flag in the **key** of the backpatch map, as opposed to the mapped
value which contains either the final pointer, or a pointer to a chain
of pointers that need to be backpatched. The bit flag was moved to
the key because we were erroneously assuming that the backpatched
pointers would be at an alignment of >= 2 bytes, which obviously
doesn't work for character strings. Now we just steal the bit from the key.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43595 91177308-0d34-0410-b5e6-96231b3b80d8
Added method FindAndConstruct() to DenseMap, which does the same thing as
operator[], except that it refers value_type& (a reference to both the
key and mapped data pair). This method is useful for clients that wish
to access the stored key value, as opposed to the key used to do the
actual lookup (these need not always be the same).
Redefined operator[] to use FindAndConstruct() (same logic).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43594 91177308-0d34-0410-b5e6-96231b3b80d8
just like pointers, except that they cannot be backpatched. This
means that references are essentially non-owning pointers where the
referred object must be deserialized prior to the reference being
deserialized. Because of the nature of references, this ordering of
objects is always possible.
Fixed a bug in backpatching code (returning the backpatched pointer
would accidentally include a bit flag).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43570 91177308-0d34-0410-b5e6-96231b3b80d8
transformation. Previously, it's restricted by ensuring the number of load uses
is one. Now the restriction is loosened up by allowing setcc uses to be
"extended" (e.g. setcc x, c, eq -> setcc sext(x), sext(c), eq).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43465 91177308-0d34-0410-b5e6-96231b3b80d8
eager backpatching instead of waithing until all objects have been
deserialized. This allows us to reduce the memory footprint needed
for backpatching.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43422 91177308-0d34-0410-b5e6-96231b3b80d8
of offset and the alignment of ptr if these are both powers of
2. While the ptr alignment is guaranteed to be a power of 2,
there is no reason to think that offset is. For example, if
offset is 12 (the size of a long double on x86-32 linux) and
the alignment of ptr is 8, then the alignment of ptr+offset
will in general be 4, not 8. Introduce a function MinAlign,
lifted from gcc, for computing the minimum guaranteed alignment.
I've tried to fix up everywhere under lib/CodeGen/SelectionDAG/.
I also changed some places that weren't wrong (because both values
were a power of 2), as a defensive change against people copying
and pasting the code.
Hopefully someone who cares about alignment will review the rest
of LLVM and fix up the remaining places. Since I'm on x86 I'm
not very motivated to do this myself...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43421 91177308-0d34-0410-b5e6-96231b3b80d8
calling member functions of the target type to perform type-specific
serialization.
Added version of ReadPtr that allows passing references to uintptr_t
(useful for smart pointers).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43396 91177308-0d34-0410-b5e6-96231b3b80d8
Turn a store folding instruction into a load folding instruction. e.g.
xorl %edi, %eax
movl %eax, -32(%ebp)
movl -36(%ebp), %eax
orl %eax, -32(%ebp)
=>
xorl %edi, %eax
orl -36(%ebp), %eax
mov %eax, -32(%ebp)
This enables the unfolding optimization for a subsequent instruction which will
also eliminate the newly introduced store instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43192 91177308-0d34-0410-b5e6-96231b3b80d8
To do this it is necessary to add a "always inline" argument to the
memcpy node. For completeness I have also added this node to memmove
and memset. I have also added getMem* functions, because the extra
argument makes it cumbersome to use getNode and because I get confused
by it :-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43172 91177308-0d34-0410-b5e6-96231b3b80d8
in CodeExtractor and LoopSimplify unnecessary.
Hartmut, could you confirm that this fixes the issues you were seeing?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43115 91177308-0d34-0410-b5e6-96231b3b80d8
void*. This is hint that we are returning uninitialized memory rather
than a constructed object.
Patched ImutAVLTree to conform to this new interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43106 91177308-0d34-0410-b5e6-96231b3b80d8
BumpPtrAllocator that implement allocations that return a properly
typed pointer. For BumpPtrAllocator, the allocated memory is
automatically aligned to the minimum alignment of the type (as
calculated by llvm::AlignOf::Alignment).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43087 91177308-0d34-0410-b5e6-96231b3b80d8
types. This is needed for SIGN_EXTEND_INREG at least.
It is not clear if this is correct for other operations.
On the other hand, for the various load/store actions
it seems to correct to return the type action, as is
currently done.
Also, it seems that SelectionDAG::getValueType can be
called for extended value types; introduce a map for
holding these, since we don't really want to extend
the vector to be 2^32 pointers long!
Generalize DAGTypeLegalizer::PromoteResult_TRUNCATE
and DAGTypeLegalizer::PromoteResult_INT_EXTEND to handle
the various funky possibilities that apints introduce,
for example that you can promote to a type that needs
to be expanded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43071 91177308-0d34-0410-b5e6-96231b3b80d8
top bit of a ValueType to be zero. Enforce this by ensuring
an assertion failure if someone tries to create a ValueType
without this property. I chose this minimal approach rather
than a more official integration of the notion of reserved
bits into ValueType because I'm hoping that the verifier will
be changed to no longer require this :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43031 91177308-0d34-0410-b5e6-96231b3b80d8
codegen support. This should have no effect on codegen
for other types. Debatable bits: (1) the use (abuse?)
of a set in SDNode::getValueTypeList; (2) the length of
getTypeToTransformTo, which maybe should be refactored
with a non-inline part for extended value types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43030 91177308-0d34-0410-b5e6-96231b3b80d8
Renamed internal method of ImutAVLTree::RemoveMutableFlag to MarkImmutable.
Added enum for bit manipulation (more self-documentating).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42998 91177308-0d34-0410-b5e6-96231b3b80d8
take a deleted nodes vector, instead of requiring it.
One more significant change: Implement the start of a legalizer that
just works on types. This legalizer is designed to run before the
operation legalizer and ensure just that the input dag is transformed
into an output dag whose operand and result types are all legal, even
if the operations on those types are not.
This design/impl has the following advantages:
1. When finished, this will *significantly* reduce the amount of code in
LegalizeDAG.cpp. It will remove all the code related to promotion and
expansion as well as splitting and scalarizing vectors.
2. The new code is very simple, idiomatic, and modular: unlike
LegalizeDAG.cpp, it has no 3000 line long functions. :)
3. The implementation is completely iterative instead of recursive, good
for hacking on large dags without blowing out your stack.
4. The implementation updates nodes in place when possible instead of
deallocating and reallocating the entire graph that points to some
mutated node.
5. The code nicely separates out handling of operations with invalid
results from operations with invalid operands, making some cases
simpler and easier to understand.
6. The new -debug-only=legalize-types option is very very handy :),
allowing you to easily understand what legalize types is doing.
This is not yet done. Until the ifdef added to SelectionDAGISel.cpp is
enabled, this does nothing. However, this code is sufficient to legalize
all of the code in 186.crafty, olden and freebench on an x86 machine. The
biggest issues are:
1. Vectors aren't implemented at all yet
2. SoftFP is a mess, I need to talk to Evan about it.
3. No lowering to libcalls is implemented yet.
4. Various operations are missing etc.
5. There are FIXME's for stuff I hax0r'd out, like softfp.
Hey, at least it is a step in the right direction :). If you'd like to help,
just enable the #ifdef in SelectionDAGISel.cpp and compile code with it. If
this explodes it will tell you what needs to be implemented. Help is
certainly appreciated.
Once this goes in, we can do three things:
1. Add a new pass of dag combine between the "type legalizer" and "operation
legalizer" passes. This will let us catch some long-standing isel issues
that we miss because operation legalization often obfuscates the dag with
target-specific nodes.
2. We can rip out all of the type legalization code from LegalizeDAG.cpp,
making it much smaller and simpler. When that happens we can then
reimplement the core functionality left in it in a much more efficient and
non-recursive way.
3. Once the whole legalizer is non-recursive, we can implement whole-function
selectiondags maybe...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42981 91177308-0d34-0410-b5e6-96231b3b80d8
the source register will be coalesced to the super register of the LHS. Properly
merge in the live ranges of the resulting coalesced interval that were part of
the original source interval to the live interval of the super-register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42961 91177308-0d34-0410-b5e6-96231b3b80d8
register used by the unfolded instructions. User can also specify whether to
unfold the load, the store, or both.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42946 91177308-0d34-0410-b5e6-96231b3b80d8
for fastcc from X86CallingConv.td. This means that nested functions
are not supported for calling convention 'fastcc'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42934 91177308-0d34-0410-b5e6-96231b3b80d8
from user input strings.
Such conversions are more intricate and subtle than they may appear;
it is unlikely I have got it completely right first time. I would
appreciate being informed of any bugs and incorrect roundings you
might discover.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42912 91177308-0d34-0410-b5e6-96231b3b80d8
(almost) a register copy. However, it always coalesced to the register of the
RHS (the super-register). All uses of the result of a EXTRACT_SUBREG are sub-
register uses which adds subtle complications to load folding, spiller rewrite,
etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42899 91177308-0d34-0410-b5e6-96231b3b80d8
enabled by passing -tailcallopt to llc. The optimization is
performed if the following conditions are satisfied:
* caller/callee are fastcc
* elf/pic is disabled OR
elf/pic enabled + callee is in module + callee has
visibility protected or hidden
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42870 91177308-0d34-0410-b5e6-96231b3b80d8
No compile-time support for constant operations yet,
just format transformations. Make readers and
writers work. Split constants into 2 doubles in
Legalize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42865 91177308-0d34-0410-b5e6-96231b3b80d8
implemented on top of a functional AVL tree. The AVL balancing code
is inspired by the OCaml implementation of Map, which also uses a functional
AVL tree.
Documentation is currently limited and cleanups are planned, but this code
compiles and has been tested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42813 91177308-0d34-0410-b5e6-96231b3b80d8
arbitrary range of bits embedded in the middle of another bignum.
This kind of operation is desirable in many cases of software
floating point, e.g. converting bignum integers to floating point
numbers of fixed precision (you want to extract the precision most
significant bits).
Elsewhere, add an assertion, and exit the shift functions early if
the shift count is zero.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42745 91177308-0d34-0410-b5e6-96231b3b80d8
It used to modify its argument in-place.
This interface is saner and the implementation more efficient. It will
be needed for decimal->binary conversion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42733 91177308-0d34-0410-b5e6-96231b3b80d8
input. APInt unfortunately zero-extends signed integers, so Dale
modified the function to expect zero-extended input. Make this
assumption explicit in the function name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42732 91177308-0d34-0410-b5e6-96231b3b80d8
part widths. Also, return the number of parts actually required to
hold the result's value.
Remove an over-cautious condition from rounding of float->hex conversion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42669 91177308-0d34-0410-b5e6-96231b3b80d8
basic arithmetic works.
Rename RTLIB long double functions to distinguish
different flavors of long double; the lib functions
have different names, alas.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42644 91177308-0d34-0410-b5e6-96231b3b80d8
scheduler will try a number of tricks in order to avoid generating the
copies. This may not be possible in case the node produces a chain value
that prevent movement. Try unfolding the load from the node before to allow
it to be moved / cloned.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42625 91177308-0d34-0410-b5e6-96231b3b80d8
address (not just from / to frameindexes).
- Added target hooks to unfold load / store instructions / SDNodes into separate
load, data processing, store instructions / SDNodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42621 91177308-0d34-0410-b5e6-96231b3b80d8
This version enhances the previous patch to add root initialization
as discussed here:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20070910/053455.html
Collector gives its subclasses control over generic algorithms:
unsigned NeededSafePoints; //< Bitmask of required safe points.
bool CustomReadBarriers; //< Default is to insert loads.
bool CustomWriteBarriers; //< Default is to insert stores.
bool CustomRoots; //< Default is to pass through to backend.
bool InitRoots; //< If set, roots are nulled during lowering.
It also has callbacks which collectors can hook:
/// If any of the actions are set to Custom, this is expected to
/// be overriden to create a transform to lower those actions to
/// LLVM IR.
virtual Pass *createCustomLoweringPass() const;
/// beginAssembly/finishAssembly - Emit module metadata as
/// assembly code.
virtual void beginAssembly(Module &M, std::ostream &OS,
AsmPrinter &AP,
const TargetAsmInfo &TAI) const;
virtual void finishAssembly(Module &M,
CollectorModuleMetadata &CMM,
std::ostream &OS, AsmPrinter &AP,
const TargetAsmInfo &TAI) const;
Various other independent algorithms could be implemented, but were
not necessary for the initial two collectors. Some examples are
listed here:
http://llvm.org/docs/GarbageCollection.html#collector-algos
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42466 91177308-0d34-0410-b5e6-96231b3b80d8
terminator) the one that has a CopyToReg use. This fixes
2006-05-11-InstrSched.ll with -new-cc-modeling-scheme.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42453 91177308-0d34-0410-b5e6-96231b3b80d8
other than PPC64. Instead of fixing it, just remove it and fix all the
places that use it to use TargetData::getPointerSize() instead, as there
aren't very many. Most of the references were in DwarfWriter.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42419 91177308-0d34-0410-b5e6-96231b3b80d8
It includes:
- location and of each safe point in machine code (identified by a
label)
- location of each root within the stack frame (identified by an
offset), including the metadata tag provided to llvm.gcroot in
the user program
- size of the stack frame (for collectors which want to cheat on
stack crawling :)
- and eventually will include liveness
It is to be populated by back-ends during code-generation.
CollectorModuleMetadata aggregates this information across the
entire module.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42418 91177308-0d34-0410-b5e6-96231b3b80d8
instruction creation. No support yet for instruction introspection.
Also eliminated allocas from the Ocaml bindings for portability,
and avoided unnecessary casts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42367 91177308-0d34-0410-b5e6-96231b3b80d8
and time usage.
Fixup operator == to make this work, and add a resize method to DenseMap
so we can resize our hashtable once we know how big it should be.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42269 91177308-0d34-0410-b5e6-96231b3b80d8