Unlike msvc, when handling a thiscall + sret gcc will
* Put the sret in %ecx
* Put the this pointer is (%esp)
This fixes, for example, calling stringstream::str.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196312 91177308-0d34-0410-b5e6-96231b3b80d8
The backend converts 64-bit ORs into subreg moves if the upper 32 bits
of one operand and the low 32 bits of the other are known to be zero.
It then tries to peel away redundant ANDs from the upper 32 bits.
Since AND masks are canonicalized to exclude known-zero bits,
the test ORs the mask and the known-zero bits together before
checking for redundancy. The problem was that it was using the
wrong node when checking for known-zero bits, so could drop ANDs
that were still needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196267 91177308-0d34-0410-b5e6-96231b3b80d8
- The fix to PR17631 fixes part of the cases where 'vzeroupper' should
not be issued before 'call' insn. There're other cases where helper
calls will be inserted not limited to epilog. These helper calls do
not follow the standard calling convention and won't clobber any YMM
registers. (So far, all call conventions will clobber any or part of
YMM registers.)
This patch enhances the previous fix to cover more cases 'vzerosupper' should
not be inserted by checking if that function call won't clobber any YMM
registers and skipping it if so.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196261 91177308-0d34-0410-b5e6-96231b3b80d8
eliminateFrameIndex() has been reworked to handle both small & large frames
with either a FP or SP.
An additional Slot is required for Scavenging spills when not using FP for large frames.
Reworked the handling of Register Scavenging.
Whether we are using an FP or not, whether it is a large frame or not,
and whether we are using a large code model or not are now independent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196091 91177308-0d34-0410-b5e6-96231b3b80d8
These are used by MachO only at the moment, and (much like the existing
MOVW/MOVT set) work around the fact that the labels used in the actual
instructions often contain PC-dependent components, which means that repeatedly
materialising the same global can't be CSEed.
With small modifications, it could be adapted to how ELF finds the address of
_GLOBAL_OFFSET_TABLE_, which would give similar benefits in PIC mode there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196090 91177308-0d34-0410-b5e6-96231b3b80d8
When using large code model:
Global objects larger than 'CodeModelLargeSize' bytes are placed in sections named with a trailing ".large"
The folded global address of such objects are lowered into the const pool.
During inspection it was noted that LowerConstantPool() was using a default offset of zero.
A fix was made, but due to only offsets of zero being generated, testing only verifies the change is not detrimental.
Correct the flags emitted for explicitly specified sections.
We assume the size of the object queried by getSectionForConstant() is never greater than CodeModelLargeSize.
To handle greater than CodeModelLargeSize, changes to AsmPrinter would be required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196087 91177308-0d34-0410-b5e6-96231b3b80d8
Large frame offsets are loaded from the ConstantPool.
Where possible, offsets are encoded using the smaller MKMSK instruction.
Large frame offsets can only be used when there is a frame-pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196085 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, we clobbered callee-saved registers when folding an "add
sp, #N" into a "pop {rD, ...}" instruction. This change checks whether
a register we're going to add to the "pop" could actually be live
outside the function before doing so and should fix the issue.
This should fix PR18081.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196046 91177308-0d34-0410-b5e6-96231b3b80d8
Convert this test to FileCheck, and improve it to check for the instructions it
is trying to exclude instead of checking for register use (especially because
grepping for r1 can be thrown off, for example, by a use of r12).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195979 91177308-0d34-0410-b5e6-96231b3b80d8
Some of these tests did not specify a cpu but were also sensitive to
instruction scheduling and/or register assignment choices. A few others
similarly-sensitive tests specified a cpu (often the POWER7), and while the P7
currently uses the default model for PPC64, this will soon change. For those
tests which should not really be cpu-dependent anyway, the cpu is set to the
generic 'ppc64'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195977 91177308-0d34-0410-b5e6-96231b3b80d8
This prevents the compiler from emitting invalid ld.[bhwd]'s and st.[bhwd]'s
when the stack frame is between 512 and 32,768 bytes in size.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195973 91177308-0d34-0410-b5e6-96231b3b80d8
in constant islands for Mips16. We introdcuce JalB16 as a synomnym
for Jal16. It makes it easier to read and is also necessary because
Jal16 is a call instruction but JalB16 is being used as a branch.
Various parts of LLVM will not work properly even in this late stage of
the backend if we use what was declared as a call instruction to function
as a branch. For one, basic block labels may not get emitted in some
situations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195968 91177308-0d34-0410-b5e6-96231b3b80d8
conditional branches for very large targets. That will be the next small
patch. Everything now should in principle work as good (functionality
wise) as without constant islands so we decided at Mips/Imagination to
make constant islands the default for Mips16 now so that it will get
excercised a lot and this port is still experimentatl though hopefully soon
we will change the status. Some more cleanup and code review is in order
but things are converging fast.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195902 91177308-0d34-0410-b5e6-96231b3b80d8
make PIC calls a little more efficient:
1. Remove instructions setting up $gp if it is known that a function has been
called at least once.
2. Save the address of a called function in a register instead of loading
it from the GOT at every call site.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195892 91177308-0d34-0410-b5e6-96231b3b80d8
SGPRs are spilled into VGPRs using the {READ,WRITE}LANE_B32 instructions.
v2:
- Fix encoding of Lane Mask
- Use correct register flags, so we don't overwrite the low dword
when restoring multi-dword registers.
v3:
- Register spilling seems to hang the GPU, so replace all shaders
that need spilling with a dummy shader.
v4:
- Fix *LANE definitions
- Change destination reg class for 32-bit SMRD instructions
v5:
- Remove small optimization that was crashing Serious Sam 3.
https://bugs.freedesktop.org/show_bug.cgi?id=68224https://bugs.freedesktop.org/show_bug.cgi?id=71285
NOTE: This is a candidate for the 3.4 branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195880 91177308-0d34-0410-b5e6-96231b3b80d8
Writing to the M0 register from an SMRD instruction hangs the GPU, so
we need to use the SGPR_32 register class, which does not include M0.
NOTE: This is a candidate for the 3.4 branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195879 91177308-0d34-0410-b5e6-96231b3b80d8
It is only used for asm printing.
On X86 we put basic block addresses on register before passing them to inline
asm, so the MO_MachineBasicBlock case was dead.
MO_ExternalSymbol was dead since any symbol being passed to inline asm
is represented as MO_GlobalAddress.
The MO_GlobalAddress and MO_Register cases were not tested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195824 91177308-0d34-0410-b5e6-96231b3b80d8
- Fix bug in (vsext (vzext x)) -> (vsext x) in SIGN_EXTEND_IN_REG
lowering where we need to check whether x is a vector type (in-reg
type) of i8, i16 or i32; otherwise, that optimization is not valid.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195779 91177308-0d34-0410-b5e6-96231b3b80d8
We would wrongly transform the testcase into the equivalent of an AND with 1.
The problem was that, when testing whether the shifted-in bits of the right
shift were significant, we used the width of the final zero-extended result
rather than the width of the shifted value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195731 91177308-0d34-0410-b5e6-96231b3b80d8
A Direct stack map location records the address of frame index. This
address is itself the value that the runtime requested. This differs
from IndirectMemRefOp locations, which refer to a stack locations from
which the requested values must be loaded. Direct locations can
directly communicate the address if an alloca, while IndirectMemRefOp
handle register spills.
For example:
entry:
%a = alloca i64...
llvm.experimental.stackmap(i32 <ID>, i32 <shadowBytes>, i64* %a)
Since both the alloca and stackmap intrinsic are in the entry block,
and the intrinsic takes the address of the alloca, the runtime can
assume that LLVM will not substitute alloca with any intervening
value. This must be verified by the runtime by checking that the stack
map's location is a Direct location type. The runtime can then
determine the alloca's relative location on the stack immediately after
compilation, or at any time thereafter. This differs from Register and
Indirect locations, because the runtime can only read the values in
those locations when execution reaches the instruction address of the
stack map.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195712 91177308-0d34-0410-b5e6-96231b3b80d8