The theory is it's still faster than a pair of movq / a quad of movl. This
will probably hurt older chips like P4 but should run faster on current
and future Intel processors. rdar://8817010
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122955 91177308-0d34-0410-b5e6-96231b3b80d8
etc. takes an option OptSize. If OptSize is true, it would return
the inline limit for functions with attribute OptSize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122952 91177308-0d34-0410-b5e6-96231b3b80d8
up freebsd bootloader. However, this doesn't make much sense for Darwin, whose
-Os is meant to optimize for size only if it doesn't hurt performance.
rdar://8821501
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122936 91177308-0d34-0410-b5e6-96231b3b80d8
prologue and epilogue if the adjustment is 8. Similarly, use pushl / popl if
the adjustment is 4 in 32-bit mode.
In the epilogue, takes care to pop to a caller-saved register that's not live
at the exit (either return or tailcall instruction).
rdar://8771137
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122783 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to compile:
void test(char *s, int a) {
__builtin_memset(s, a, 15);
}
into 1 mul + 3 stores instead of 3 muls + 3 stores.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122710 91177308-0d34-0410-b5e6-96231b3b80d8
We could implement a DAGCombine to turn x * 0x0101 back into logic operations
on targets that doesn't support the multiply or it is slow (p4) if someone cares
enough.
Example code:
void test(char *s, int a) {
__builtin_memset(s, a, 4);
}
before:
_test: ## @test
movzbl 8(%esp), %eax
movl %eax, %ecx
shll $8, %ecx
orl %eax, %ecx
movl %ecx, %eax
shll $16, %eax
orl %ecx, %eax
movl 4(%esp), %ecx
movl %eax, 4(%ecx)
movl %eax, (%ecx)
ret
after:
_test: ## @test
movzbl 8(%esp), %eax
imull $16843009, %eax, %eax ## imm = 0x1010101
movl 4(%esp), %ecx
movl %eax, 4(%ecx)
movl %eax, (%ecx)
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122707 91177308-0d34-0410-b5e6-96231b3b80d8
If the basic block containing the BCCi64 (or BCCZi64) instruction ends with
an unconditional branch, that branch needs to be deleted before appending
the expansion of the BCCi64 to the end of the block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122521 91177308-0d34-0410-b5e6-96231b3b80d8
In the bottom-up selection DAG scheduling, handle two-address
instructions that read/write unspillable registers. Treat
the entire chain of two-address nodes as a single live range.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122472 91177308-0d34-0410-b5e6-96231b3b80d8
loads properly. We miscompiled the testcase into:
_test: ## @test
movl $128, (%rdi)
movzbl 1(%rdi), %eax
ret
Now we get a proper:
_test: ## @test
movl $128, (%rdi)
movsbl (%rdi), %eax
movzbl %ah, %eax
ret
This fixes PR8757.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122392 91177308-0d34-0410-b5e6-96231b3b80d8
the shift type was needed one place, the shift count
type another. The transform in 123555 had the same
problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122366 91177308-0d34-0410-b5e6-96231b3b80d8
count operand. These should be the same but apparently are
not always, and this is cleaner anyway. This improves the
code in an existing test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122354 91177308-0d34-0410-b5e6-96231b3b80d8
Type legalization splits up i64 values into pairs of i32 values, which leads
to poor quality code when inserting or extracting i64 vector elements.
If the vector element is loaded or stored, it can be treated as an f64 value
and loaded or stored directly from a VPR register. Use the pre-legalization
DAG combiner to cast those vector elements to f64 types so that the type
legalizer won't mess them up. Radar 8755338.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122319 91177308-0d34-0410-b5e6-96231b3b80d8
the same as setcc. Optimize ADDC(0,0,FLAGS) -> SET_CARRY(FLAGS). This is
a step towards finishing off PR5443. In the testcase in that bug we now get:
movq %rdi, %rax
addq %rsi, %rax
sbbq %rcx, %rcx
testb $1, %cl
setne %dl
ret
instead of:
movq %rdi, %rax
addq %rsi, %rax
movl $0, %ecx
adcq $0, %rcx
testq %rcx, %rcx
setne %dl
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122219 91177308-0d34-0410-b5e6-96231b3b80d8
doesn't, match it back to setb.
On a 64-bit version of the testcase before we'd get:
movq %rdi, %rax
addq %rsi, %rax
sbbb %dl, %dl
andb $1, %dl
ret
now we get:
movq %rdi, %rax
addq %rsi, %rax
setb %dl
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122217 91177308-0d34-0410-b5e6-96231b3b80d8
consistently by moving it out of lowering into dag combine.
Add some missing patterns for matching away extended versions of setcc_c.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122201 91177308-0d34-0410-b5e6-96231b3b80d8
isel is *required* to split the edge. PHI values get evaluated
on the edge, not in their predecessor block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122170 91177308-0d34-0410-b5e6-96231b3b80d8
It turns out that ppc backend has really weird interdependencies
over different hooks and all stuff is fragile wrt small changes.
This should fix PR8749
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122155 91177308-0d34-0410-b5e6-96231b3b80d8
may be called. If the entry block is empty, the insertion point iterator will be
the "end()" value. Calling ->getParent() on it (among others) causes problems.
Modify materializeFrameBaseRegister to take the machine basic block and insert
the frame base register at the beginning of that block. (It's very similar to
what the code does all ready. The only difference is that it will always insert
at the beginning of the entry block instead of after a previous materialization
of the frame base register. I doubt that that matters here.)
<rdar://problem/8782198>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122104 91177308-0d34-0410-b5e6-96231b3b80d8
BUILD_VECTOR operands where the element type is not legal. I had previously
changed this code to insert TRUNCATE operations, but that was just wrong.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122102 91177308-0d34-0410-b5e6-96231b3b80d8
Clang is now providing intrinsics for these and so we need to support them
in the backend. Radar 8068427.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121902 91177308-0d34-0410-b5e6-96231b3b80d8
and "save_volatiles" correctly. This completes the custom calling convention
functionality changes for the MBlaze backend that were started in 121888.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121891 91177308-0d34-0410-b5e6-96231b3b80d8
regB = move RCX
regA = op regB, regC
RAX = move regA
where both regB and regC are killed. If regB is constrainted to non-compatible
physical registers but regC is not constrainted at all, then it's better to
commute the instruction.
movl %edi, %eax
shlq $32, %rcx
leaq (%rcx,%rax), %rax
=>
movl %edi, %eax
shlq $32, %rcx
orq %rcx, %rax
rdar://8762995
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121793 91177308-0d34-0410-b5e6-96231b3b80d8
Use the same COPY_TO_REGCLASS approach as for the 2-register *_sfp instructions.
This change made a big difference in the code generated for the
CodeGen/Thumb2/cross-rc-coalescing-2.ll test: The coalescer is still doing
a fine job, but some instructions that were previously moved outside the loop
are not moved now. It's using fewer VFP registers now, which is generally
a good thing, so I think the estimates for register pressure changed and that
affected the LICM behavior. Since that isn't obviously wrong, I've just
changed the test file. This completes the work for Radar 8711675.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121730 91177308-0d34-0410-b5e6-96231b3b80d8
when the wider type is legal. This allows us to compile:
define zeroext i16 @test1(i16 zeroext %x) nounwind {
entry:
%div = udiv i16 %x, 33
ret i16 %div
}
into:
test1: # @test1
movzwl 4(%esp), %eax
imull $63551, %eax, %eax # imm = 0xF83F
shrl $21, %eax
ret
instead of:
test1: # @test1
movw $-1985, %ax # imm = 0xFFFFFFFFFFFFF83F
mulw 4(%esp)
andl $65504, %edx # imm = 0xFFE0
movl %edx, %eax
shrl $5, %eax
ret
Implementing rdar://8760399 and example #4 from:
http://blog.regehr.org/archives/320
We should implement the same thing for [su]mul_hilo, but I don't
have immediate plans to do this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121696 91177308-0d34-0410-b5e6-96231b3b80d8
Alignments smaller than the total size of the memory being loaded or stored,
unless the alignment is 8 bytes, are not allowed. Add tests for this, too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121506 91177308-0d34-0410-b5e6-96231b3b80d8
Otherwise, a plain str/ldr should be used instead. Make sure we account for
that in prologue/epilogue code generation.
rdar://8745460
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121391 91177308-0d34-0410-b5e6-96231b3b80d8
the output to the correct register. Fixes a hidden problem uncovered
by the last patch where we'd try to DAG combine our MVT::Other node
oddly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121358 91177308-0d34-0410-b5e6-96231b3b80d8
Added test to check bl __aeabi_read_tp gets emitted properly for ELF/ASM
as well as ELF/OBJ (including fixup)
Also added support for ELF::R_ARM_TLS_IE32
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121312 91177308-0d34-0410-b5e6-96231b3b80d8
vpush instructions to save / restore VFP / NEON registers like this:
vpush {d8,d10,d11}
vpop {d8,d10,d11}
vpush and vpop do not allow gaps in the register list.
rdar://8728956
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121197 91177308-0d34-0410-b5e6-96231b3b80d8
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
additional pipeline stall. So it's frequently better to single codegen
vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
vmla + vmla is very bad. But this isn't ideal either:
vmul
vadd
vmla
Instead, we want to expand the second vmla:
vmla
vmul
vadd
Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
faster.
Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.
A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
vmla / vmls will trigger one of the special hazards.
Work in progress, only A+B are enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120960 91177308-0d34-0410-b5e6-96231b3b80d8
result. This allows us to compile:
void *test12(long count) {
return new int[count];
}
into:
test12:
movl $4, %ecx
movq %rdi, %rax
mulq %rcx
movq $-1, %rdi
cmovnoq %rax, %rdi
jmp __Znam ## TAILCALL
instead of:
test12:
movl $4, %ecx
movq %rdi, %rax
mulq %rcx
seto %cl
testb %cl, %cl
movq $-1, %rdi
cmoveq %rax, %rdi
jmp __Znam
Of course it would be even better if the regalloc inverted the cmov to 'cmovoq',
which would eliminate the need for the 'movq %rdi, %rax'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120936 91177308-0d34-0410-b5e6-96231b3b80d8
backend that they were all implemented except umul. This one fell back
to the default implementation that did a hi/lo multiply and compared the
top. Fix this to check the overflow flag that the 'mul' instruction
sets, so we can avoid an explicit test. Now we compile:
void *func(long count) {
return new int[count];
}
into:
__Z4funcl: ## @_Z4funcl
movl $4, %ecx ## encoding: [0xb9,0x04,0x00,0x00,0x00]
movq %rdi, %rax ## encoding: [0x48,0x89,0xf8]
mulq %rcx ## encoding: [0x48,0xf7,0xe1]
seto %cl ## encoding: [0x0f,0x90,0xc1]
testb %cl, %cl ## encoding: [0x84,0xc9]
movq $-1, %rdi ## encoding: [0x48,0xc7,0xc7,0xff,0xff,0xff,0xff]
cmoveq %rax, %rdi ## encoding: [0x48,0x0f,0x44,0xf8]
jmp __Znam ## TAILCALL
instead of:
__Z4funcl: ## @_Z4funcl
movl $4, %ecx ## encoding: [0xb9,0x04,0x00,0x00,0x00]
movq %rdi, %rax ## encoding: [0x48,0x89,0xf8]
mulq %rcx ## encoding: [0x48,0xf7,0xe1]
testq %rdx, %rdx ## encoding: [0x48,0x85,0xd2]
movq $-1, %rdi ## encoding: [0x48,0xc7,0xc7,0xff,0xff,0xff,0xff]
cmoveq %rax, %rdi ## encoding: [0x48,0x0f,0x44,0xf8]
jmp __Znam ## TAILCALL
Other than the silly seto+test, this is using the o bit directly, so it's going in the right
direction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120935 91177308-0d34-0410-b5e6-96231b3b80d8
- Also adds a new POPCNT subtarget feature that is currently enabled if the target
supports SSE4.2 (nehalem) or SSE4A (barcelona).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120917 91177308-0d34-0410-b5e6-96231b3b80d8