Introduction:
In case when stack alignment is 8 and GPRs parameter part size is not N*8:
we add padding to GPRs part, so part's last byte must be recovered at
address K*8-1.
We need to do it, since remained (stack) part of parameter starts from
address K*8, and we need to "attach" "GPRs head" without gaps to it:
Stack:
|---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes...
[ [padding] [GPRs head] ] [ ------ Tail passed via stack ------ ...
FIX:
Note, once we added padding we need to correct *all* Arg offsets that are going
after padded one. That's why we need this fix: Arg offsets were never corrected
before this patch. See new test-cases included in patch.
We also don't need to insert padding for byval parameters that are stored in GPRs
only. We need pad only last byval parameter and only in case it outsides GPRs
and stack alignment = 8.
Though, stack area, allocated for recovered byval params, must satisfy
"Size mod 8 = 0" restriction.
This patch reduces stack usage for some cases:
We can reduce ArgRegsSaveArea since inner N*4 bytes sized byval params my be
"packed" with alignment 4 in some cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182237 91177308-0d34-0410-b5e6-96231b3b80d8
This patch matches GCC behavior: the code used to only allow unaligned
load/store on ARM for v6+ Darwin, it will now allow unaligned load/store
for v6+ Darwin as well as for v7+ on Linux and NaCl.
The distinction is made because v6 doesn't guarantee support (but LLVM
assumes that Apple controls hardware+kernel and therefore have
conformant v6 CPUs), whereas v7 does provide this guarantee (and
Linux/NaCl behave sanely).
The patch keeps the -arm-strict-align command line option, and adds
-arm-no-strict-align. They behave similarly to GCC's -mstrict-align and
-mnostrict-align.
I originally encountered this discrepancy in FastIsel tests which expect
unaligned load/store generation. Overall this should slightly improve
performance in most cases because of reduced I$ pressure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182175 91177308-0d34-0410-b5e6-96231b3b80d8
This patch matches GCC behavior: the code used to only allow unaligned
load/store on ARM for v6+ Darwin, it will now allow unaligned load/store for
v6+ Darwin as well as for v7+ on other targets.
The distinction is made because v6 doesn't guarantee support (but LLVM assumes
that Apple controls hardware+kernel and therefore have conformant v6 CPUs),
whereas v7 does provide this guarantee (and Linux behaves sanely).
Overall this should slightly improve performance in most cases because of
reduced I$ pressure.
Patch by JF Bastien
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181897 91177308-0d34-0410-b5e6-96231b3b80d8
The transformation happening here is that we want to turn a
"mul(ext(X), ext(X))" into a "vmull(X, X)", stripping off the extension. We have
to make sure that X still has a valid vector type - possibly recreate an
extension to a smaller type. In case of a extload of a memory type smaller than
64 bit we used create a ext(load()). The problem with doing this - instead of
recreating an extload - is that an illegal type is exposed.
This patch fixes this by creating extloads instead of ext(load()) sequences.
Fixes PR15970.
radar://13871383
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181842 91177308-0d34-0410-b5e6-96231b3b80d8
return values are bitcasts.
The chain had previously been being clobbered with the entry node to
the dag, which sometimes caused other code in the function to be
erroneously deleted when tailcall optimization kicked in.
<rdar://problem/13827621>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181696 91177308-0d34-0410-b5e6-96231b3b80d8
It was just a less powerful and more confusing version of
MCCFIInstruction. A side effect is that, since MCCFIInstruction uses
dwarf register numbers, calls to getDwarfRegNum are pushed out, which
should allow further simplifications.
I left the MachineModuleInfo::addFrameMove interface unchanged since
this patch was already fairly big.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181680 91177308-0d34-0410-b5e6-96231b3b80d8
This commit implements the AsmParser for fnstart, fnend,
cantunwind, personality, handlerdata, pad, setfp, save, and
vsave directives.
This commit fixes some minor issue in the ARMELFStreamer:
* The switch back to corresponding section after the .fnend
directive.
* Emit the unwind opcode while processing .fnend directive
if there is no .handlerdata directive.
* Emit the unwind opcode to .ARM.extab while processing
.handlerdata even if .personality directive does not exist.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181603 91177308-0d34-0410-b5e6-96231b3b80d8
indirect branch at the end of the BB. Otherwise if-converter, branch folding
pass may incorrectly update its successor info if it consider BB as fallthrough
to the next BB.
rdar://13782395
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181161 91177308-0d34-0410-b5e6-96231b3b80d8
Now even the small structures could be passed within byval (small enough
to be stored in GPRs).
In regression tests next function prototypes are checked:
PR15293:
%artz = type { i32 }
define void @foo(%artz* byval %s)
define void @foo2(%artz* byval %s, i32 %p, %artz* byval %s2)
foo: "s" stored in R0
foo2: "s" stored in R0, "s2" stored in R2.
Next AAPCS rules are checked:
5.5 Parameters Passing, C.4 and C.5,
"ParamSize" is parameter size in 32bit words:
-- NSAA != 0, NCRN < R4 and NCRN+ParamSize > R4.
Parameter should be sent to the stack; NCRN := R4.
-- NSAA != 0, and NCRN < R4, NCRN+ParamSize < R4.
Parameter stored in GPRs; NCRN += ParamSize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181148 91177308-0d34-0410-b5e6-96231b3b80d8
Build attribute sections can now be read if they exist via ELFObjectFile, and
the llvm-readobj tool has been extended with an option to dump this information
if requested. Regression tests are also included which exercise these features.
Also update the docs with a fixed ARM ABI link and a new link to the Addenda
which provides the build attributes specification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181009 91177308-0d34-0410-b5e6-96231b3b80d8
1. VarArgStyleRegisters: functionality that emits "store" instructions for byval regs moved out into separated method "StoreByValRegs". Before this patch VarArgStyleRegisters had confused use-cases. It was used for both variadic functions and for regular functions with byval parameters. In last case it created new stack-frame and registered it as VarArg frame, that is wrong.
This patch replaces VarArgsStyleRegisters usage for byval parameters with StoreByValRegs method.
2. In ARMMachineFunctionInfo, "get/setVarArgsRegSaveSize" was renamed to "get/setArgRegsSaveSize". By the same reason. Sometimes it was used for variadic functions, and sometimes for byval parameters in regular functions. Actually, this property means the size of registers, that keeps arguments, and thats why it was renamed.
3. In ARMISelLowering.cpp, ARMTargetLowering class, in methods computeRegArea and StoreByValRegs, VARegXXXXXX was renamed to ArgRegsXXXXXX still by the same reasons.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180774 91177308-0d34-0410-b5e6-96231b3b80d8
"hint" space for Thumb actually overlaps the encoding space of the CPS
instruction. In actuality, hints can be defined as CPS instructions where imod
and M bits are all nil.
Handle decoding of permitted nop-compatible hints (i.e. nop, yield, wfi, wfe,
sev) in DecodeT2CPSInstruction.
This commit adds a proper diagnostic message for Imm0_4 and updates all tests.
Patch by Mihail Popa <Mihail.Popa@arm.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180617 91177308-0d34-0410-b5e6-96231b3b80d8
-- C.4 and C.5 statements, when NSAA is not equal to SP.
-- C.1.cp statement for VA functions. Note: There are no VFP CPRCs in a
variadic procedure.
Before this patch "NSAA != 0" means "don't use GPRs anymore ". But there are
some exceptions in AAPCS.
1. For non VA function: allocate all VFP regs for CPRC. When all VFPs are allocated
CPRCs would be sent to stack, while non CPRCs may be still allocated in GRPs.
2. Check that for VA functions all params uses GPRs and then stack.
No exceptions, no CPRCs here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180011 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than just splitting the input type and hoping for the best, apply
a bit more cleverness. Just splitting the types until the source is
legal often leads to an illegal result time, which is then widened and a
scalarization step is introduced which leads to truly horrible code
generation. With the loop vectorizer, these sorts of operations are much
more common, and so it's worth extra effort to do them well.
Add a legalization hook for the operands of a TRUNCATE node, which will
be encountered after the result type has been legalized, but if the
operand type is still illegal. If simple splitting of both types
ends up with the result type of each half still being legal, just
do that (v16i16 -> v16i8 on ARM, for example). If, however, that would
result in an illegal result type (v8i32 -> v8i8 on ARM, for example),
we can get more clever with power-two vectors. Specifically,
split the input type, but also widen the result element size, then
concatenate the halves and truncate again. For example on ARM,
To perform a "%res = v8i8 trunc v8i32 %in" we transform to:
%inlo = v4i32 extract_subvector %in, 0
%inhi = v4i32 extract_subvector %in, 4
%lo16 = v4i16 trunc v4i32 %inlo
%hi16 = v4i16 trunc v4i32 %inhi
%in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
%res = v8i8 trunc v8i16 %in16
This allows instruction selection to generate three VMOVN instructions
instead of a sequences of moves, stores and loads.
Update the ARMTargetTransformInfo to take this improved legalization
into account.
Consider the simplified IR:
define <16 x i8> @test1(<16 x i32>* %ap) {
%a = load <16 x i32>* %ap
%tmp = trunc <16 x i32> %a to <16 x i8>
ret <16 x i8> %tmp
}
define <8 x i8> @test2(<8 x i32>* %ap) {
%a = load <8 x i32>* %ap
%tmp = trunc <8 x i32> %a to <8 x i8>
ret <8 x i8> %tmp
}
Previously, we would generate the truly hideous:
.syntax unified
.section __TEXT,__text,regular,pure_instructions
.globl _test1
.align 2
_test1: @ @test1
@ BB#0:
push {r7}
mov r7, sp
sub sp, sp, #20
bic sp, sp, #7
add r1, r0, #48
add r2, r0, #32
vld1.64 {d24, d25}, [r0:128]
vld1.64 {d16, d17}, [r1:128]
vld1.64 {d18, d19}, [r2:128]
add r1, r0, #16
vmovn.i32 d22, q8
vld1.64 {d16, d17}, [r1:128]
vmovn.i32 d20, q9
vmovn.i32 d18, q12
vmov.u16 r0, d22[3]
strb r0, [sp, #15]
vmov.u16 r0, d22[2]
strb r0, [sp, #14]
vmov.u16 r0, d22[1]
strb r0, [sp, #13]
vmov.u16 r0, d22[0]
vmovn.i32 d16, q8
strb r0, [sp, #12]
vmov.u16 r0, d20[3]
strb r0, [sp, #11]
vmov.u16 r0, d20[2]
strb r0, [sp, #10]
vmov.u16 r0, d20[1]
strb r0, [sp, #9]
vmov.u16 r0, d20[0]
strb r0, [sp, #8]
vmov.u16 r0, d18[3]
strb r0, [sp, #3]
vmov.u16 r0, d18[2]
strb r0, [sp, #2]
vmov.u16 r0, d18[1]
strb r0, [sp, #1]
vmov.u16 r0, d18[0]
strb r0, [sp]
vmov.u16 r0, d16[3]
strb r0, [sp, #7]
vmov.u16 r0, d16[2]
strb r0, [sp, #6]
vmov.u16 r0, d16[1]
strb r0, [sp, #5]
vmov.u16 r0, d16[0]
strb r0, [sp, #4]
vldmia sp, {d16, d17}
vmov r0, r1, d16
vmov r2, r3, d17
mov sp, r7
pop {r7}
bx lr
.globl _test2
.align 2
_test2: @ @test2
@ BB#0:
push {r7}
mov r7, sp
sub sp, sp, #12
bic sp, sp, #7
vld1.64 {d16, d17}, [r0:128]
add r0, r0, #16
vld1.64 {d20, d21}, [r0:128]
vmovn.i32 d18, q8
vmov.u16 r0, d18[3]
vmovn.i32 d16, q10
strb r0, [sp, #3]
vmov.u16 r0, d18[2]
strb r0, [sp, #2]
vmov.u16 r0, d18[1]
strb r0, [sp, #1]
vmov.u16 r0, d18[0]
strb r0, [sp]
vmov.u16 r0, d16[3]
strb r0, [sp, #7]
vmov.u16 r0, d16[2]
strb r0, [sp, #6]
vmov.u16 r0, d16[1]
strb r0, [sp, #5]
vmov.u16 r0, d16[0]
strb r0, [sp, #4]
ldm sp, {r0, r1}
mov sp, r7
pop {r7}
bx lr
Now, however, we generate the much more straightforward:
.syntax unified
.section __TEXT,__text,regular,pure_instructions
.globl _test1
.align 2
_test1: @ @test1
@ BB#0:
add r1, r0, #48
add r2, r0, #32
vld1.64 {d20, d21}, [r0:128]
vld1.64 {d16, d17}, [r1:128]
add r1, r0, #16
vld1.64 {d18, d19}, [r2:128]
vld1.64 {d22, d23}, [r1:128]
vmovn.i32 d17, q8
vmovn.i32 d16, q9
vmovn.i32 d18, q10
vmovn.i32 d19, q11
vmovn.i16 d17, q8
vmovn.i16 d16, q9
vmov r0, r1, d16
vmov r2, r3, d17
bx lr
.globl _test2
.align 2
_test2: @ @test2
@ BB#0:
vld1.64 {d16, d17}, [r0:128]
add r0, r0, #16
vld1.64 {d18, d19}, [r0:128]
vmovn.i32 d16, q8
vmovn.i32 d17, q9
vmovn.i16 d16, q8
vmov r0, r1, d16
bx lr
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179989 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, when spilling 64-bit paired registers, an LDMIA with both
a FrameIndex and an offset was produced. This kind of instruction
shouldn't exist, and the extra operand was being confused with the
predicate, causing aborts later on.
This removes the invalid 0-offset from the instruction being
produced.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179956 91177308-0d34-0410-b5e6-96231b3b80d8
I think it's almost impossible to fold atomic fences profitably under
LLVM/C++11 semantics. As a result, this is now unused and just
cluttering up the target interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179940 91177308-0d34-0410-b5e6-96231b3b80d8
trying to move as much FastISel logic as possible out of the main path in
SelectionDAGISel - intermixing them just adds confusion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179902 91177308-0d34-0410-b5e6-96231b3b80d8
variant/dialect. Addresses a FIXME in the emitMnemonicAliases function.
Use and test case to come shortly.
rdar://13688439 and part of PR13340.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179804 91177308-0d34-0410-b5e6-96231b3b80d8
The reference manual defines only 5 permitted values for the immediate field of the "hint" instruction:
1. nop (imm == 0)
2. yield (imm == 1)
3. wfe (imm == 2)
4. wfi (imm == 3)
5. sev (imm == 4)
Therefore, restrict the permitted values for the "hint" instruction to 0 through 4.
Patch by Mihail Popa <Mihail.Popa@arm.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179707 91177308-0d34-0410-b5e6-96231b3b80d8
These are aliases for VACGT and VACGE, respectively, with the source
operands reversed.
rdar://13638090
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179575 91177308-0d34-0410-b5e6-96231b3b80d8