MachineMemOperands. The pools are owned by MachineFunctions.
This drastically reduces the number of calls to malloc/free made
during the "Emit" phase of scheduling, as well as later phases
in CodeGen. Combined with other changes, this speeds up the
"instruction selection" phase of CodeGen by 10% in some cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53212 91177308-0d34-0410-b5e6-96231b3b80d8
that it is cheap and efficient to get.
Move a variety of predicates from TargetInstrInfo into
TargetInstrDescriptor, which makes it much easier to query a predicate
when you don't have TII around. Now you can use MI->getDesc()->isBranch()
instead of going through TII, and this is much more efficient anyway. Not
all of the predicates have been moved over yet.
Update old code that used MI->getInstrDescriptor()->Flags to use the
new predicates in many places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45674 91177308-0d34-0410-b5e6-96231b3b80d8
e.g. MO.isMBB() instead of MO.isMachineBasicBlock(). I don't plan on
switching everything over, so new clients should just start using the
shorter names.
Remove old long accessors, switching everything over to use the short
accessor: getMachineBasicBlock() -> getMBB(),
getConstantPoolIndex() -> getIndex(), setMachineBasicBlock -> setMBB(), etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45464 91177308-0d34-0410-b5e6-96231b3b80d8
should only effect x86 when using long double. Now
12/16 bytes are output for long double globals (the
exact amount depends on the alignment). This brings
globals in line with the rest of LLVM: the space
reserved for an object is now always the ABI size.
One tricky point is that only 10 bytes should be
output for long double if it is a field in a packed
struct, which is the reason for the additional
argument to EmitGlobalConstant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43688 91177308-0d34-0410-b5e6-96231b3b80d8
following jump tables that it earlier inserted. This
would be OK on other targets but is needed for correctness
only on ARM (constant islands needs to find jump tables).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@39782 91177308-0d34-0410-b5e6-96231b3b80d8
Due to darwin gcc bug, one version of darwin linker coalesces
static const int, which defauts PassID based pass identification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36652 91177308-0d34-0410-b5e6-96231b3b80d8
- In thumb mode, a new constpool island BB size should be 4 + 2 to
compensate for the potential padding due to alignment requirement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33753 91177308-0d34-0410-b5e6-96231b3b80d8
spilled (if it is not already).
- If LR is spilled, use BL to implement far jumps. LR is not used as a GPR
in thumb mode so it can be clobbered if it is properly spilled / restored
in prologue / epilogue.
- If LR is force spilled but no far jump has been emitted, try undo'ing the
spill by:
push lr -> delete
pop pc -> bx lr
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33650 91177308-0d34-0410-b5e6-96231b3b80d8
unconditional branch following it. Simply invert the condition and swap
destinations if the conditional branch can reach the destination of the
unconditional branch:
beq L1
b L2
=>
bne L2
b L1
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33548 91177308-0d34-0410-b5e6-96231b3b80d8