On non-Darwin PPC64, the TOC reload needs to come directly after the bctrl
instruction (for indirect calls) because the 'bctrl/ld 2, 40(1)' instruction
sequence is interpreted by the unwinding code in libgcc. To make sure these
occur as a pair, as with other pairings interpreted by the linker, fuse the two
instructions into one instruction (for code generation only).
In the future, we might wish to do this by emitting CFI directives instead,
but this solution is simpler, and mirrors what GCC does. Additional discussion
on this point is contained in the PR.
Fixes PR22015.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224788 91177308-0d34-0410-b5e6-96231b3b80d8
It is tempting to mark the fixed stack slot used to store the return address as
immutable when lowering @llvm.returnaddress(i32 0). Unfortunately, within the
function, it is not completely immutable: it is written during the function
prologue. When using post-RA instruction scheduling, the prologue instructions
are available for scheduling, and we're not free to interchange the order of a
particular store in the prologue with loads from that stack location.
Fixes PR21976.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224761 91177308-0d34-0410-b5e6-96231b3b80d8
In r224033, in moving the signed power-of-2 division expansion into
BuildSDIVPow2, I accidentally made it possible to attempt the lowering for a
64-bit division on PPC32. This later asserts.
Fixes PR21928.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224758 91177308-0d34-0410-b5e6-96231b3b80d8
r223862/r224203 tried to also combine base-updating load/stores.
There was a mistake there: the alignment was added as is as an operand to
the ARMISD::VLD/VST node. However, the VLD/VST selection logic doesn't care
about less-than-standard alignment attributes.
For example, no matter the alignment of a v2i64 load (say 1), SelectVLD picks
VLD1q64 (because of the memory type). But VLD1q64 ("vld1.64 {dXX, dYY}") is
8-aligned, per ARMARMv7a 3.2.1.
For the 1-aligned load, what we really want is VLD1q8.
This commit introduces bitcasts if necessary, and changes the vld/vst type to
one whose standard alignment matches the original load/store alignment.
Differential Revision: http://reviews.llvm.org/D6759
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224754 91177308-0d34-0410-b5e6-96231b3b80d8
When combining consecutive loads+inserts into a single vector load,
we should keep the alignment of the base load. Doing otherwise can, and does,
lead to using overly aligned instructions. In the included test case, for
example, using a 32-byte vmovaps on a 16-byte aligned value. Oops.
rdar://19190968
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224746 91177308-0d34-0410-b5e6-96231b3b80d8
Previously I tried to plug musttail into the existing vararg lowering
code. That turned out to be a mistake, because non-vararg calls use
significantly different register lowering, even on x86. For example, AVX
vectors are usually passed in registers to normal functions and memory
to vararg functions. Now musttail uses a completely separate lowering.
Hopefully this can be used as the basis for non-x86 perfect forwarding.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D6156
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224745 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, when ctpop is supported for scalar types, the expansion of
@llvm.ctpop.vXiY uses vector element extractions, insertions and individual
calls to @llvm.ctpop.iY. When not, expansion with bit-math operations is used
for the scalar calls.
Local haswell measurements show that we can improve vector @llvm.ctpop.vXiY
expansion in some cases by using a using a vector parallel bit twiddling
approach, based on:
v = v - ((v >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
v = ((v + (v >> 4) & 0xF0F0F0F)
v = v + (v >> 8)
v = v + (v >> 16)
v = v & 0x0000003F
(from http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel)
When scalar ctpop isn't supported, the approach above performs better for
v2i64, v4i32, v4i64 and v8i32 (see numbers below). And even when scalar ctpop
is supported, this approach performs ~2x better for v8i32.
Here, x86_64 implies -march=corei7-avx without ctpop and x86_64h includes ctpop
support with -march=core-avx2.
== [x86_64h - new]
v8i32: 0.661685
v4i32: 0.514678
v4i64: 0.652009
v2i64: 0.324289
== [x86_64h - old]
v8i32: 1.29578
v4i32: 0.528807
v4i64: 0.65981
v2i64: 0.330707
== [x86_64 - new]
v8i32: 1.003
v4i32: 0.656273
v4i64: 1.11711
v2i64: 0.754064
== [x86_64 - old]
v8i32: 2.34886
v4i32: 1.72053
v4i64: 1.41086
v2i64: 1.0244
More work for other vector types will come next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224725 91177308-0d34-0410-b5e6-96231b3b80d8
Extend the existing code which handles this for zext. This makes this
more useful for targets with ZeroOrNegativeOne BooleanContent and
obsoletes a custom combine SI uses for i1 setcc (sext(i1), 0, setne)
since the constant will now be shrunk to i1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224691 91177308-0d34-0410-b5e6-96231b3b80d8
the error message for a bogus processor, and then look specifically for
that error message using FileCheck.
I actually tried to write the test this way at first, but drew a blank
on how to ensure the error message stayed in sync (oops). Now that I've
recalled how to do that, this is clearly better.
It also fixes an issue with a malloc implementation that actually prints
to stderr in all cases, which was causing problems for some builders it
seems.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224665 91177308-0d34-0410-b5e6-96231b3b80d8
It is intended to be used for a family of personality functions that
have similar IR preparation requirements. Typically when interoperating
with MSVC personality functions, bits of functionality need to be
outlined from the main function into helper functions. There is also
usually more than one landing pad per invoke, which does not match the
LLVM IR landingpad representation.
None of this is implemented yet. This change just adds a new enum that
is active for *-windows-msvc and delegates to the EH removal preparation
pass. No functionality change for other targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224625 91177308-0d34-0410-b5e6-96231b3b80d8
mubuf instructions now define the soffset field using the SCSrc_32
register class which indicates that only SGPRs and inline constants
are allowed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224622 91177308-0d34-0410-b5e6-96231b3b80d8
Added RegOp2MemOpTable4 to transform 4th operand from register to memory in merge-masked versions of instructions.
Added lowering tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224516 91177308-0d34-0410-b5e6-96231b3b80d8
of the abi we should be using. For targets that don't use the
option there's no change, otherwise this allows external users
to set the ABI via string and avoid some of the -backend-option
pain in clang.
Use this option to move the ABI for the ARM port from the
Subtarget to the TargetMachine and update the testcases
accordingly since it's no longer valid to set via -mattr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224492 91177308-0d34-0410-b5e6-96231b3b80d8
same. This will change the "bare metal" ABI from APCS to AAPCS.
The only difference between the front and back end code is that
the code for Triple::GNU was added for environment. That will migrate
to the front end shortly.
Tests updated with the ABI they were originally testing in the case
of bare metal (e.g. -mtriple armv7) or with a -gnu for arm-linux
triples.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224489 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
With isSingleValueType starting to treat vector types as single-value types,
code that uses this interface needs to be updated.
Test Plan:
vector-global.ll
nvcl-param-align.ll
Reviewers: jholewinski
Reviewed By: jholewinski
Subscribers: llvm-commits, meheff, eliben, jholewinski
Differential Revision: http://reviews.llvm.org/D6573
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224440 91177308-0d34-0410-b5e6-96231b3b80d8
This handles the case of a BUILD_VECTOR being constructed out of elements extracted from a vector twice the size of the result vector. Previously this was always scalarized. Now, we try to construct a shuffle node that feeds on extract_subvectors.
This fixes PR15872 and provides a partial fix for PR21711.
Differential Revision: http://reviews.llvm.org/D6678
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224429 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When generating MIPS assembly, LLVM always overrides the default assembler options by emitting the '.set noreorder', '.set nomacro' and '.set noat' directives,
while GCC uses the default options if an assembly-level function contains inline assembly code.
This becomes a problem when the code generated by LLVM is interleaved with inline assembly which assumes GCC-like assembler options (from Linux, for example).
This patch fixes these conflicts by setting the appropriate assembler options at the beginning of an inline asm block and popping them at the end.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6637
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224425 91177308-0d34-0410-b5e6-96231b3b80d8
The type promotion helper does not support vector type, so when make
such it does not kick in in such cases.
Original commit message:
[CodeGenPrepare] Move sign/zero extensions near loads using type promotion.
This patch extends the optimization in CodeGenPrepare that moves a sign/zero
extension near a load when the target can combine them. The optimization may
promote any operations between the extension and the load to make that possible.
Although this optimization may be beneficial for all targets, in particular
AArch64, this is enabled for X86 only as I have not benchmarked it for other
targets yet.
** Context **
Most targets feature extended loads, i.e., loads that perform a zero or sign
extension for free. In that context it is interesting to expose such pattern in
CodeGenPrepare so that the instruction selection pass can form such loads.
Sometimes, this pattern is blocked because of instructions between the load and
the extension. When those instructions are promotable to the extended type, we
can expose this pattern.
** Motivating Example **
Let us consider an example:
define void @foo(i8* %addr1, i32* %addr2, i8 %a, i32 %b) {
%ld = load i8* %addr1
%zextld = zext i8 %ld to i32
%ld2 = load i32* %addr2
%add = add nsw i32 %ld2, %zextld
%sextadd = sext i32 %add to i64
%zexta = zext i8 %a to i32
%addza = add nsw i32 %zexta, %zextld
%sextaddza = sext i32 %addza to i64
%addb = add nsw i32 %b, %zextld
%sextaddb = sext i32 %addb to i64
call void @dummy(i64 %sextadd, i64 %sextaddza, i64 %sextaddb)
ret void
}
As it is, this IR generates the following assembly on x86_64:
[...]
movzbl (%rdi), %eax # zero-extended load
movl (%rsi), %es # plain load
addl %eax, %esi # 32-bit add
movslq %esi, %rdi # sign extend the result of add
movzbl %dl, %edx # zero extend the first argument
addl %eax, %edx # 32-bit add
movslq %edx, %rsi # sign extend the result of add
addl %eax, %ecx # 32-bit add
movslq %ecx, %rdx # sign extend the result of add
[...]
The throughput of this sequence is 7.45 cycles on Ivy Bridge according to IACA.
Now, by promoting the additions to form more extended loads we would generate:
[...]
movzbl (%rdi), %eax # zero-extended load
movslq (%rsi), %rdi # sign-extended load
addq %rax, %rdi # 64-bit add
movzbl %dl, %esi # zero extend the first argument
addq %rax, %rsi # 64-bit add
movslq %ecx, %rdx # sign extend the second argument
addq %rax, %rdx # 64-bit add
[...]
The throughput of this sequence is 6.15 cycles on Ivy Bridge according to IACA.
This kind of sequences happen a lot on code using 32-bit indexes on 64-bit
architectures.
Note: The throughput numbers are similar on Sandy Bridge and Haswell.
** Proposed Solution **
To avoid the penalty of all these sign/zero extensions, we merge them in the
loads at the beginning of the chain of computation by promoting all the chain of
computation on the extended type. The promotion is done if and only if we do not
introduce new extensions, i.e., if we do not degrade the code quality.
To achieve this, we extend the existing “move ext to load” optimization with the
promotion mechanism introduced to match larger patterns for addressing mode
(r200947).
The idea of this extension is to perform the following transformation:
ext(promotableInst1(...(promotableInstN(load))))
=>
promotedInst1(...(promotedInstN(ext(load))))
The promotion mechanism in that optimization is enabled by a new TargetLowering
switch, which is off by default. In other words, by default, the optimization
performs the “move ext to load” optimization as it was before this patch.
** Performance **
Configuration: x86_64: Ivy Bridge fixed at 2900MHz running OS X 10.10.
Tested Optimization Levels: O3/Os
Tests: llvm-testsuite + externals.
Results:
- No regression beside noise.
- Improvements:
CINT2006/473.astar: ~2%
Benchmarks/PAQ8p: ~2%
Misc/perlin: ~3%
The results are consistent for both O3 and Os.
<rdar://problem/18310086>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224402 91177308-0d34-0410-b5e6-96231b3b80d8
SwitchInst::getNumCases() returns unsinged, so using uint64_t to count cases
seems unnecessary.
Also fix a missing CHECK in the test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224393 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAG::isConsecutiveLoad() was not detecting consecutive loads
when the first load was offset from a base address.
This patch recognizes that pattern and subtracts the offset before comparing
the second load to see if it is consecutive.
The codegen change in the new test case improves from:
vmovsd 32(%rdi), %xmm0
vmovsd 48(%rdi), %xmm1
vmovhpd 56(%rdi), %xmm1, %xmm1
vmovhpd 40(%rdi), %xmm0, %xmm0
vinsertf128 $1, %xmm1, %ymm0, %ymm0
To:
vmovups 32(%rdi), %ymm0
An existing test case is also improved from:
vmovsd (%rdi), %xmm0
vmovsd 16(%rdi), %xmm1
vmovsd 24(%rdi), %xmm2
vunpcklpd %xmm2, %xmm0, %xmm0 ## xmm0 = xmm0[0],xmm2[0]
vmovhpd 8(%rdi), %xmm1, %xmm3
To:
vmovsd (%rdi), %xmm0
vmovsd 16(%rdi), %xmm1
vmovhpd 24(%rdi), %xmm0, %xmm0
vmovhpd 8(%rdi), %xmm1, %xmm1
This patch fixes PR21771 ( http://llvm.org/bugs/show_bug.cgi?id=21771 ).
Differential Revision: http://reviews.llvm.org/D6642
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224379 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: As a side-quest for D6629 jvoung pointed out that I should use -verify-machineinstrs and this found a bug in x86-32's handling of EFLAGS for PUSHF/POPF. This patch fixes the use/def, and adds -verify-machineinstrs to all x86 tests which contain 'EFLAGS'. One exception: this patch leaves inline-asm-fpstack.ll as-is because it fails -verify-machineinstrs in a way unrelated to EFLAGS. This patch also modifies cmpxchg-clobber-flags.ll along the lines of what D6629 already does by also testing i386.
Test Plan: ninja check
Reviewers: t.p.northover, jvoung
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6687
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224359 91177308-0d34-0410-b5e6-96231b3b80d8
This patch extends the optimization in CodeGenPrepare that moves a sign/zero
extension near a load when the target can combine them. The optimization may
promote any operations between the extension and the load to make that possible.
Although this optimization may be beneficial for all targets, in particular
AArch64, this is enabled for X86 only as I have not benchmarked it for other
targets yet.
** Context **
Most targets feature extended loads, i.e., loads that perform a zero or sign
extension for free. In that context it is interesting to expose such pattern in
CodeGenPrepare so that the instruction selection pass can form such loads.
Sometimes, this pattern is blocked because of instructions between the load and
the extension. When those instructions are promotable to the extended type, we
can expose this pattern.
** Motivating Example **
Let us consider an example:
define void @foo(i8* %addr1, i32* %addr2, i8 %a, i32 %b) {
%ld = load i8* %addr1
%zextld = zext i8 %ld to i32
%ld2 = load i32* %addr2
%add = add nsw i32 %ld2, %zextld
%sextadd = sext i32 %add to i64
%zexta = zext i8 %a to i32
%addza = add nsw i32 %zexta, %zextld
%sextaddza = sext i32 %addza to i64
%addb = add nsw i32 %b, %zextld
%sextaddb = sext i32 %addb to i64
call void @dummy(i64 %sextadd, i64 %sextaddza, i64 %sextaddb)
ret void
}
As it is, this IR generates the following assembly on x86_64:
[...]
movzbl (%rdi), %eax # zero-extended load
movl (%rsi), %es # plain load
addl %eax, %esi # 32-bit add
movslq %esi, %rdi # sign extend the result of add
movzbl %dl, %edx # zero extend the first argument
addl %eax, %edx # 32-bit add
movslq %edx, %rsi # sign extend the result of add
addl %eax, %ecx # 32-bit add
movslq %ecx, %rdx # sign extend the result of add
[...]
The throughput of this sequence is 7.45 cycles on Ivy Bridge according to IACA.
Now, by promoting the additions to form more extended loads we would generate:
[...]
movzbl (%rdi), %eax # zero-extended load
movslq (%rsi), %rdi # sign-extended load
addq %rax, %rdi # 64-bit add
movzbl %dl, %esi # zero extend the first argument
addq %rax, %rsi # 64-bit add
movslq %ecx, %rdx # sign extend the second argument
addq %rax, %rdx # 64-bit add
[...]
The throughput of this sequence is 6.15 cycles on Ivy Bridge according to IACA.
This kind of sequences happen a lot on code using 32-bit indexes on 64-bit
architectures.
Note: The throughput numbers are similar on Sandy Bridge and Haswell.
** Proposed Solution **
To avoid the penalty of all these sign/zero extensions, we merge them in the
loads at the beginning of the chain of computation by promoting all the chain of
computation on the extended type. The promotion is done if and only if we do not
introduce new extensions, i.e., if we do not degrade the code quality.
To achieve this, we extend the existing “move ext to load” optimization with the
promotion mechanism introduced to match larger patterns for addressing mode
(r200947).
The idea of this extension is to perform the following transformation:
ext(promotableInst1(...(promotableInstN(load))))
=>
promotedInst1(...(promotedInstN(ext(load))))
The promotion mechanism in that optimization is enabled by a new TargetLowering
switch, which is off by default. In other words, by default, the optimization
performs the “move ext to load” optimization as it was before this patch.
** Performance **
Configuration: x86_64: Ivy Bridge fixed at 2900MHz running OS X 10.10.
Tested Optimization Levels: O3/Os
Tests: llvm-testsuite + externals.
Results:
- No regression beside noise.
- Improvements:
CINT2006/473.astar: ~2%
Benchmarks/PAQ8p: ~2%
Misc/perlin: ~3%
The results are consistent for both O3 and Os.
<rdar://problem/18310086>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224351 91177308-0d34-0410-b5e6-96231b3b80d8
This is a fix for PR21709 ( http://llvm.org/bugs/show_bug.cgi?id=21709 ).
When we have 2 consecutive 16-byte loads that are merged into one 32-byte vector,
we can use a single 32-byte load instead.
But we don't do this for SandyBridge / IvyBridge because they have slower 32-byte memops.
We also don't bother using 32-byte *integer* loads on a machine that only has AVX1 (btver2)
because those operands would have to be split in half anyway since there is no support for
32-byte integer math ops.
Differential Revision: http://reviews.llvm.org/D6492
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224344 91177308-0d34-0410-b5e6-96231b3b80d8
The PowerPC backend, somewhat embarrassingly, did not generate an
optimal-length sequence of instructions for a 32-bit bswap. While adding a
pattern for the bswap intrinsic to fix this would not have been terribly
difficult, doing so would not have addressed the real problem: we had been
generating poor code for many bit-permuting operations (by which I mean things
like byte-swap that permute the bits of one or more inputs around in various
ways). Here are some initial steps toward solving this deficiency.
Bit-permuting operations are represented, at the SDAG level, using ISD::ROTL,
SHL, SRL, AND and OR (mostly with constant second operands). Looking back
through these operations, we can build up a description of the bits in the
resulting value in terms of bits of one or more input values (and constant
zeros). For each bit, we compute the rotation amount from the original value,
and then group consecutive (value, rotation factor) bits into groups. Groups
sharing these attributes are then collected and sorted, and we can then
instruction select the entire permutation using a combination of masked
rotations (rlwinm), imm ands (andi/andis), and masked rotation inserts
(rlwimi).
The result is that instead of lowering an i32 bswap as:
rlwinm 5, 3, 24, 16, 23
rlwinm 4, 3, 24, 0, 7
rlwimi 4, 3, 8, 8, 15
rlwimi 5, 3, 8, 24, 31
rlwimi 4, 5, 0, 16, 31
we now produce:
rlwinm 4, 3, 8, 0, 31
rlwimi 4, 3, 24, 16, 23
rlwimi 4, 3, 24, 0, 7
and for the 'test6' example in the PowerPC/README.txt file:
unsigned test6(unsigned x) {
return ((x & 0x00FF0000) >> 16) | ((x & 0x000000FF) << 16);
}
we used to produce:
lis 4, 255
rlwinm 3, 3, 16, 0, 31
ori 4, 4, 255
and 3, 3, 4
and now we produce:
rlwinm 4, 3, 16, 24, 31
rlwimi 4, 3, 16, 8, 15
and, as a nice bonus, this fixes the FIXME in
test/CodeGen/PowerPC/rlwimi-and.ll.
This commit does not include instruction-selection for i64 operations, those
will come later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224318 91177308-0d34-0410-b5e6-96231b3b80d8