fairly conservative; it doesn't do alias-analysis queries and it doesn't
attempt to break anti-dependencies.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59324 91177308-0d34-0410-b5e6-96231b3b80d8
to carry a SmallVector of flagged nodes, just calculate the flagged nodes
dynamically when they are needed.
The local-liveness change is due to a trivial scheduling change where
the scheduler arbitrary decision differently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59273 91177308-0d34-0410-b5e6-96231b3b80d8
virtual registers possibly having multiple kills while still
being defined and killed in the same block. If LiveIntervals
is manually re-run after two-address lowering, it currently
does add extra kills to two-address instructions, but this
is considered a bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59194 91177308-0d34-0410-b5e6-96231b3b80d8
special-purpose hook to a new pass. Also, add check to see if any
x87 virtual registers are used, to avoid doing any work in the
common case that no x87 code is needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59190 91177308-0d34-0410-b5e6-96231b3b80d8
no longer records a unique defining instruction, and virtual
registers may have multiple kills while still being defined
and killed in the same block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59145 91177308-0d34-0410-b5e6-96231b3b80d8
argument instead of taking the SelectionDAG's TargetMachine. This is
needed for some upcoming scheduler changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59055 91177308-0d34-0410-b5e6-96231b3b80d8
support targets that support these conversions. Users should avoid using
this node as the current targets don't generating code for it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59001 91177308-0d34-0410-b5e6-96231b3b80d8
release-asserts build:
llvm/CodeGen/SelectionDAGNodes.h:1298: warning: control may reach end of non-void function 'unsigned int llvm::MVT::getSizeInBits() const' being inlined
what an unhelpful warning.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58957 91177308-0d34-0410-b5e6-96231b3b80d8
FIXME: it seems, that most of targets don't support
offsets wrt CPI/GlobalAddress', was it intentional?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58917 91177308-0d34-0410-b5e6-96231b3b80d8
the condition for a BRCOND, according to what is
returned by getSetCCResultContents. Since all
targets return the same thing (ZeroOrOneSetCCResult),
this should be harmless! The point is that all over
the place the result of SETCC is fed directly into
BRCOND. On machines for which getSetCCResultContents
returns ZeroOrNegativeOneSetCCResult, this is a
sign-extended boolean. So it seems dangerous to
also feed BRCOND zero-extended booleans in some
circumstances - for example, when promoting the
condition.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58861 91177308-0d34-0410-b5e6-96231b3b80d8
- Get rid of "HasStackProtector" in MachineFrameInfo.
- Modify intrinsics to tell which are doing what with memory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58799 91177308-0d34-0410-b5e6-96231b3b80d8
- stackprotector_prologue creates a stack object and stores the guard there.
- stackprotector_epilogue reads the stack guard from the stack position created
by stackprotector_prologue.
- The PrologEpilogInserter was changed to make sure that the stack guard is
first on the stack frame.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58791 91177308-0d34-0410-b5e6-96231b3b80d8
dead nodes, but in this case its missing one. Fixing the DAGCombiner
is desirable, but it's somewhat involved.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58777 91177308-0d34-0410-b5e6-96231b3b80d8
priority function. Instead, just iterate over the AllNodes list, which is
already in topological order. This eliminates a fair amount of bookkeeping,
and speeds up the isel phase by about 15% on many testcases.
The impact on most targets is that AddToISelQueue calls can be simply removed.
In the x86 target, there are two additional notable changes.
The rule-bending AND+SHIFT optimization in MatchAddress that creates new
pre-isel nodes during isel is now a little more verbose, but more robust.
Instead of either creating an invalid DAG or creating an invalid topological
sort, as it has historically done, it can now just insert the new nodes into
the node list at a position where they will be consistent with the topological
ordering.
Also, the address-matching code has logic that checked to see if a node was
"already selected". However, when a node is selected, it has all its uses
taken away via ReplaceAllUsesWith or equivalent, so it won't recieve any
further visits from MatchAddress. This code is now removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58748 91177308-0d34-0410-b5e6-96231b3b80d8
- Use enums instead of magic numbers.
- Rework algorithm to use the bytes size from the target to determine when to
emit stack protectors.
- Get rid of "propolice" in any comments.
- Renamed an option to its expanded form.
- Other miscellanenous changes.
More changes will come after this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58723 91177308-0d34-0410-b5e6-96231b3b80d8
* The prologue is modified to read the __stack_chk_guard global and insert it
onto the stack.
* The epilogue is modified to read the stored guard from the stack and compare
it to the original __stack_chk_guard value. If they differ, then the
__stack_chk_fail() function is called.
* The stack protector needs to be first on the stack (after the parameters) to
catch any stack-smashing activities.
Front-end support will follow after a round of beta testing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58673 91177308-0d34-0410-b5e6-96231b3b80d8
bits, use a union of a SimpleValueType enum and a regular Type*.
This increases the size of MVT on 64-bit hosts from 32 bits to 64 bits.
In most cases, this doesn't add significant overhead. There are places
in codegen that use arrays of MVTs, so these are now larger, but
they're small in common cases.
This eliminates restrictions on the size of integer types and vector
types that can be represented in codegen. As the included testcase
demonstrates, it's now possible to codegen very large add operations.
There are still some complications with using very large types. PR2880
is still open so they can't be used as return values on normal targets,
there are no libcalls defined for very large integers so operations
like multiply and divide aren't supported.
This also introduces a minimal tablgen Type library, capable of
handling IntegerType and VectorType. This will allow parts of
TableGen that don't depend on using SimpleValueType values to handle
arbitrary integer and vector types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58623 91177308-0d34-0410-b5e6-96231b3b80d8
other day that PPC custom lowering could create
a BUILD_PAIR of two f64 with a result type of...
f64! - already fixed). Fix a place that triggers
the sanity check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58378 91177308-0d34-0410-b5e6-96231b3b80d8
flag. Then in a debugger developers can set breakpoints at these calls
to see waht is about to be selected and what the resulting subgraph
looks like. This really helps when debugging instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58278 91177308-0d34-0410-b5e6-96231b3b80d8
that is not of type MVT::i1 in SELECT and SETCC nodes.
Relax the LegalizeTypes SELECT condition promotion
sanity checks to allow other condition types than i1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57966 91177308-0d34-0410-b5e6-96231b3b80d8
and add a TargetLowering hook for it to use to determine when this
is legal (i.e. not in PIC mode, etc.)
This allows instruction selection to emit folded constant offsets
in more cases, such as the included testcase, eliminating the need
for explicit arithmetic instructions.
This eliminates the need for the C++ code in X86ISelDAGToDAG.cpp
that attempted to achieve the same effect, but wasn't as effective.
Also, fix handling of offsets in GlobalAddressSDNodes in several
places, including changing GlobalAddressSDNode's offset from
int to int64_t.
The Mips, Alpha, Sparc, and CellSPU targets appear to be
unaware of GlobalAddress offsets currently, so set the hook to
false on those targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57748 91177308-0d34-0410-b5e6-96231b3b80d8
because it declares a std::vector<MachineMove>, and strict
concept checking requires the definition of MachineMove to be
available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57617 91177308-0d34-0410-b5e6-96231b3b80d8
- Move the EH landing-pad code and adjust it so that it works
with FastISel as well as with SDISel.
- Add FastISel support for @llvm.eh.exception and
@llvm.eh.selector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57539 91177308-0d34-0410-b5e6-96231b3b80d8
expand to multiple basic blocks, in which case fast-isel
needs to informed of which block to use as it resumes
inserting instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57040 91177308-0d34-0410-b5e6-96231b3b80d8
can be used when deciding if a block can transfer control to another
via a fall-through instead of a branch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56968 91177308-0d34-0410-b5e6-96231b3b80d8
Completely eliminate the TopOrder std::vector. Instead, sort
the AllNodes list in place. This also eliminates the need to
call AllNodes.size(), a linear-time operation, before
performing the sort.
Also, eliminate the Sources temporary std::vector, since it
essentially duplicates the sorted result as it is being
built.
This also changes the direction of the topological sort
from bottom-up to top-down. The AllNodes list starts out in
roughly top-down order, so this reduces the amount of
reordering needed. Top-down is also more convenient for
Legalize, and ISel needed only minor adjustments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56867 91177308-0d34-0410-b5e6-96231b3b80d8
its size). Adjust various lowering functions to
pass this info through from CallInst. Use it to
implement sseregparm returns on X86. Remove
X86_ssecall calling convention.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56677 91177308-0d34-0410-b5e6-96231b3b80d8
information is in an unreachable block, then it's possible that the high/low pc
values won't be set for the dwarf information. E.g., this function:
void abort(void) __attribute__((__noreturn__));
void dead_beef(void) __attribute__ ((noreturn));
int *b;
void dead_beef(void) {
*b=0xdeadbeef;
abort();
}
has a call to "@llvm.dbg.region.end" only in the unreachable block:
define void @dead_beef() noreturn nounwind {
entry:
call void @llvm.dbg.func.start(...)
call void @llvm.dbg.stoppoint(...)
...
call void @abort( ) noreturn nounwind
unreachable
return: ; No predecessors!
call void @llvm.dbg.stoppoint(...)
call void @llvm.dbg.region.end(...)
ret void
}
The dwarf information emitted is something like:
0x00000084: TAG_subprogram [5]
AT_name( "dead_beef" )
AT_external( 0x01 )
AT_prototyped( 0x01 )
AT_decl_file( 0x01 )
AT_decl_line( 0x08 )
Note that this is *not* the best fix for this problem, but a band-aid for an
gaping wound. This code needs to be changed when we revamp our debugging
information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56628 91177308-0d34-0410-b5e6-96231b3b80d8
meaning sse_regparm (i.e. float/double values go
in XMM0 instead of ST0). Update documentation
to reflect reality.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56619 91177308-0d34-0410-b5e6-96231b3b80d8
the SelectionDAG and DAGCombiner code. The only functionality change is that now
the DAG combiner is performing the constant folding for these operations instead
of being a no-op.
This is *not* in response to a bug, so there isn't a testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56550 91177308-0d34-0410-b5e6-96231b3b80d8
RA problem by expanding the live interval of an
earlyclobber def back one slot. Remove
overlap-earlyclobber throughout. Remove
earlyclobber bits and their handling from
live internals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56539 91177308-0d34-0410-b5e6-96231b3b80d8
Handle{Virt,Phys}Reg{Def,Use}. Remove a redundant check
for register zero, and redundant checks for isPhysicalRegister.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56412 91177308-0d34-0410-b5e6-96231b3b80d8
use ARG_FLAGSSDNode as the most aligned node type,
as it contains an int64_t, which is 8-byte
aligned on mingw.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56358 91177308-0d34-0410-b5e6-96231b3b80d8
copy of the BURRList scheduler, but with several parts ripped
out, such as backtracking, online topological sort maintenance
(needed by backtracking), the priority queue, and Sethi-Ullman
number computation and maintenance (needed by the priority
queue). As a result of all this, it generates somewhat lower
quality code, but that's its tradeoff for running about 30%
faster than list-burr in -fast mode in many cases.
This is somewhat experimental. Moving forward, major pieces of
this can be refactored with pieces in common with
ScheduleDAGRRList.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56307 91177308-0d34-0410-b5e6-96231b3b80d8
with an earlyclobber operand elsewhere. Propagate
this bit and the earlyclobber bit through SDISel.
Change linear-scan RA not to allocate regs in a way
that conflicts with an earlyclobber. See also comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56290 91177308-0d34-0410-b5e6-96231b3b80d8
- Add linkage to SymbolSDNode (default to external).
- Change ISD::ExternalSymbol to ISD::Symbol.
- Change ISD::TargetExternalSymbol to ISD::TargetSymbol
These changes pave the way to allowing SymbolSDNodes with non-external linkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56249 91177308-0d34-0410-b5e6-96231b3b80d8
isImmediate(), isRegister(), and friends, to avoid confusion
about having two different names with the same meaning. I'm
not attached to the longer names, and would be ok with
changing to the shorter names if others prefer it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56189 91177308-0d34-0410-b5e6-96231b3b80d8
Currently it just holds the calling convention and flags
for isVarArgs and isTailCall.
And it has several utility methods, which eliminate magic
5+2*i and similar index computations in several places.
CallSDNodes are not CSE'd. Teach UpdateNodeOperands to handle
nodes that are not CSE'd gracefully.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56183 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantFP* instead of APInt and APFloat directly.
This reduces the amount of time to create ConstantSDNode
and ConstantFPSDNode nodes when ConstantInt* and ConstantFP*
respectively are already available, as is the case in
SelectionDAGBuild.cpp. Also, it reduces the amount of time
to legalize constants into constant pools, and the amount of
time to add ConstantFP operands to MachineInstrs, due to
eliminating ConstantInt::get and ConstantFP::get calls.
It increases the amount of work needed to create new constants
in cases where the client doesn't already have a ConstantInt*
or ConstantFP*, such as legalize expanding 64-bit integer constants
to 32-bit constants. And it adds a layer of indirection for the
accessor methods. But these appear to be outweight by the benefits
in most cases.
It will also make it easier to make ConstantSDNode and
ConstantFPNode more consistent with ConstantInt and ConstantFP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56162 91177308-0d34-0410-b5e6-96231b3b80d8
with ConstantInt. This led to fixing a bug in TargetLowering.cpp
using getValue instead of getAPIntValue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56159 91177308-0d34-0410-b5e6-96231b3b80d8
cmp-and-swap reversed the Cmp and Swap arguments; comments
make it clear this is unintentional. Unfortunately, the
x86 BE had a compensating reversal, which is removed here.
PPC is OK.
From inspection of the Alpha code I think it is OK, but
if somebody has that platform please check it out. I
cannot test on that platform.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56091 91177308-0d34-0410-b5e6-96231b3b80d8
- Add a AnalyzeCallResult specialized for calls which produce a single value. This is used by fastisel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55879 91177308-0d34-0410-b5e6-96231b3b80d8
HandlePHINodesInSuccessorBlocks that works FastISel-style. This
allows PHI nodes to be updated correctly while using FastISel.
This also involves some code reorganization; ValueMap and
MBBMap are now members of the FastISel class, so they needn't
be passed around explicitly anymore. Also, SelectInstructions
is changed to SelectInstruction, and only does one instruction
at a time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55746 91177308-0d34-0410-b5e6-96231b3b80d8
list that have internal linkage; the linker doesn't need
or want this. (These objects must still be preserved
at compile time, so just removing them from the llvm.used
list doesn't work.) Should affect only Darwin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55722 91177308-0d34-0410-b5e6-96231b3b80d8
assignment when selecting the def. This is the naive solution to the problem: insert a copy to the pre-chosen
vreg. Other solutions might be preferable, such as:
1) Passing the dest reg into FastEmit_. However, this would require the higher level code to know about reg classes, which they don't currently.
2) Selecting blocks in reverse postorder. This has some compile time cost for computing the order, and we'd need to measure its impact.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55555 91177308-0d34-0410-b5e6-96231b3b80d8
ATOMIC_LOAD_ADD_{8,16,32,64} instead of ATOMIC_LOAD_ADD.
Increased the Hardcoded Constant OpActionsCapacity to match.
Large but boring; no functional change.
This is to support partial-word atomics on ppc; i8 is
not a valid type there, so by the time we get to lowering, the
ATOMIC_LOAD nodes looks the same whether the type was i8 or i32.
The information can be added to the AtomicSDNode, but that is the
largest SDNode; I don't fully understand the SDNode allocation,
but it is sensitive to the largest node size, so increasing
that must be bad. This is the alternative.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55457 91177308-0d34-0410-b5e6-96231b3b80d8
works with.
SelectionDAG, FunctionLoweringInfo, and SelectionDAGLowering
objects now get created once per SelectionDAGISel instance, and
can be reused across blocks and across functions. Previously,
they were created and destroyed each time they were needed.
This reorganization simplifies the handling of PHI nodes, and
also SwitchCases, JumpTables, and BitTestBlocks. This
simplification has the side effect of fixing a bug in FastISel
where successor PHI nodes weren't being updated correctly.
This is also a step towards making the transition from FastISel
into and out of SelectionDAG faster, and also making
plain SelectionDAG faster on code with lots of little blocks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55450 91177308-0d34-0410-b5e6-96231b3b80d8
the details of materializing constants and other values into
registers, and make use of it in several places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55426 91177308-0d34-0410-b5e6-96231b3b80d8
use raw_ostream instead of std::ostream. Among other goodness,
this speeds up llvm-dis of kc++ with a release build from 0.85s
to 0.49s (88% faster).
Other interesting changes:
1) This makes Value::print be non-virtual.
2) AP[S]Int and ConstantRange can no longer print to ostream directly,
use raw_ostream instead.
3) This fixes a bug in raw_os_ostream where it didn't flush itself
when destroyed.
4) This adds a new SDNode::print method, instead of only allowing "dump".
A lot of APIs have both std::ostream and raw_ostream versions, it would
be useful to go through and systematically anihilate the std::ostream
versions.
This passes dejagnu, but there may be minor fallout, plz let me know if
so and I'll fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55263 91177308-0d34-0410-b5e6-96231b3b80d8
process up to a higher level. This allows FastISel to leverage
more of SelectionDAGISel's infastructure, such as updating Machine
PHI nodes.
Also, implement transitioning from SDISel back to FastISel in
the middle of a block, so it's now possible to go back and
forth. This allows FastISel to hand individual CallInsts and other
complicated things off to SDISel to handle, while handling the rest
of the block itself.
To help support this, reorganize the SelectionDAG class so that it
is allocated once and reused throughout a function, instead of
being completely reallocated for each block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55219 91177308-0d34-0410-b5e6-96231b3b80d8
and use it in FastISelEmitter.cpp, and make FastISel
subtarget aware. Among other things, this lets it work
properly on x86 targets that don't have SSE, where it
successfully selects x87 instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55156 91177308-0d34-0410-b5e6-96231b3b80d8
class hold a MachineRegisterInfo member, and make the
MachineBasicBlock be passed in to SelectInstructions rather
than the FastISel constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55076 91177308-0d34-0410-b5e6-96231b3b80d8
alignment and volatility information, such as loads and
stores, to reduce the number of integer values added to
the FoldingSetNodeID.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55058 91177308-0d34-0410-b5e6-96231b3b80d8
in so far as it compiles and, in theory, works, but does not take advantage of recent advancements. For instance, it could be improved by using
MachineRegisterInfo::use_iterator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54924 91177308-0d34-0410-b5e6-96231b3b80d8
In particular, Collector was confusing to implementors. Several
thought that this compile-time class was the place to implement
their runtime GC heap. Of course, it doesn't even exist at runtime.
Specifically, the renames are:
Collector -> GCStrategy
CollectorMetadata -> GCFunctionInfo
CollectorModuleMetadata -> GCModuleInfo
CollectorRegistry -> GCRegistry
Function::getCollector -> getGC (setGC, hasGC, clearGC)
Several accessors and nested types have also been renamed to be
consistent. These changes should be obvious.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54899 91177308-0d34-0410-b5e6-96231b3b80d8
the comments in FastISelEmitter.cpp for details on what this is.
This is currently experimental and unusable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54751 91177308-0d34-0410-b5e6-96231b3b80d8
FPROUND_F80_F32, FPROUND_PPCF128_F32,
FPROUND_F80_F64, FPROUND_PPCF128_F64
Support for soften float fp_round operands is added, Mips
needs this to round f64->f32.
Also added support to soften float FABS result, Mips doesn't
support double fabs results while in 'single float only' mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54484 91177308-0d34-0410-b5e6-96231b3b80d8