you could be AND'ing with the result of a shift that shifts out all the
bits you care about, in addition to a constant.
Also, move over an add/sub_parts fold from legalize to the dag combiner,
where it works for things other than constants. Woot!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23720 91177308-0d34-0410-b5e6-96231b3b80d8
out, where after the first CombineTo() call, the node the second CombineTo
wishes to replace may no longer exist.
Fix a very real bug with the truncated load optimization on little endian
targets, which do not need a byte offset added to the load.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23704 91177308-0d34-0410-b5e6-96231b3b80d8
like turning:
_foo:
fctiwz f0, f1
stfd f0, -8(r1)
lwz r2, -4(r1)
rlwinm r3, r2, 0, 16, 31
blr
into
_foo:
fctiwz f0,f1
stfd f0,-8(r1)
lhz r3,-2(r1)
blr
Also removed an unncessary constraint from sra -> srl conversion, which
should take care of hte only reason we would ever need to handle sra in
MaskedValueIsZero, AFAIK.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23703 91177308-0d34-0410-b5e6-96231b3b80d8
location, replace them with a new store of the last value. This occurs
in the same neighborhood in 197.parser, speeding it up about 1.5%
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23691 91177308-0d34-0410-b5e6-96231b3b80d8
multiple results.
Use this support to implement trivial store->load forwarding, implementing
CodeGen/PowerPC/store-load-fwd.ll. Though this is the most simple case and
can be extended in the future, it is still useful. For example, it speeds
up 197.parser by 6.2% by avoiding an LSU reject in xalloc:
stw r6, lo16(l5_end_of_array)(r2)
addi r2, r5, -4
stwx r5, r4, r2
- lwzx r5, r4, r2
- rlwinm r5, r5, 0, 0, 30
stwx r5, r4, r2
lwz r2, -4(r4)
ori r2, r2, 1
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23690 91177308-0d34-0410-b5e6-96231b3b80d8
creating a new vreg and inserting a copy: just use the input vreg directly.
This speeds up the compile (e.g. about 5% on mesa with a debug build of llc)
by not adding a bunch of copies and vregs to be coallesced away. On mesa,
for example, this reduces the number of intervals from 168601 to 129040
going into the coallescer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23671 91177308-0d34-0410-b5e6-96231b3b80d8
previous copy elisions and we discover we need to reload a register, make
sure to use the regclass of the original register for the reload, not the
class of the current register. This avoid using 16-bit loads to reload 32-bit
values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23645 91177308-0d34-0410-b5e6-96231b3b80d8
store r12 -> [ss#2]
R3 = load [ss#1]
use R3
R3 = load [ss#2]
R4 = load [ss#1]
and turn it into this code:
store R12 -> [ss#2]
R3 = load [ss#1]
use R3
R3 = R12
R4 = R3 <- oops!
The problem was that promoting R3 = load[ss#2] to a copy missed the fact that
the instruction invalidated R3 at that point.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23638 91177308-0d34-0410-b5e6-96231b3b80d8
with the dag combiner. This speeds up espresso by 8%, reaching performance
parity with the dag-combiner-disabled llc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23636 91177308-0d34-0410-b5e6-96231b3b80d8
dead node elim and dag combiner passes where the root is potentially updated.
This fixes a fixme in the dag combiner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23634 91177308-0d34-0410-b5e6-96231b3b80d8
that testcase still does not pass with the dag combiner. This is because
not all forms of br* are folded yet.
Also, when we combine a node into another one, delete the node immediately
instead of waiting for the node to potentially come up in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23632 91177308-0d34-0410-b5e6-96231b3b80d8