the MIPS tests were falsely passing because a polymorphic function was
not actually polymorphic in the reviewed patch.
* Fixed the tests that were now failing. This involved deleting the code to
handle the MIPS MSA element-order (which was previously doing an byte-order
swap instead of an element-order swap). This left
isVectorEltOrderLittleEndian() unused and it was deleted.
* Fixed build failures caused by rebasing beyond r194467-r194472. These build
failures involved the bset, bneg, and bclr instructions added in these commits
using lowerMSASplatImm() in a way that was no longer valid after this patch.
Some of these were fixed by calling SelectionDAG::getConstant() instead,
others were fixed by a new function getBuildVectorSplat() that provided the
removed functionality of lowerMSASplatImm() in a more sensible way.
Reviewers: bkramer
Reviewed By: bkramer
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1973
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194811 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch (correctly) breaks some MSA tests by exposing the cases when
SelectionDAG::getConstant() produces illegal types. These have been temporarily
marked XFAIL and the XFAIL flag will be removed when
SelectionDAG::getConstant() is fixed.
There are three categories of failure:
* Immediate instructions are not selected in one endian mode.
* Immediates used in ldi.[bhwd] must be different according to endianness.
(this only affects cases where the 'wrong' ldi is used to load the correct
bitpattern. E.g. (bitcast:v2i64 (build_vector:v4i32 ...)))
* Non-immediate instructions that rely on immediates affected by the
previous two categories as part of their match pattern.
For example, the bset match pattern is the vector equivalent of
'ws | (1 << wt)'.
One test needed correcting to expect different output depending on whether big
or little endian was in use. This test was
test/CodeGen/Mips/msa/basic_operations.ll and experiences the second category
of failure shown above. The little endian version of this test is named
basic_operations_little.ll and will be merged back into basic_operations.ll in
a follow up commit now that FileCheck supports multiple check prefixes.
Reviewers: bkramer, jacksprat, dsanders
Reviewed By: dsanders
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1972
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194806 91177308-0d34-0410-b5e6-96231b3b80d8
short form. Constant islands will expand them if they are out of range.
Since there is not direct object emitter at this time, it does not
have any material affect because the assembler sorts this out. But we
need to know for the actual constant island work. We track the difference
by putting # 16 inst in the comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194766 91177308-0d34-0410-b5e6-96231b3b80d8
specifically about the .space directive. This allows us to force large
blocks of code to appear in test cases for things like constant islands
without having to make giant test cases to force things like long
branches to take effect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194555 91177308-0d34-0410-b5e6-96231b3b80d8
Like GCC, this re-uses the 'f' constraint and a new 'w' print-modifier:
asm ("ldi.w %w0, 1", "=f"(result));
Unlike GCC, the 'w' print-modifer is not _required_ to produce the intended
output. This is a consequence of differences in the internal handling of
the registers in each compiler. To be source-compatible between the
compilers, users must use the 'w' print-modifier.
MSA registers (including control registers) are supported in clobber lists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194476 91177308-0d34-0410-b5e6-96231b3b80d8
Upcoming commit(s) are going to add support for bseti and bnegi. This would
cause some existing tests to (correctly) change behaviour and emit a different
instruction. This patch prevents this by changing the constant used in ori and
xori tests so that they will not be matchable by the bseti and bnegi patterns
when these instructions are matchable from normal IR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194467 91177308-0d34-0410-b5e6-96231b3b80d8
This has no material effect at this time since we don't have a direct
object emitter for mips16 and the assembler can't tell them apart. I
place a comment "16 bit inst" for those so that I can tell them apart in the
output. The constant island pass has only been minimally changed to allow
this. More complete branch work is forthcoming but this is the first
step.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194442 91177308-0d34-0410-b5e6-96231b3b80d8
formal arguments on the stack and stores created afterwards. We need this to
ensure tail call optimized function calls do not write over the argument area
of the stack before it is read out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194309 91177308-0d34-0410-b5e6-96231b3b80d8
Submit the basic port of the rest of ARM constant islands code to Mips.
Two test cases are added which reflect the next level of functionality:
constants getting moved to water areas that are out of range from the
initial placement at the end of the function and basic blocks being split to
create water when none exists that can be used. There is a bunch of this
code that is not complete and has been marked with IN_PROGRESS. I will
finish cleaning this all up during the next week or two and submit the
rest of the test cases. I have elminated some code for dealing with
inline assembly because to me it unecessarily complicates things and
some of the newer features of llvm like function attributies and builtin
assembler give me better tools to solve the alignment issues created
there. Also, for Mips16 I even have the option of not doing constant
islands in the present of inline assembler if I chose. When everything
has been completed I will summarize the port and notify people that
are knowledgable regarding the ARM Constant Islands code so they can
review it in it's entirety if they wish.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194053 91177308-0d34-0410-b5e6-96231b3b80d8
Also corrected the definition of the intrinsics for these instructions (the
result register is also the first operand), and added intrinsics for bsel and
bseli to clang (they already existed in the backend).
These four operations are mostly equivalent to bsel, and bseli (the difference
is which operand is tied to the result). As a result some of the tests changed
as described below.
bitwise.ll:
- bsel.v test adapted so that the mask is unknown at compile-time. This stops
it emitting bmnzi.b instead of the intended bsel.v.
- The bseli.b test now tests the right thing. Namely the case when one of the
values is an uimm8, rather than when the condition is a uimm8 (which is
covered by bmnzi.b)
compare.ll:
- bsel.v tests now (correctly) emits bmnz.v instead of bsel.v because this
is the same operation (see MSA.txt).
i8.ll
- CHECK-DAG-ized test.
- bmzi.b test now (correctly) emits equivalent bmnzi.b with swapped operands
because this is the same operation (see MSA.txt).
- bseli.b still emits bseli.b though because the immediate makes it
distinguishable from bmnzi.b.
vec.ll:
- CHECK-DAG-ized test.
- bmz.v tests now (correctly) emits bmnz.v with swapped operands (see
MSA.txt).
- bsel.v tests now (correctly) emits bmnz.v with swapped operands (see
MSA.txt).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193693 91177308-0d34-0410-b5e6-96231b3b80d8
This required correcting the definition of the bins[lr]i intrinsics because
the result is also the first operand.
It also required removing the (arbitrary) check for 32-bit immediates in
MipsSEDAGToDAGISel::selectVSplat().
Currently using binsli.d with 2 bits set in the mask doesn't select binsli.d
because the constant is legalized into a ConstantPool. Similar things can
happen with binsri.d with more than 10 bits set in the mask. The resulting
code when this happens is correct but not optimal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193687 91177308-0d34-0410-b5e6-96231b3b80d8
(or (and $a, $mask), (and $b, $inverse_mask)) => (vselect $mask, $a, $b).
where $mask is a constant splat. This allows bitwise operations to make use
of bsel.
It's also a stepping stone towards matching bins[lr], and bins[lr]i from
normal IR.
Two sets of similar tests have been added in this commit. The bsel_* functions
test the case where binsri cannot be used. The binsr_*_i functions will
start to use the binsri instruction in the next commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193682 91177308-0d34-0410-b5e6-96231b3b80d8
splat.d is implemented but this subtest is currently disabled. This is because
it is difficult to match the appropriate IR on MIPS32. There is a patch under
review that should help with this so I hope to enable the subtest soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193680 91177308-0d34-0410-b5e6-96231b3b80d8
Before I just ported the shell of the pass. I've tried to keep everything
nearly identical to the ARM version. I think it will be very easy to eventually
merge these two and create a new more general pass that other targets can
use. I have some improvements I would like to make to allow pools to
be shared across functions and some other things. When I'm all done we
can think about making a more general pass. More to be ported but the
basic mechanism works now almost as good as gcc mips16.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193509 91177308-0d34-0410-b5e6-96231b3b80d8
The second parameter of the SLD intrinsic is the number of columns (GPR) to
slide left the source array.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193076 91177308-0d34-0410-b5e6-96231b3b80d8
Mips16 will try and create a stub for it and this will
result in a link error because that function does not exist in libc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192223 91177308-0d34-0410-b5e6-96231b3b80d8
of loops.
Previously, two consecutive calls to function "func" would result in the
following sequence of instructions:
1. load $16, %got(func)($gp) // load address of lazy-binding stub.
2. move $25, $16
3. jalr $25 // jump to lazy-binding stub.
4. nop
5. move $25, $16
6. jalr $25 // jump to lazy-binding stub again.
With this patch, the second call directly jumps to func's address, bypassing
the lazy-binding resolution routine:
1. load $25, %got(func)($gp) // load address of lazy-binding stub.
2. jalr $25 // jump to lazy-binding stub.
3. nop
4. load $25, %got(func)($gp) // load resolved address of func.
5. jalr $25 // directly jump to func.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191591 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic is lowered into an equivalent INSERT_VECTOR_ELT which is
further lowered into a sequence of insert.w's on MIPS32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191521 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic is lowered into an equivalent BUILD_VECTOR which is further
lowered into a sequence of insert.w's on MIPS32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191519 91177308-0d34-0410-b5e6-96231b3b80d8
For v4f32 and v2f64, INSERT_VECTOR_ELT is matched by a pseudo-insn which is
later expanded to appropriate insve.[wd] insns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191515 91177308-0d34-0410-b5e6-96231b3b80d8
For v4f32 and v2f64, EXTRACT_VECTOR_ELT is matched by a pseudo-insn which may
be expanded to subregister copies and/or instructions as appropriate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191514 91177308-0d34-0410-b5e6-96231b3b80d8
Most constant BUILD_VECTOR's are matched using ComplexPatterns which cover
bitcasted as well as normal vectors. However, it doesn't seem to be possible to
match ldi.[bhwd] in a type-agnostic manner (e.g. to support the widest range of
immediates, it should be possible to use ldi.b to load v2i64) using TableGen so
ldi.[bhwd] is matched using custom code in MipsSEISelDAGToDAG.cpp
This made the majority of the constant splat BUILD_VECTOR lowering redundant.
The only transformation remaining for constant splats is when an (up-to) 32-bit
constant splat is possible but the value does not fit into a 10-bit signed
integer. In this case, the BUILD_VECTOR is transformed into a bitcasted
BUILD_VECTOR so that fill.[bhw] can be used to splat the vector from a GPR32
register (which is initialized using the usual lui/addui sequence).
There are no additional tests since this is a re-implementation of previous
functionality. The change is intended to make it easier to implement some of
the upcoming instruction selection patches since they can rely on existing
support for BUILD_VECTOR's in the DAGCombiner.
compare_float.ll changed slightly because a BITCAST is no longer
introduced during legalization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191299 91177308-0d34-0410-b5e6-96231b3b80d8
MIPS SelectionDAG changes:
* Added VCEQ, VCL[ET]_[SU] nodes to represent vector comparisons that produce a bitmask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191286 91177308-0d34-0410-b5e6-96231b3b80d8
Changes to MIPS SelectionDAG:
* Added nodes VEXTRACT_[SZ]EXT_ELT to represent extract and extend in a single
operation and implemented the DAG combines necessary to fold sign/zero
extends into the extract.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191199 91177308-0d34-0410-b5e6-96231b3b80d8
Note: There's a later patch on my branch that re-implements this to select
build_vector without the custom SelectionDAG nodes. The future patch avoids
the constant-folding problems stemming from the custom node (i.e. it doesn't
need to re-implement all the DAG combines related to BUILD_VECTOR).
Changes to MIPS specific SelectionDAG nodes:
* Added VSPLAT
This is a special case of BUILD_VECTOR that covers the case the
BUILD_VECTOR is a splat operation.
* Added VSPLATD
This is a special case of VSPLAT that handles the cases when v2i64 is legal
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191191 91177308-0d34-0410-b5e6-96231b3b80d8
1) make sure that the first two instructions of the sequence cannot
separate from each other. The linker requires that they be sequential.
If they get separated, it can still work but it will not work in all
cases because the first of the instructions mostly involves the hi part
of the pc relative offset and that part changes slowly. You would have
to be at the right boundary for this to matter.
2) make sure that this sequence begins on a longword boundary.
There appears to be a bug in binutils which makes some of these calculations
get messed up if the instruction sequence does not begin on a longword
boundary. This is being investigated with the appropriate binutils folks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190966 91177308-0d34-0410-b5e6-96231b3b80d8
precision loads and stores as well as reg+imm double precision loads and stores.
Previously, expansion of loads and stores was done after register allocation,
but now it takes place during legalization. As a result, users will see double
precision stores and loads being emitted to spill and restore 64-bit FP registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190235 91177308-0d34-0410-b5e6-96231b3b80d8
don't exist in libc. This is really not the right way to solve this problem;
but it's not clear to me at this time exactly what is the right way.
If we create stubs here, they will cause link errors because these functions
do not exist in libc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189727 91177308-0d34-0410-b5e6-96231b3b80d8
has hard float, when you compile the mips32 code you have to make sure
that it knows to compile any mips32 routines as hard float. I need to clean
up the way mips16 hard float is specified but I need to first think through
all the details. Mips16 always has a form of soft float, the difference being
whether the underlying hardware has floating point. So it's not really
necessary to pass the -soft-float to llvm since soft-float is always true
for mips16 by virtue of the fact that it will not register floating point
registers. By using this fact, I can simplify the way this is all handled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189690 91177308-0d34-0410-b5e6-96231b3b80d8
These intrinsics are legalized to V(ALL|ANY)_(NON)?ZERO nodes,
are matched as SN?Z_[BHWDV]_PSEUDO pseudo's, and emitted as
a branch/mov sequence to evaluate to 0 or 1.
Note: The resulting code is sub-optimal since it doesnt seem to be possible
to feed the result of an intrinsic directly into a brcond. At the moment
it uses (SETCC (VALL_ZERO $ws), 0, SETEQ) and similar which unnecessarily
evaluates the boolean twice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189478 91177308-0d34-0410-b5e6-96231b3b80d8
The MSA control registers have been added as reserved registers,
and are only used via ISD::Copy(To|From)Reg. The intrinsics are lowered
into these nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189468 91177308-0d34-0410-b5e6-96231b3b80d8
Note that all of these tests use ld.b and st.b for the loads and stores
regardless of the data size. This is because the definition of bitcast is
equivalent to a store/load sequence and DAG combiner accordingly folds bitcasts
to/from v16i8 into the load/store nodes to product load/store nodes with
type v16i8.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189333 91177308-0d34-0410-b5e6-96231b3b80d8
I need to add the rest of these to the list or else to delay putting
out the actual stub until later in code generation when I know if
the external function ever got emitted
Resubmit this patch. The target triple needs to be added to the test so that
clang does not tell the backend the wrong target when the host is BSD. There
is a clang bug in here somewhere that I need to track down. At Mips this
has been filed internally as a bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189186 91177308-0d34-0410-b5e6-96231b3b80d8
I need to add the rest of these to the list or else to delay putting
out the actual stub until later in code generation when I know if
the external function ever got emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189161 91177308-0d34-0410-b5e6-96231b3b80d8
functions be compiled as mips32, without having to add attributes. This
is useful in certain situations where you don't want to have to edit the
function attributes in the source. For now it's only an option used for
the compiler developers when debugging the mips16 port.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188826 91177308-0d34-0410-b5e6-96231b3b80d8
This regards how mips16 is viewed. It's not really a target type but
there has always been a target for it in the td files. It's more properly
-mcpu=mips32 -mattr=+mips16 . This is how clang treats it but we have
always had the -mcpu=mips16 which I probably should delete now but it will
require updating all the .ll test cases for mips16. In this case it changed
how we decide if we have a count bits instruction and whether instruction
lowering should then expand ctlz. Now that we have dual mode compilation,
-mattr=+mips16 really just indicates the inital processor mode that
we are compiling for. (It is also possible to have -mcpu=64 -mattr=+mips16
but as far as I know, nobody has even built such a processor, though there
is an architecture manual for this).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188586 91177308-0d34-0410-b5e6-96231b3b80d8
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188513 91177308-0d34-0410-b5e6-96231b3b80d8
is actually an instrinsic that will not occur in libc. This list here
is not exhaustive but fixes the one places in test-suite where this occurs.
I have filed a bug against myself to research the full list and add them
to the array of such cases. In the future, actual stub generation will occur
in a later phase and we won't need this code because we will know at that time
during the compilation that in fact no helper function was even needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188149 91177308-0d34-0410-b5e6-96231b3b80d8
I need to go through all the runtime routine list and see if there
are any more I need to add for mips16 floating point. Prototypes must
be correct or else I don't know to add a helper function call.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188106 91177308-0d34-0410-b5e6-96231b3b80d8
helper functions. This can be optimized out later when the remaining
parts of the helper function work is moved into the Mips16HardFloat pass.
For now it forces us to use the 32 bit save/restore instructions instead
of the 16 bit ones.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187712 91177308-0d34-0410-b5e6-96231b3b80d8
This is actually an LLVM bug in the way it generates signatures for these
when soft float is enabled. For example, floor ends up having the signature
of int64(int64). The signature part is not the same as where the actual
parameter types are recorded, and those ARE of course int64(int64) when
soft float is enabled. (Yes, Mips16 hard float uses soft float but with
different runtime rounes but then has to interoperate with Mips32 using
normal floating point). This logic will eventually be moved to the
Mips16HardFloat pass so it's not worth sorting out these issues in LLVM
since nobody but Mips16 cares about these signatures, as far as I know,
and even I won't eventually either.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187613 91177308-0d34-0410-b5e6-96231b3b80d8
1) They should never be inlined.
2) A naming inconsistency with gcc mips16
3) Stubs should not have the global attribute
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187555 91177308-0d34-0410-b5e6-96231b3b80d8
Also avoid locals evicting locals just because they want a cheaper register.
Problem: MI Sched knows exactly how many registers we have and assumes
they can be colored. In cases where we have large blocks, usually from
unrolled loops, greedy coloring fails. This is a source of
"regressions" from the MI Scheduler on x86. I noticed this issue on
x86 where we have long chains of two-address defs in the same live
range. It's easy to see this in matrix multiplication benchmarks like
IRSmk and even the unit test misched-matmul.ll.
A fundamental difference between the LLVM register allocator and
conventional graph coloring is that in our model a live range can't
discover its neighbors, it can only verify its neighbors. That's why
we initially went for greedy coloring and added eviction to deal with
the hard cases. However, for singly defined and two-address live
ranges, we can optimally color without visiting neighbors simply by
processing the live ranges in instruction order.
Other beneficial side effects:
It is much easier to understand and debug regalloc for large blocks
when the live ranges are allocated in order. Yes, global allocation is
still very confusing, but it's nice to be able to comprehend what
happened locally.
Heuristics could be added to bias register assignment based on
instruction locality (think late register pairing, banks...).
Intuituvely this will make some test cases that are on the threshold
of register pressure more stable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187139 91177308-0d34-0410-b5e6-96231b3b80d8
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186280 91177308-0d34-0410-b5e6-96231b3b80d8
This was done with the following sed invocation to catch label lines demarking function boundaries:
sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186258 91177308-0d34-0410-b5e6-96231b3b80d8
The pass emits a call to sqrt that has attribute "read-none". This call will be
converted to an ISD::FSQRT node during DAG construction, which will turn into
a mips native sqrt instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183802 91177308-0d34-0410-b5e6-96231b3b80d8
the Mips16 port. A few of the psuedos could either take signed
or unsigned arguments and I did not distinguish the case and improperly
rejected some valid cases that the assembler had previously accepted
when they were pure pseudos that expanded as assembly instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183633 91177308-0d34-0410-b5e6-96231b3b80d8