The normal tBX instruction is predicable, so there's no reason the
pseudos for using it as a return shouldn't be. Gives us some nice code-gen
improvements as can be seen by the test changes. In particular, several
tests now have to disable if-conversion because it works too well and defeats
the test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134746 91177308-0d34-0410-b5e6-96231b3b80d8
RAGreedy::tryAssign will now evict interference from the preferred
register even when another register is free.
To support this, add the EvictionCost struct that counts how many hints
are broken by an eviction. We don't want to break one hint just to
satisfy another.
Rename canEvict to shouldEvict, and add the first bit of eviction policy
that doesn't depend on spill weights: Always make room in the preferred
register as long as the evictees can be split and aren't already
assigned to their preferred register.
Also make the CSR avoidance more accurate. When looking for a cheaper
register it is OK to use a new volatile register. Only CSR aliases that
have never been used before should be avoided.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134735 91177308-0d34-0410-b5e6-96231b3b80d8
We have to do this in DAGBuilder instead of DAGCombiner, because the exact bit is lost after building.
struct foo { char x[24]; };
long bar(struct foo *a, struct foo *b) { return a-b; }
is now compiled into
movl 4(%esp), %eax
subl 8(%esp), %eax
sarl $3, %eax
imull $-1431655765, %eax, %eax
instead of
movl 4(%esp), %eax
subl 8(%esp), %eax
movl $715827883, %ecx
imull %ecx
movl %edx, %eax
shrl $31, %eax
sarl $2, %edx
addl %eax, %edx
movl %edx, %eax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134695 91177308-0d34-0410-b5e6-96231b3b80d8
It was testing a linear scan feature:
Test if linearscan is unfavoring registers for allocation to allow
more reuse of reloads from stack slots.
The greedy register allocator doesn't access any stack slots in this
function, so the linear scan feature was not being tested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134666 91177308-0d34-0410-b5e6-96231b3b80d8
Remat during spilling triggers dead code elimination. If a phi-def
becomes unused, that may also cause live ranges to split into separate
connected components.
This type of splitting is different from normal live range splitting. In
particular, there may not be a common original interval.
When the split range is its own original, make sure that the new
siblings are also their own originals. The range being split cannot be
used as an original since it doesn't cover the new siblings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134413 91177308-0d34-0410-b5e6-96231b3b80d8
makes one of the tests actually mean something (as the string 'add' will
always appear in the output of this file).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134358 91177308-0d34-0410-b5e6-96231b3b80d8
outside the loop and reducible.
This more completely hides them from LSR, which isn't usually able to
do anything meaningful with non-affine expressions anyway, and this
consequently hides them from SCEVExpander, which is acutely unprepared
for non-affine expressions.
Replace test/CodeGen/X86/lsr-nonaffine.ll with a new test that tests
the new behavior.
This works around the bug in PR10117 / rdar://problem/9633149, and is
generally an improvement besides.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134268 91177308-0d34-0410-b5e6-96231b3b80d8
The DSP instructions in the Thumb2 instruction set are an optional extension
in the Cortex-M* archtitecture. When present, the implementation is considered
an "ARMv7E-M implementation," and when not, an "ARMv7-M implementation."
Add a subtarget feature hook for the v7e-m instructions and hook it up. The
cortex-m3 cpu is an example of a v7m implementation, while the cortex-m4 is
a v7e-m implementation.
rdar://9572992
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134261 91177308-0d34-0410-b5e6-96231b3b80d8
We would put the return value from long double functions in the wrong
register.
This fixes gcc.c-torture/execute/conversion.c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134205 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a FIXME and allow predication (in Thumb2) for the T1 register to
register MOV instructions. This allows some better codegen with
if-conversion (as seen in the test updates), plus it lays the groundwork
for pseudo-izing the tMOVCC instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134197 91177308-0d34-0410-b5e6-96231b3b80d8
It's just a t2LDMIA_UPD instruction with extra codegen properties, so it
doesn't need the encoding information. As a side-benefit, we now correctly
recognize for instruction printing as a 'pop' instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134173 91177308-0d34-0410-b5e6-96231b3b80d8
already makes the assumption, which is correct on ARM, that a type's alignment is
less than its alloc size. This improves codegen with Clang (which inserts a lot of
extraneous alignment specifiers) and fixes <rdar://problem/9695089>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134106 91177308-0d34-0410-b5e6-96231b3b80d8
Drop the FpMov instructions, use plain COPY instead.
Drop the FpSET/GET instruction for accessing fixed stack positions.
Instead use normal COPY to/from ST registers around inline assembly, and
provide a single new FpPOP_RETVAL instruction that can access the return
value(s) from a call. This is still necessary since you cannot tell from
the CALL instruction alone if it returns anything on the FP stack. Teach
fast isel to use this.
This provides a much more robust way of handling fixed stack registers -
we can tolerate arbitrary FP stack instructions inserted around calls
and inline assembly. Live range splitting could sometimes break x87 code
by inserting spill code in unfortunate places.
As a bonus we handle floating point inline assembly correctly now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134018 91177308-0d34-0410-b5e6-96231b3b80d8
opening single quote with no closing single quote, and with {} quotes
"inside" of it. This broke some of our tools that scrape test cases.
Also, while here, make the test actually assert what the comment says it
asserts. This was essentially authored by Nick Lewycky, and merely typed
in by myself. Let me know if this is still missing the mark, but the
previous test only succeeded due to the improper quoting preventing
*anything* from matching the grep -- it had a '4(%...)' sequence in the
output!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133980 91177308-0d34-0410-b5e6-96231b3b80d8
Also fix some of the tests that were actually testing wrong behavior -
An input operand in {st} is only popped by the inline asm when {st} is
also in the clobber list.
The original bug reports all had ~{st} clobbers as they should.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133916 91177308-0d34-0410-b5e6-96231b3b80d8
The .b8 operations in PTX are far more limiting than I first thought. The mov operation isn't even supported, so there's no way of converting a .pred value into a .b8 without going via .b16, which is
not sensible. An improved implementation needs to use the fact that loads and stores automatically extend and truncate to implement support for EXTLOAD and TRUNCSTORE in order to correctly support
boolean values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133873 91177308-0d34-0410-b5e6-96231b3b80d8
The i8 type is required for boolean values, but can only use ld, st and mov instructions. The i1 type continues to be used for predicates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133814 91177308-0d34-0410-b5e6-96231b3b80d8
instructions can be used to match combinations of multiply/divide and VCVT
(between floating-point and integer, Advanced SIMD). Basically the VCVT
immediate operand that specifies the number of fraction bits corresponds to a
floating-point multiply or divide by the corresponding power of 2.
For example, VCVT (floating-point to fixed-point, Advanced SIMD) can replace a
combination of VMUL and VCVT (floating-point to integer) as follows:
Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
vmul.f32 d16, d17, d16
vcvt.s32.f32 d16, d16
becomes:
vcvt.s32.f32 d16, d16, #3
Similarly, VCVT (fixed-point to floating-point, Advanced SIMD) can replace a
combinations of VCVT (integer to floating-point) and VDIV as follows:
Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
vcvt.f32.s32 d16, d16
vdiv.f32 d16, d17, d16
becomes:
vcvt.f32.s32 d16, d16, #3
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133813 91177308-0d34-0410-b5e6-96231b3b80d8
enables SelectionDAG::getLoad at MipsISelLowering.cpp:1914 to return a
pre-existing node instead of redundantly create a new node every time it is
called.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133811 91177308-0d34-0410-b5e6-96231b3b80d8
parameters if SM >= 2.0
- Update test cases to be more robust against register allocation changes
- Bump up the number of registers to 128 per type
- Include Python script to re-generate register file with any number of
registers
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133736 91177308-0d34-0410-b5e6-96231b3b80d8
Take #2. Don't piggyback on the existing config.build_mode. Instead,
define a new lit feature for each build feature we need (currently
just "asserts"). Teach both autoconf'd and cmake'd Makefiles to define
this feature within test/lit.site.cfg. This doesn't require any lit
harness changes and should be more robust across build systems.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133664 91177308-0d34-0410-b5e6-96231b3b80d8
1. (((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8)
=> (bswap x) >> 16
2. ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0xff000000)>>8)|((x&0x00ff0000)<<8))
=> (rotl (bswap x) 16)
This allows us to eliminate most of the def : Pat patterns for ARM rev16
revsh instructions. It catches many more cases for ARM and x86.
rdar://9609108
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133503 91177308-0d34-0410-b5e6-96231b3b80d8
source vector type is to be split while the target vector is to be promoted.
(eg: <4 x i64> -> <4 x i8> )
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133424 91177308-0d34-0410-b5e6-96231b3b80d8
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133337 91177308-0d34-0410-b5e6-96231b3b80d8