LocalRewriter::runOnMachineFunction uses this information to mark dead spill
slots.
This means that InlineSpiller now also works for functions that spill.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107302 91177308-0d34-0410-b5e6-96231b3b80d8
replaced by a bigger array in SmallPtrSet (by overridding it), instead just use a
pointer to the start of the storage, and have SmallPtrSet pass in the value to use.
This has the disadvantage that SmallPtrSet becomes bigger by one pointer. It has
the advantage that it no longer uses tricky C++ rules, and is clearly correct while
I'm not sure the previous version was. This was inspired by g++-4.6 pointing out
that SmallPtrSetImpl was writing off the end of SmallArray, which it was. Since
SmallArray is replaced with a bigger array in SmallPtrSet, the write was still to
valid memory. But it was writing off the end of the declared array type - sounds
kind of dubious to me, like it sounded dubious to g++-4.6. Maybe g++-4.6 is wrong
and this construct is perfectly valid and correctly compiled by all compilers, but
I think it is better to avoid the whole can of worms by avoiding this construct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107285 91177308-0d34-0410-b5e6-96231b3b80d8
on ScalarEvolution successfully folding and preserving
range information for both A-B and B-A. Now, if it gets
either one, it's sufficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107249 91177308-0d34-0410-b5e6-96231b3b80d8
InlineSpiller inserts loads and spills immediately instead of deferring to
VirtRegMap. This is possible now because SlotIndexes allows instructions to be
inserted and renumbered.
This is work in progress, and is mostly a copy of TrivialSpiller so far. It
works very well for functions that don't require spilling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107227 91177308-0d34-0410-b5e6-96231b3b80d8
metadata types which should be marked as "weak", but which the linker will
remove upon final linkage. For example, the "objc_msgSend_fixup_alloc" symbol is
defined like this:
.globl l_objc_msgSend_fixup_alloc
.weak_definition l_objc_msgSend_fixup_alloc
.section __DATA, __objc_msgrefs, coalesced
.align 3
l_objc_msgSend_fixup_alloc:
.quad _objc_msgSend_fixup
.quad L_OBJC_METH_VAR_NAME_1
This is different from the "linker_private" linkage type, because it can't have
the metadata defined with ".weak_definition".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107205 91177308-0d34-0410-b5e6-96231b3b80d8
A partial redefine needs to be treated like a tied operand, and the register
must be reloaded while processing use operands.
This fixes a bug where partially redefined registers were processed as normal
defs with a reload added. The reload could clobber another use operand if it was
a kill that allowed register reuse.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107193 91177308-0d34-0410-b5e6-96231b3b80d8
The LowerSubregs pass needs to preserve implicit def operands attached to
EXTRACT_SUBREG instructions when it replaces those instructions with copies.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107189 91177308-0d34-0410-b5e6-96231b3b80d8
The encoding is the same as VMOV (from scalar to core register) except that
the operands are in different places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107167 91177308-0d34-0410-b5e6-96231b3b80d8
a CPSR operand to them causes an assertion failure, so apparently these
instructions haven't been getting a lot of use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107147 91177308-0d34-0410-b5e6-96231b3b80d8
is stripped off. Currently set unconditionally, since the API
does not provide a way of working out if anything was actually
stripped off.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107142 91177308-0d34-0410-b5e6-96231b3b80d8
of getPhysicalRegisterRegClass with it.
If we want to make a copy (or estimate its cost), it is better to use the
smallest class as more efficient operations might be possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107140 91177308-0d34-0410-b5e6-96231b3b80d8
in terms of Op<> and ArgOffset. This works for
values of {0, 1} for ArgOffset.
Please note that ArgOffset will become 0 soon and
will go away eventually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107129 91177308-0d34-0410-b5e6-96231b3b80d8
back-edges), make sure not to include dbg_value instructions in the count.
Closing in on the end of rdar://7797940
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107119 91177308-0d34-0410-b5e6-96231b3b80d8
instruction to an add scev, it's not safe to blindly transfer the
inbounds flag from a gep instruction to an nsw on the scev for the
gep.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107117 91177308-0d34-0410-b5e6-96231b3b80d8
There are 2 changes relative to the previous version of the patch:
1) For the "simple" if-conversion case, there's no need to worry about
RemoveExtraEdges not handling an unanalyzable branch. Predicated terminators
are ignored in this context, so RemoveExtraEdges does the right thing.
This might break someday if we ever treat indirect branches (BRIND) as
predicable, but for now, I just removed this part of the patch, because
in the case where we do not add an unconditional branch, we rely on keeping
the fall-through edge to CvtBBI (which is empty after this transformation).
The change relative to the previous patch is:
@@ -1036,10 +1036,6 @@
IterIfcvt = false;
}
- // RemoveExtraEdges won't work if the block has an unanalyzable branch,
- // which is typically the case for IfConvertSimple, so explicitly remove
- // CvtBBI as a successor.
- BBI.BB->removeSuccessor(CvtBBI->BB);
RemoveExtraEdges(BBI);
// Update block info. BB can be iteratively if-converted.
2) My patch exposed a bug in the code for merging the tail of a "diamond",
which had previously never been exercised. The code was simply checking that
the tail had a single predecessor, but there was a case in
MultiSource/Benchmarks/VersaBench/dbms where that single predecessor was
neither edge of the diamond. I added the following change to check for
that:
@@ -1276,7 +1276,18 @@
// tail, add a unconditional branch to it.
if (TailBB) {
BBInfo TailBBI = BBAnalysis[TailBB->getNumber()];
- if (TailBB->pred_size() == 1 && !TailBBI.HasFallThrough) {
+ bool CanMergeTail = !TailBBI.HasFallThrough;
+ // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
+ // check if there are any other predecessors besides those.
+ unsigned NumPreds = TailBB->pred_size();
+ if (NumPreds > 1)
+ CanMergeTail = false;
+ else if (NumPreds == 1 && CanMergeTail) {
+ MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
+ if (*PI != BBI1->BB && *PI != BBI2->BB)
+ CanMergeTail = false;
+ }
+ if (CanMergeTail) {
MergeBlocks(BBI, TailBBI);
TailBBI.IsDone = true;
} else {
With these fixes, I was able to run all the SingleSource and MultiSource
tests successfully.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107110 91177308-0d34-0410-b5e6-96231b3b80d8
properly handles instructions and arguments defined in different
functions, or across recursive function iterations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107109 91177308-0d34-0410-b5e6-96231b3b80d8
have to be registers, per gcc documentation. This affects
the logic for determining what "g" should lower to. PR 7393.
A couple of existing testcases are affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107079 91177308-0d34-0410-b5e6-96231b3b80d8
When an instruction has tied operands and physreg defines, we must take extra
care that the tied operands conflict with neither physreg defs nor uses.
The special treatment is given to inline asm and instructions with tied operands
/ early clobbers and physreg defines.
This fixes PR7509.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107043 91177308-0d34-0410-b5e6-96231b3b80d8
interprocedurally. Note that as of this writing, existing alias
analysis passes are not prepared to be used interprocedurally.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107013 91177308-0d34-0410-b5e6-96231b3b80d8
large integers, the first inserted value would always create
an 'or X, 0'. Even though this is trivially zapped by
instcombine, don't bother creating this pointless instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106979 91177308-0d34-0410-b5e6-96231b3b80d8
regressions.
--- Reverse-merging r106939 into '.':
U test/CodeGen/Thumb2/thumb2-ifcvt3.ll
U lib/CodeGen/IfConversion.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106951 91177308-0d34-0410-b5e6-96231b3b80d8
the returned value after the tail call if it differs from other return
values. The optimal thing to do would be to introduce a phi node for
the return value, but for the moment just fix the miscompile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106947 91177308-0d34-0410-b5e6-96231b3b80d8
if-conversion. The RemoveExtraEdges function doesn't work for blocks that
end with unanalyzable branches, so in those cases, the "extra" edges must
be explicitly removed. The CopyAndPredicateBlock and MergeBlocks methods
can also avoid copying successor edges due to branches that have already
been removed. The latter case is especially helpful when MergeBlocks is
called for handling "diamond" if-conversions, where otherwise you can end
up with some weird intermediate states in the CFG. Unfortunately I've
been unable to find cases where this cleanup actually makes a significant
difference in the code. There is one test where we manage to remove an
empty block at the end of a function. Radar 6911268.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106939 91177308-0d34-0410-b5e6-96231b3b80d8
CopyFromReg nodes for aliasing registers (AX and AL). This confuses the fast
register allocator.
Instead of CopyFromReg(AL), use ExtractSubReg(CopyFromReg(AX), sub_8bit).
This fixes PR7312.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106934 91177308-0d34-0410-b5e6-96231b3b80d8
introduced in r106343, but only showed up recently (with a particular compiler &
linker combination) because of the particular check, and because we have no
builtin checking for dereferencing the end of an array, which is truly
unfortunate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106908 91177308-0d34-0410-b5e6-96231b3b80d8
The VNInfo.kills vector was almost unused except for all the code keeping it
updated. The few places using it were easily rewritten to check for interval
ends instead.
The two new methods LiveInterval::killedAt and killedInRange are replacements.
This brings us down to 3 independent data structures tracking kills.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106905 91177308-0d34-0410-b5e6-96231b3b80d8
SCEVUnknown values which are loop-variant, as LSR can't do anything
interesting with these values in any case. This fixes very slow compile
times on loops which have large numbers of such values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106897 91177308-0d34-0410-b5e6-96231b3b80d8
for an "i" constraint should get lowered; PR 6309. While
this argument was passed around a lot, this is the only
place it was used, so it goes away from a lot of other
places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106893 91177308-0d34-0410-b5e6-96231b3b80d8