- FCOPYSIGN nodes that have operands of different types were not handled.
- Different code was generated depending on the endianness of the target.
Additionally, code is added that emits INS and EXT instructions, if they are
supported by target (they are R2 instructions).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154540 91177308-0d34-0410-b5e6-96231b3b80d8
While there is an encoding for it in VUZP, the result of that is undefined,
so we should avoid it. Define the instruction as a pseudo for VTRN.32
instead, as the ARM ARM indicates.
rdar://11222366
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154511 91177308-0d34-0410-b5e6-96231b3b80d8
While there is an encoding for it in VZIP, the result of that is undefined,
so we should avoid it. Define the instruction as a pseudo for VTRN.32
instead, as the ARM ARM indicates.
rdar://11221911
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154505 91177308-0d34-0410-b5e6-96231b3b80d8
FoldingSet is implemented as a chained hash table. When there is a hash
collision during insertion, which is common as we fill the table until a
load factor of 2.0 is hit, we walk the chained elements, comparing every
operand with the new element's operands. This can be very expensive if the
MDNode has many operands.
We sacrifice a word of space in MDNode to cache the full hash value, reducing
compares on collision to a minimum. MDNode grows from 28 to 32 bytes + operands
on x86. On x86_64 the new bits fit nicely into existing padding, not growing
the struct at all.
The actual speedup depends a lot on the test case and is typically between
1% and 2% for C++ code with clang -c -O0 -g.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154497 91177308-0d34-0410-b5e6-96231b3b80d8
binary and assembly. Patch by Carlo Kok. Emitting was inspired by but not based
on the D llvm bindings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154493 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a dagcombine optimization which assumes that the vsetcc result type is always
of the same size as the compared values. This is ture for SSE/AVX/NEON but not
for all targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154490 91177308-0d34-0410-b5e6-96231b3b80d8
Original message:
Modify the code that lowers shuffles to blends from using blendvXX to vblendXX.
blendV uses a register for the selection while Vblend uses an immediate.
On sandybridge they still have the same latency and execute on the same execution ports.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154483 91177308-0d34-0410-b5e6-96231b3b80d8
predicates.
Also remove NEON2 since it's not really useful and it is confusing. If
NEON + VFP4 implies NEON2 but NEON2 doesn't imply NEON + VFP4, what does it
really mean?
rdar://10139676
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154480 91177308-0d34-0410-b5e6-96231b3b80d8
Handle mixing allocatable and unallocatable register gracefully.
Simplify the pruning of register unit sets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154474 91177308-0d34-0410-b5e6-96231b3b80d8
1. The new instruction itinerary entries are not properly described.
2. The asm parser can't handle vfms and vfnms.
3. There were no assembler, disassembler test cases.
4. HasNEON2 has the wrong assembler predicate.
rdar://10139676
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154456 91177308-0d34-0410-b5e6-96231b3b80d8
Allow cheap instructions to be hoisted if they are register pressure
neutral or better. This happens if the instruction is the last loop use
of another virtual register.
Only expensive instructions are allowed to increase loop register
pressure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154455 91177308-0d34-0410-b5e6-96231b3b80d8
Hoisting a value that is used by a PHI in the loop will introduce a
copy because the live range is extended to cross the PHI.
The same applies to PHIs in exit blocks.
Also use this opportunity to make HasLoopPHIUse() non-recursive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154454 91177308-0d34-0410-b5e6-96231b3b80d8
ConstantFP::get(Type*, double) is unreliably host-specific:
it can't handle a type like PPC128 on an x86 host. It even
has a comment to that effect: "This should only be used for
simple constant values like 2.0/1.0 etc, that are
known-valid both as host double and as the target format."
Instead, use APFloat. While we're at it, randomize the floating
point value more thoroughly; it was previously limited
to the range 0 to 2**19 - 1.
PR12451.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154446 91177308-0d34-0410-b5e6-96231b3b80d8
LangRef.html says:
"There are no arrays, vectors or constants of this type."
This was hitting assertions when passing the -generate-x86-mmx
option.
PR12452.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154445 91177308-0d34-0410-b5e6-96231b3b80d8
- don't isntrument reads from constant globals.
Saves ~1.5% of instrumented instructions on CPU2006
(counting static instructions, not their execution).
- don't insrument reads from vtable (which is a global constant too).
Saves ~5%.
I did not measure the run-time impact of this,
but it is certainly non-negative.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154444 91177308-0d34-0410-b5e6-96231b3b80d8
StringMap. This was redundant and unnecessarily bloated the MDString class.
Because the MDString class is a "Value" and will never have a "name", and
because the Name field in the Value class is a pointer to a StringMap entry, we
repurpose the Name field for an MDString. It stores the StringMap entry in the
Name field, and uses the normal methods to get the string (name) back.
PR12474
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154429 91177308-0d34-0410-b5e6-96231b3b80d8