scaled indexes. This allows us to compile GEP's like this:
int* %test([10 x { int, { int } }]* %X, int %Idx) {
%Idx = cast int %Idx to long
%X = getelementptr [10 x { int, { int } }]* %X, long 0, long %Idx, ubyte 1, ubyte 0
ret int* %X
}
Into a single address computation:
test:
mov %EAX, DWORD PTR [%ESP + 4]
mov %ECX, DWORD PTR [%ESP + 8]
lea %EAX, DWORD PTR [%EAX + 8*%ECX + 4]
ret
Before it generated:
test:
mov %EAX, DWORD PTR [%ESP + 4]
mov %ECX, DWORD PTR [%ESP + 8]
shl %ECX, 3
add %EAX, %ECX
lea %EAX, DWORD PTR [%EAX + 4]
ret
This is useful for things like int/float/double arrays, as the indexing can be folded into
the loads&stores, reducing register pressure and decreasing the pressure on the decode unit.
With these changes, I expect our performance on 256.bzip2 and gzip to improve a lot. On
bzip2 for example, we go from this:
10665 asm-printer - Number of machine instrs printed
40 ra-local - Number of loads/stores folded into instructions
1708 ra-local - Number of loads added
1532 ra-local - Number of stores added
1354 twoaddressinstruction - Number of instructions added
1354 twoaddressinstruction - Number of two-address instructions
2794 x86-peephole - Number of peephole optimization performed
to this:
9873 asm-printer - Number of machine instrs printed
41 ra-local - Number of loads/stores folded into instructions
1710 ra-local - Number of loads added
1521 ra-local - Number of stores added
789 twoaddressinstruction - Number of instructions added
789 twoaddressinstruction - Number of two-address instructions
2142 x86-peephole - Number of peephole optimization performed
... and these types of instructions are often in tight loops.
Linear scan is also helped, but not as much. It goes from:
8787 asm-printer - Number of machine instrs printed
2389 liveintervals - Number of identity moves eliminated after coalescing
2288 liveintervals - Number of interval joins performed
3522 liveintervals - Number of intervals after coalescing
5810 liveintervals - Number of original intervals
700 spiller - Number of loads added
487 spiller - Number of stores added
303 spiller - Number of register spills
1354 twoaddressinstruction - Number of instructions added
1354 twoaddressinstruction - Number of two-address instructions
363 x86-peephole - Number of peephole optimization performed
to:
7982 asm-printer - Number of machine instrs printed
1759 liveintervals - Number of identity moves eliminated after coalescing
1658 liveintervals - Number of interval joins performed
3282 liveintervals - Number of intervals after coalescing
4940 liveintervals - Number of original intervals
635 spiller - Number of loads added
452 spiller - Number of stores added
288 spiller - Number of register spills
789 twoaddressinstruction - Number of instructions added
789 twoaddressinstruction - Number of two-address instructions
258 x86-peephole - Number of peephole optimization performed
Though I'm not complaining about the drop in the number of intervals. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11820 91177308-0d34-0410-b5e6-96231b3b80d8
to do analysis.
*** FOLD getelementptr instructions into loads and stores when possible,
making use of some of the crazy X86 addressing modes.
For example, the following C++ program fragment:
struct complex {
double re, im;
complex(double r, double i) : re(r), im(i) {}
};
inline complex operator+(const complex& a, const complex& b) {
return complex(a.re+b.re, a.im+b.im);
}
complex addone(const complex& arg) {
return arg + complex(1,0);
}
Used to be compiled to:
_Z6addoneRK7complex:
mov %EAX, DWORD PTR [%ESP + 4]
mov %ECX, DWORD PTR [%ESP + 8]
*** mov %EDX, %ECX
fld QWORD PTR [%EDX]
fld1
faddp %ST(1)
*** add %ECX, 8
fld QWORD PTR [%ECX]
fldz
faddp %ST(1)
*** mov %ECX, %EAX
fxch %ST(1)
fstp QWORD PTR [%ECX]
*** add %EAX, 8
fstp QWORD PTR [%EAX]
ret
Now it is compiled to:
_Z6addoneRK7complex:
mov %EAX, DWORD PTR [%ESP + 4]
mov %ECX, DWORD PTR [%ESP + 8]
fld QWORD PTR [%ECX]
fld1
faddp %ST(1)
fld QWORD PTR [%ECX + 8]
fldz
faddp %ST(1)
fxch %ST(1)
fstp QWORD PTR [%EAX]
fstp QWORD PTR [%EAX + 8]
ret
Other programs should see similar improvements, across the board. Note that
in addition to reducing instruction count, this also reduces register pressure
a lot, always a good thing on X86. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11819 91177308-0d34-0410-b5e6-96231b3b80d8
into a single LEA instruction. This should improve the code generated for
things like X->A.B.C[12].D.
The bigger benefit is still coming though. Note that this uses an LEA instruction
instead of an add, giving the register allocator more freedom. We should probably
never generate ADDri32's.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11817 91177308-0d34-0410-b5e6-96231b3b80d8
Also fix problem where we didn't check to see if a node pointer was null.
Though fclose(null) doesn't make a lot of sense, 300.twolf does it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11810 91177308-0d34-0410-b5e6-96231b3b80d8
longer was getting this #include, it always fell back on the less precise
floating point initializer values, causing some testsuite failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11803 91177308-0d34-0410-b5e6-96231b3b80d8
allocator.
The implementation is completely rewritten and now employs several
optimizations not exercised before. For example for 164.gzip we have
997 loads and 699 stores vs the 1221 loads and 880 stores we have
before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11798 91177308-0d34-0410-b5e6-96231b3b80d8
This case occurs many times in various benchmarks, especially when combined
with the previous patch. This allows it to get stuff like:
if (X == 4 || X == 3)
if (X == 5 || X == 8)
and
switch (X) {
case 4: case 5: case 6:
if (X == 4 || X == 5)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11797 91177308-0d34-0410-b5e6-96231b3b80d8
block into MachineBasicBlock::getFirstTerminator().
This also fixes a bug in the implementation of the above in both
RegAllocLocal and InstrSched, where instructions where added after the
terminator if the basic block's only instruction was a terminator (it
shouldn't matter for RegAllocLocal since this case never occurs in
practice).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11748 91177308-0d34-0410-b5e6-96231b3b80d8
use FP instructions. This reduces the number of instructions inserted in
176.gcc (for example) from 58074 to 101 (it doesn't use much FP, which
is typical). This reduction speeds up the entire code generator. In the
case of 176.gcc, llc went from taking 31.38s to 24.78s. The passes that
sped up the most are the register allocator and the 2 live variable analysis
passes, which sped up 2.3, 1.3, and 1.5s respectively. The asmprinter
pass also sped up because it doesn't print the instructions in comments :)
Note that this patch is likely to expose latent bugs in machine code passes,
because now basicblock can be empty, where they were never empty before. I
cleaned out regalloclocal, but who knows about linscan :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11717 91177308-0d34-0410-b5e6-96231b3b80d8
switch statements in the constructors and simplifies the
implementation of the getUseType() member function. You will have to
specify defs using MachineOperand::Def instead of MOTy::Def though
(similarly for Use and UseAndDef).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11715 91177308-0d34-0410-b5e6-96231b3b80d8
(minor) benefits right now:
1. An extra dummy MOVrr32 is gone. This move would often be coallesced by
both allocators anyway.
2. The code now uses the gep_type_iterator to walk the gep, which should future
proof it a bit. It still assumes that array indexes are Longs though.
These don't really justify rewriting the code. The big benefit will come later
though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11710 91177308-0d34-0410-b5e6-96231b3b80d8
value is a physreg and one is a virtreg. For this reason, disable copy folding
entirely for physregs. Also, use the new isMoveInstr target hook which gives us
folding of FP moves as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11700 91177308-0d34-0410-b5e6-96231b3b80d8
FIX MAJOR BUG, whereby we didn't merge null edges correctly. Correcting this
fixes poolallocation on 175.vpr, and possibly others.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11695 91177308-0d34-0410-b5e6-96231b3b80d8
in a signal handler, allocating memory or doing other unsafe things is bad,
which means we should do it in a different process.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11689 91177308-0d34-0410-b5e6-96231b3b80d8
BU propagation, clone the globals into the GG of EACH FUNCTION that finishes
processing! The GlobalsGraph *must* include all globals and effects from
all functions in the program. Fixing this makes pool allocation work better
on 175.vpr, but it still ultimately crashes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11686 91177308-0d34-0410-b5e6-96231b3b80d8
end of the BU and CBU passes. The globals will be marked incomplete, so it
doesn't matter if they are missing some info, and merging isn't guaranteed
to bring everything in anyway!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11684 91177308-0d34-0410-b5e6-96231b3b80d8
1. LiveIntervals now implement a 4 slot per instruction model. Load,
Use, Def and a Store slot. This is required in order to correctly
represent caller saved register clobbering on function calls,
register reuse in the same instruction (def resues last use) and
also spill code added later by the allocator. The previous
representation (2 slots per instruction) was insufficient and as a
result was causing subtle bugs.
2. Fixes in spill code generation. This was the major cause of
failures in the test suite.
3. Linear scan now has core support for folding memory operands. This
is untested and not enabled (the live interval update function does
not attempt to fold loads/stores in instructions).
4. Lots of improvements in the debugging output of both live intervals
and linear scan. Give it a try... it is beautiful :-)
In summary the above fixes all the issues with the recent reserved
register elimination changes and get the allocator very close to the
next big step: folding memory operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11654 91177308-0d34-0410-b5e6-96231b3b80d8
by operator<< on MachineInstr's, and looking up what register "24" is all of the
time was greatly annoying.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11623 91177308-0d34-0410-b5e6-96231b3b80d8
that need them. This is very useful on CISCy targets like the X86 because it
reduces the total spill pressure, and makes better use of it's (large)
instruction set. Though the X86 backend doesn't know how to rewrite many
instructions yet, this already makes a substantial difference on 176.gcc for
example:
Before:
Time:
8.0099 ( 31.2%) 0.0100 ( 12.5%) 8.0199 ( 31.2%) 7.7186 ( 30.0%) Local Register Allocator
Code quality:
734559 asm-printer - Number of machine instrs printed
111395 ra-local - Number of registers reloaded
79902 ra-local - Number of registers spilled
231554 x86-peephole - Number of peephole optimization performed
After:
Time:
7.8700 ( 30.6%) 0.0099 ( 19.9%) 7.8800 ( 30.6%) 7.7892 ( 30.2%) Local Register Allocator
Code quality:
733083 asm-printer - Number of machine instrs printed
2379 ra-local - Number of reloads fused into instructions
109046 ra-local - Number of registers reloaded
79881 ra-local - Number of registers spilled
230658 x86-peephole - Number of peephole optimization performed
So by fusing 2300 instructions, we reduced the static number of instructions
by 1500, and reduces the number of peepholes (and thus the work) by about 900.
This also clearly reduces the number of reload/spill instructions that are
emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11542 91177308-0d34-0410-b5e6-96231b3b80d8