llvm-6502/lib/Target/X86/X86RegisterInfo.cpp

2202 lines
84 KiB
C++
Raw Normal View History

//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the MRegisterInfo class. This
// file is responsible for the frame pointer elimination optimization on X86.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86RegisterInfo.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
namespace {
cl::opt<bool>
NoFusing("disable-spill-fusing",
cl::desc("Disable fusing of spill code into instructions"));
cl::opt<bool>
PrintFailedFusing("print-failed-fuse-candidates",
cl::desc("Print instructions that the allocator wants to"
" fuse, but the X86 backend currently can't"),
cl::Hidden);
}
X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
const TargetInstrInfo &tii)
: X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP),
TM(tm), TII(tii) {
// Cache some information.
const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
Is64Bit = Subtarget->is64Bit();
StackAlign = TM.getFrameInfo()->getStackAlignment();
if (Is64Bit) {
SlotSize = 8;
StackPtr = X86::RSP;
FramePtr = X86::RBP;
} else {
SlotSize = 4;
StackPtr = X86::ESP;
FramePtr = X86::EBP;
}
SmallVector<unsigned,16> AmbEntries;
static const unsigned OpTbl2Addr[][2] = {
{ X86::ADC32ri, X86::ADC32mi },
{ X86::ADC32ri8, X86::ADC32mi8 },
{ X86::ADC32rr, X86::ADC32mr },
{ X86::ADC64ri32, X86::ADC64mi32 },
{ X86::ADC64ri8, X86::ADC64mi8 },
{ X86::ADC64rr, X86::ADC64mr },
{ X86::ADD16ri, X86::ADD16mi },
{ X86::ADD16ri8, X86::ADD16mi8 },
{ X86::ADD16rr, X86::ADD16mr },
{ X86::ADD32ri, X86::ADD32mi },
{ X86::ADD32ri8, X86::ADD32mi8 },
{ X86::ADD32rr, X86::ADD32mr },
{ X86::ADD64ri32, X86::ADD64mi32 },
{ X86::ADD64ri8, X86::ADD64mi8 },
{ X86::ADD64rr, X86::ADD64mr },
{ X86::ADD8ri, X86::ADD8mi },
{ X86::ADD8rr, X86::ADD8mr },
{ X86::AND16ri, X86::AND16mi },
{ X86::AND16ri8, X86::AND16mi8 },
{ X86::AND16rr, X86::AND16mr },
{ X86::AND32ri, X86::AND32mi },
{ X86::AND32ri8, X86::AND32mi8 },
{ X86::AND32rr, X86::AND32mr },
{ X86::AND64ri32, X86::AND64mi32 },
{ X86::AND64ri8, X86::AND64mi8 },
{ X86::AND64rr, X86::AND64mr },
{ X86::AND8ri, X86::AND8mi },
{ X86::AND8rr, X86::AND8mr },
{ X86::DEC16r, X86::DEC16m },
{ X86::DEC32r, X86::DEC32m },
{ X86::DEC64_16r, X86::DEC64_16m },
{ X86::DEC64_32r, X86::DEC64_32m },
{ X86::DEC64r, X86::DEC64m },
{ X86::DEC8r, X86::DEC8m },
{ X86::INC16r, X86::INC16m },
{ X86::INC32r, X86::INC32m },
{ X86::INC64_16r, X86::INC64_16m },
{ X86::INC64_32r, X86::INC64_32m },
{ X86::INC64r, X86::INC64m },
{ X86::INC8r, X86::INC8m },
{ X86::NEG16r, X86::NEG16m },
{ X86::NEG32r, X86::NEG32m },
{ X86::NEG64r, X86::NEG64m },
{ X86::NEG8r, X86::NEG8m },
{ X86::NOT16r, X86::NOT16m },
{ X86::NOT32r, X86::NOT32m },
{ X86::NOT64r, X86::NOT64m },
{ X86::NOT8r, X86::NOT8m },
{ X86::OR16ri, X86::OR16mi },
{ X86::OR16ri8, X86::OR16mi8 },
{ X86::OR16rr, X86::OR16mr },
{ X86::OR32ri, X86::OR32mi },
{ X86::OR32ri8, X86::OR32mi8 },
{ X86::OR32rr, X86::OR32mr },
{ X86::OR64ri32, X86::OR64mi32 },
{ X86::OR64ri8, X86::OR64mi8 },
{ X86::OR64rr, X86::OR64mr },
{ X86::OR8ri, X86::OR8mi },
{ X86::OR8rr, X86::OR8mr },
{ X86::ROL16r1, X86::ROL16m1 },
{ X86::ROL16rCL, X86::ROL16mCL },
{ X86::ROL16ri, X86::ROL16mi },
{ X86::ROL32r1, X86::ROL32m1 },
{ X86::ROL32rCL, X86::ROL32mCL },
{ X86::ROL32ri, X86::ROL32mi },
{ X86::ROL64r1, X86::ROL64m1 },
{ X86::ROL64rCL, X86::ROL64mCL },
{ X86::ROL64ri, X86::ROL64mi },
{ X86::ROL8r1, X86::ROL8m1 },
{ X86::ROL8rCL, X86::ROL8mCL },
{ X86::ROL8ri, X86::ROL8mi },
{ X86::ROR16r1, X86::ROR16m1 },
{ X86::ROR16rCL, X86::ROR16mCL },
{ X86::ROR16ri, X86::ROR16mi },
{ X86::ROR32r1, X86::ROR32m1 },
{ X86::ROR32rCL, X86::ROR32mCL },
{ X86::ROR32ri, X86::ROR32mi },
{ X86::ROR64r1, X86::ROR64m1 },
{ X86::ROR64rCL, X86::ROR64mCL },
{ X86::ROR64ri, X86::ROR64mi },
{ X86::ROR8r1, X86::ROR8m1 },
{ X86::ROR8rCL, X86::ROR8mCL },
{ X86::ROR8ri, X86::ROR8mi },
{ X86::SAR16r1, X86::SAR16m1 },
{ X86::SAR16rCL, X86::SAR16mCL },
{ X86::SAR16ri, X86::SAR16mi },
{ X86::SAR32r1, X86::SAR32m1 },
{ X86::SAR32rCL, X86::SAR32mCL },
{ X86::SAR32ri, X86::SAR32mi },
{ X86::SAR64r1, X86::SAR64m1 },
{ X86::SAR64rCL, X86::SAR64mCL },
{ X86::SAR64ri, X86::SAR64mi },
{ X86::SAR8r1, X86::SAR8m1 },
{ X86::SAR8rCL, X86::SAR8mCL },
{ X86::SAR8ri, X86::SAR8mi },
{ X86::SBB32ri, X86::SBB32mi },
{ X86::SBB32ri8, X86::SBB32mi8 },
{ X86::SBB32rr, X86::SBB32mr },
{ X86::SBB64ri32, X86::SBB64mi32 },
{ X86::SBB64ri8, X86::SBB64mi8 },
{ X86::SBB64rr, X86::SBB64mr },
{ X86::SHL16r1, X86::SHL16m1 },
{ X86::SHL16rCL, X86::SHL16mCL },
{ X86::SHL16ri, X86::SHL16mi },
{ X86::SHL32r1, X86::SHL32m1 },
{ X86::SHL32rCL, X86::SHL32mCL },
{ X86::SHL32ri, X86::SHL32mi },
{ X86::SHL64r1, X86::SHL64m1 },
{ X86::SHL64rCL, X86::SHL64mCL },
{ X86::SHL64ri, X86::SHL64mi },
{ X86::SHL8r1, X86::SHL8m1 },
{ X86::SHL8rCL, X86::SHL8mCL },
{ X86::SHL8ri, X86::SHL8mi },
{ X86::SHLD16rrCL, X86::SHLD16mrCL },
{ X86::SHLD16rri8, X86::SHLD16mri8 },
{ X86::SHLD32rrCL, X86::SHLD32mrCL },
{ X86::SHLD32rri8, X86::SHLD32mri8 },
{ X86::SHLD64rrCL, X86::SHLD64mrCL },
{ X86::SHLD64rri8, X86::SHLD64mri8 },
{ X86::SHR16r1, X86::SHR16m1 },
{ X86::SHR16rCL, X86::SHR16mCL },
{ X86::SHR16ri, X86::SHR16mi },
{ X86::SHR32r1, X86::SHR32m1 },
{ X86::SHR32rCL, X86::SHR32mCL },
{ X86::SHR32ri, X86::SHR32mi },
{ X86::SHR64r1, X86::SHR64m1 },
{ X86::SHR64rCL, X86::SHR64mCL },
{ X86::SHR64ri, X86::SHR64mi },
{ X86::SHR8r1, X86::SHR8m1 },
{ X86::SHR8rCL, X86::SHR8mCL },
{ X86::SHR8ri, X86::SHR8mi },
{ X86::SHRD16rrCL, X86::SHRD16mrCL },
{ X86::SHRD16rri8, X86::SHRD16mri8 },
{ X86::SHRD32rrCL, X86::SHRD32mrCL },
{ X86::SHRD32rri8, X86::SHRD32mri8 },
{ X86::SHRD64rrCL, X86::SHRD64mrCL },
{ X86::SHRD64rri8, X86::SHRD64mri8 },
{ X86::SUB16ri, X86::SUB16mi },
{ X86::SUB16ri8, X86::SUB16mi8 },
{ X86::SUB16rr, X86::SUB16mr },
{ X86::SUB32ri, X86::SUB32mi },
{ X86::SUB32ri8, X86::SUB32mi8 },
{ X86::SUB32rr, X86::SUB32mr },
{ X86::SUB64ri32, X86::SUB64mi32 },
{ X86::SUB64ri8, X86::SUB64mi8 },
{ X86::SUB64rr, X86::SUB64mr },
{ X86::SUB8ri, X86::SUB8mi },
{ X86::SUB8rr, X86::SUB8mr },
{ X86::XOR16ri, X86::XOR16mi },
{ X86::XOR16ri8, X86::XOR16mi8 },
{ X86::XOR16rr, X86::XOR16mr },
{ X86::XOR32ri, X86::XOR32mi },
{ X86::XOR32ri8, X86::XOR32mi8 },
{ X86::XOR32rr, X86::XOR32mr },
{ X86::XOR64ri32, X86::XOR64mi32 },
{ X86::XOR64ri8, X86::XOR64mi8 },
{ X86::XOR64rr, X86::XOR64mr },
{ X86::XOR8ri, X86::XOR8mi },
{ X86::XOR8rr, X86::XOR8mr }
};
for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
unsigned RegOp = OpTbl2Addr[i][0];
unsigned MemOp = OpTbl2Addr[i][1];
if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
assert(false && "Duplicated entries?");
unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
std::make_pair(RegOp, AuxInfo))))
AmbEntries.push_back(MemOp);
}
// If the third value is 1, then it's folding either a load or a store.
static const unsigned OpTbl0[][3] = {
{ X86::CALL32r, X86::CALL32m, 1 },
{ X86::CALL64r, X86::CALL64m, 1 },
{ X86::CMP16ri, X86::CMP16mi, 1 },
{ X86::CMP16ri8, X86::CMP16mi8, 1 },
{ X86::CMP32ri, X86::CMP32mi, 1 },
{ X86::CMP32ri8, X86::CMP32mi8, 1 },
{ X86::CMP64ri32, X86::CMP64mi32, 1 },
{ X86::CMP64ri8, X86::CMP64mi8, 1 },
{ X86::CMP8ri, X86::CMP8mi, 1 },
{ X86::DIV16r, X86::DIV16m, 1 },
{ X86::DIV32r, X86::DIV32m, 1 },
{ X86::DIV64r, X86::DIV64m, 1 },
{ X86::DIV8r, X86::DIV8m, 1 },
{ X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
{ X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
{ X86::IDIV16r, X86::IDIV16m, 1 },
{ X86::IDIV32r, X86::IDIV32m, 1 },
{ X86::IDIV64r, X86::IDIV64m, 1 },
{ X86::IDIV8r, X86::IDIV8m, 1 },
{ X86::IMUL16r, X86::IMUL16m, 1 },
{ X86::IMUL32r, X86::IMUL32m, 1 },
{ X86::IMUL64r, X86::IMUL64m, 1 },
{ X86::IMUL8r, X86::IMUL8m, 1 },
{ X86::JMP32r, X86::JMP32m, 1 },
{ X86::JMP64r, X86::JMP64m, 1 },
{ X86::MOV16ri, X86::MOV16mi, 0 },
{ X86::MOV16rr, X86::MOV16mr, 0 },
{ X86::MOV16to16_, X86::MOV16_mr, 0 },
{ X86::MOV32ri, X86::MOV32mi, 0 },
{ X86::MOV32rr, X86::MOV32mr, 0 },
{ X86::MOV32to32_, X86::MOV32_mr, 0 },
{ X86::MOV64ri32, X86::MOV64mi32, 0 },
{ X86::MOV64rr, X86::MOV64mr, 0 },
{ X86::MOV8ri, X86::MOV8mi, 0 },
{ X86::MOV8rr, X86::MOV8mr, 0 },
{ X86::MOVAPDrr, X86::MOVAPDmr, 0 },
{ X86::MOVAPSrr, X86::MOVAPSmr, 0 },
{ X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
{ X86::MOVPQIto64rr,X86::MOVPQIto64mr, 0 },
{ X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
{ X86::MOVSDrr, X86::MOVSDmr, 0 },
{ X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
{ X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
{ X86::MOVSSrr, X86::MOVSSmr, 0 },
{ X86::MOVUPDrr, X86::MOVUPDmr, 0 },
{ X86::MOVUPSrr, X86::MOVUPSmr, 0 },
{ X86::MUL16r, X86::MUL16m, 1 },
{ X86::MUL32r, X86::MUL32m, 1 },
{ X86::MUL64r, X86::MUL64m, 1 },
{ X86::MUL8r, X86::MUL8m, 1 },
{ X86::SETAEr, X86::SETAEm, 0 },
{ X86::SETAr, X86::SETAm, 0 },
{ X86::SETBEr, X86::SETBEm, 0 },
{ X86::SETBr, X86::SETBm, 0 },
{ X86::SETEr, X86::SETEm, 0 },
{ X86::SETGEr, X86::SETGEm, 0 },
{ X86::SETGr, X86::SETGm, 0 },
{ X86::SETLEr, X86::SETLEm, 0 },
{ X86::SETLr, X86::SETLm, 0 },
{ X86::SETNEr, X86::SETNEm, 0 },
{ X86::SETNPr, X86::SETNPm, 0 },
{ X86::SETNSr, X86::SETNSm, 0 },
{ X86::SETPr, X86::SETPm, 0 },
{ X86::SETSr, X86::SETSm, 0 },
{ X86::TAILJMPr, X86::TAILJMPm, 1 },
{ X86::TEST16ri, X86::TEST16mi, 1 },
{ X86::TEST32ri, X86::TEST32mi, 1 },
{ X86::TEST64ri32, X86::TEST64mi32, 1 },
{ X86::TEST8ri, X86::TEST8mi, 1 },
{ X86::XCHG16rr, X86::XCHG16mr, 0 },
{ X86::XCHG32rr, X86::XCHG32mr, 0 },
{ X86::XCHG64rr, X86::XCHG64mr, 0 },
{ X86::XCHG8rr, X86::XCHG8mr, 0 }
};
for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
unsigned RegOp = OpTbl0[i][0];
unsigned MemOp = OpTbl0[i][1];
if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
assert(false && "Duplicated entries?");
unsigned FoldedLoad = OpTbl0[i][2];
// Index 0, folded load or store.
unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
std::make_pair(RegOp, AuxInfo))))
AmbEntries.push_back(MemOp);
}
static const unsigned OpTbl1[][2] = {
{ X86::CMP16rr, X86::CMP16rm },
{ X86::CMP32rr, X86::CMP32rm },
{ X86::CMP64rr, X86::CMP64rm },
{ X86::CMP8rr, X86::CMP8rm },
{ X86::CVTSD2SSrr, X86::CVTSD2SSrm },
{ X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
{ X86::CVTSI2SDrr, X86::CVTSI2SDrm },
{ X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
{ X86::CVTSI2SSrr, X86::CVTSI2SSrm },
{ X86::CVTSS2SDrr, X86::CVTSS2SDrm },
{ X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
{ X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
{ X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
{ X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
{ X86::FsMOVAPDrr, X86::MOVSDrm },
{ X86::FsMOVAPSrr, X86::MOVSSrm },
{ X86::IMUL16rri, X86::IMUL16rmi },
{ X86::IMUL16rri8, X86::IMUL16rmi8 },
{ X86::IMUL32rri, X86::IMUL32rmi },
{ X86::IMUL32rri8, X86::IMUL32rmi8 },
{ X86::IMUL64rri32, X86::IMUL64rmi32 },
{ X86::IMUL64rri8, X86::IMUL64rmi8 },
{ X86::Int_CMPSDrr, X86::Int_CMPSDrm },
{ X86::Int_CMPSSrr, X86::Int_CMPSSrm },
{ X86::Int_COMISDrr, X86::Int_COMISDrm },
{ X86::Int_COMISSrr, X86::Int_COMISSrm },
{ X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
{ X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
{ X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
{ X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
{ X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
{ X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
{ X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
{ X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
{ X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
{ X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
{ X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
{ X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
{ X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
{ X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
{ X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
{ X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
{ X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
{ X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
{ X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
{ X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
{ X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
{ X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
{ X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
{ X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
{ X86::MOV16rr, X86::MOV16rm },
{ X86::MOV16to16_, X86::MOV16_rm },
{ X86::MOV32rr, X86::MOV32rm },
{ X86::MOV32to32_, X86::MOV32_rm },
{ X86::MOV64rr, X86::MOV64rm },
{ X86::MOV64toPQIrr, X86::MOV64toPQIrm },
{ X86::MOV64toSDrr, X86::MOV64toSDrm },
{ X86::MOV8rr, X86::MOV8rm },
{ X86::MOVAPDrr, X86::MOVAPDrm },
{ X86::MOVAPSrr, X86::MOVAPSrm },
{ X86::MOVDDUPrr, X86::MOVDDUPrm },
{ X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
{ X86::MOVDI2SSrr, X86::MOVDI2SSrm },
{ X86::MOVSD2PDrr, X86::MOVSD2PDrm },
{ X86::MOVSDrr, X86::MOVSDrm },
{ X86::MOVSHDUPrr, X86::MOVSHDUPrm },
{ X86::MOVSLDUPrr, X86::MOVSLDUPrm },
{ X86::MOVSS2PSrr, X86::MOVSS2PSrm },
{ X86::MOVSSrr, X86::MOVSSrm },
{ X86::MOVSX16rr8, X86::MOVSX16rm8 },
{ X86::MOVSX32rr16, X86::MOVSX32rm16 },
{ X86::MOVSX32rr8, X86::MOVSX32rm8 },
{ X86::MOVSX64rr16, X86::MOVSX64rm16 },
{ X86::MOVSX64rr32, X86::MOVSX64rm32 },
{ X86::MOVSX64rr8, X86::MOVSX64rm8 },
{ X86::MOVUPDrr, X86::MOVUPDrm },
{ X86::MOVUPSrr, X86::MOVUPSrm },
{ X86::MOVZX16rr8, X86::MOVZX16rm8 },
{ X86::MOVZX32rr16, X86::MOVZX32rm16 },
{ X86::MOVZX32rr8, X86::MOVZX32rm8 },
{ X86::MOVZX64rr16, X86::MOVZX64rm16 },
{ X86::MOVZX64rr8, X86::MOVZX64rm8 },
{ X86::PSHUFDri, X86::PSHUFDmi },
{ X86::PSHUFHWri, X86::PSHUFHWmi },
{ X86::PSHUFLWri, X86::PSHUFLWmi },
{ X86::PsMOVZX64rr32, X86::PsMOVZX64rm32 },
{ X86::RCPPSr, X86::RCPPSm },
{ X86::RCPPSr_Int, X86::RCPPSm_Int },
{ X86::RSQRTPSr, X86::RSQRTPSm },
{ X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
{ X86::RSQRTSSr, X86::RSQRTSSm },
{ X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
{ X86::SQRTPDr, X86::SQRTPDm },
{ X86::SQRTPDr_Int, X86::SQRTPDm_Int },
{ X86::SQRTPSr, X86::SQRTPSm },
{ X86::SQRTPSr_Int, X86::SQRTPSm_Int },
{ X86::SQRTSDr, X86::SQRTSDm },
{ X86::SQRTSDr_Int, X86::SQRTSDm_Int },
{ X86::SQRTSSr, X86::SQRTSSm },
{ X86::SQRTSSr_Int, X86::SQRTSSm_Int },
{ X86::TEST16rr, X86::TEST16rm },
{ X86::TEST32rr, X86::TEST32rm },
{ X86::TEST64rr, X86::TEST64rm },
{ X86::TEST8rr, X86::TEST8rm },
// FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
{ X86::UCOMISDrr, X86::UCOMISDrm },
{ X86::UCOMISSrr, X86::UCOMISSrm },
{ X86::XCHG16rr, X86::XCHG16rm },
{ X86::XCHG32rr, X86::XCHG32rm },
{ X86::XCHG64rr, X86::XCHG64rm },
{ X86::XCHG8rr, X86::XCHG8rm }
};
for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
unsigned RegOp = OpTbl1[i][0];
unsigned MemOp = OpTbl1[i][1];
if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
assert(false && "Duplicated entries?");
unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
std::make_pair(RegOp, AuxInfo))))
AmbEntries.push_back(MemOp);
}
static const unsigned OpTbl2[][2] = {
{ X86::ADC32rr, X86::ADC32rm },
{ X86::ADC64rr, X86::ADC64rm },
{ X86::ADD16rr, X86::ADD16rm },
{ X86::ADD32rr, X86::ADD32rm },
{ X86::ADD64rr, X86::ADD64rm },
{ X86::ADD8rr, X86::ADD8rm },
{ X86::ADDPDrr, X86::ADDPDrm },
{ X86::ADDPSrr, X86::ADDPSrm },
{ X86::ADDSDrr, X86::ADDSDrm },
{ X86::ADDSSrr, X86::ADDSSrm },
{ X86::ADDSUBPDrr, X86::ADDSUBPDrm },
{ X86::ADDSUBPSrr, X86::ADDSUBPSrm },
{ X86::AND16rr, X86::AND16rm },
{ X86::AND32rr, X86::AND32rm },
{ X86::AND64rr, X86::AND64rm },
{ X86::AND8rr, X86::AND8rm },
{ X86::ANDNPDrr, X86::ANDNPDrm },
{ X86::ANDNPSrr, X86::ANDNPSrm },
{ X86::ANDPDrr, X86::ANDPDrm },
{ X86::ANDPSrr, X86::ANDPSrm },
{ X86::CMOVA16rr, X86::CMOVA16rm },
{ X86::CMOVA32rr, X86::CMOVA32rm },
{ X86::CMOVA64rr, X86::CMOVA64rm },
{ X86::CMOVAE16rr, X86::CMOVAE16rm },
{ X86::CMOVAE32rr, X86::CMOVAE32rm },
{ X86::CMOVAE64rr, X86::CMOVAE64rm },
{ X86::CMOVB16rr, X86::CMOVB16rm },
{ X86::CMOVB32rr, X86::CMOVB32rm },
{ X86::CMOVB64rr, X86::CMOVB64rm },
{ X86::CMOVBE16rr, X86::CMOVBE16rm },
{ X86::CMOVBE32rr, X86::CMOVBE32rm },
{ X86::CMOVBE64rr, X86::CMOVBE64rm },
{ X86::CMOVE16rr, X86::CMOVE16rm },
{ X86::CMOVE32rr, X86::CMOVE32rm },
{ X86::CMOVE64rr, X86::CMOVE64rm },
{ X86::CMOVG16rr, X86::CMOVG16rm },
{ X86::CMOVG32rr, X86::CMOVG32rm },
{ X86::CMOVG64rr, X86::CMOVG64rm },
{ X86::CMOVGE16rr, X86::CMOVGE16rm },
{ X86::CMOVGE32rr, X86::CMOVGE32rm },
{ X86::CMOVGE64rr, X86::CMOVGE64rm },
{ X86::CMOVL16rr, X86::CMOVL16rm },
{ X86::CMOVL32rr, X86::CMOVL32rm },
{ X86::CMOVL64rr, X86::CMOVL64rm },
{ X86::CMOVLE16rr, X86::CMOVLE16rm },
{ X86::CMOVLE32rr, X86::CMOVLE32rm },
{ X86::CMOVLE64rr, X86::CMOVLE64rm },
{ X86::CMOVNE16rr, X86::CMOVNE16rm },
{ X86::CMOVNE32rr, X86::CMOVNE32rm },
{ X86::CMOVNE64rr, X86::CMOVNE64rm },
{ X86::CMOVNP16rr, X86::CMOVNP16rm },
{ X86::CMOVNP32rr, X86::CMOVNP32rm },
{ X86::CMOVNP64rr, X86::CMOVNP64rm },
{ X86::CMOVNS16rr, X86::CMOVNS16rm },
{ X86::CMOVNS32rr, X86::CMOVNS32rm },
{ X86::CMOVNS64rr, X86::CMOVNS64rm },
{ X86::CMOVP16rr, X86::CMOVP16rm },
{ X86::CMOVP32rr, X86::CMOVP32rm },
{ X86::CMOVP64rr, X86::CMOVP64rm },
{ X86::CMOVS16rr, X86::CMOVS16rm },
{ X86::CMOVS32rr, X86::CMOVS32rm },
{ X86::CMOVS64rr, X86::CMOVS64rm },
{ X86::CMPPDrri, X86::CMPPDrmi },
{ X86::CMPPSrri, X86::CMPPSrmi },
{ X86::CMPSDrr, X86::CMPSDrm },
{ X86::CMPSSrr, X86::CMPSSrm },
{ X86::DIVPDrr, X86::DIVPDrm },
{ X86::DIVPSrr, X86::DIVPSrm },
{ X86::DIVSDrr, X86::DIVSDrm },
{ X86::DIVSSrr, X86::DIVSSrm },
{ X86::HADDPDrr, X86::HADDPDrm },
{ X86::HADDPSrr, X86::HADDPSrm },
{ X86::HSUBPDrr, X86::HSUBPDrm },
{ X86::HSUBPSrr, X86::HSUBPSrm },
{ X86::IMUL16rr, X86::IMUL16rm },
{ X86::IMUL32rr, X86::IMUL32rm },
{ X86::IMUL64rr, X86::IMUL64rm },
{ X86::MAXPDrr, X86::MAXPDrm },
{ X86::MAXPDrr_Int, X86::MAXPDrm_Int },
{ X86::MAXPSrr, X86::MAXPSrm },
{ X86::MAXPSrr_Int, X86::MAXPSrm_Int },
{ X86::MAXSDrr, X86::MAXSDrm },
{ X86::MAXSDrr_Int, X86::MAXSDrm_Int },
{ X86::MAXSSrr, X86::MAXSSrm },
{ X86::MAXSSrr_Int, X86::MAXSSrm_Int },
{ X86::MINPDrr, X86::MINPDrm },
{ X86::MINPDrr_Int, X86::MINPDrm_Int },
{ X86::MINPSrr, X86::MINPSrm },
{ X86::MINPSrr_Int, X86::MINPSrm_Int },
{ X86::MINSDrr, X86::MINSDrm },
{ X86::MINSDrr_Int, X86::MINSDrm_Int },
{ X86::MINSSrr, X86::MINSSrm },
{ X86::MINSSrr_Int, X86::MINSSrm_Int },
{ X86::MULPDrr, X86::MULPDrm },
{ X86::MULPSrr, X86::MULPSrm },
{ X86::MULSDrr, X86::MULSDrm },
{ X86::MULSSrr, X86::MULSSrm },
{ X86::OR16rr, X86::OR16rm },
{ X86::OR32rr, X86::OR32rm },
{ X86::OR64rr, X86::OR64rm },
{ X86::OR8rr, X86::OR8rm },
{ X86::ORPDrr, X86::ORPDrm },
{ X86::ORPSrr, X86::ORPSrm },
{ X86::PACKSSDWrr, X86::PACKSSDWrm },
{ X86::PACKSSWBrr, X86::PACKSSWBrm },
{ X86::PACKUSWBrr, X86::PACKUSWBrm },
{ X86::PADDBrr, X86::PADDBrm },
{ X86::PADDDrr, X86::PADDDrm },
{ X86::PADDQrr, X86::PADDQrm },
{ X86::PADDSBrr, X86::PADDSBrm },
{ X86::PADDSWrr, X86::PADDSWrm },
{ X86::PADDWrr, X86::PADDWrm },
{ X86::PANDNrr, X86::PANDNrm },
{ X86::PANDrr, X86::PANDrm },
{ X86::PAVGBrr, X86::PAVGBrm },
{ X86::PAVGWrr, X86::PAVGWrm },
{ X86::PCMPEQBrr, X86::PCMPEQBrm },
{ X86::PCMPEQDrr, X86::PCMPEQDrm },
{ X86::PCMPEQWrr, X86::PCMPEQWrm },
{ X86::PCMPGTBrr, X86::PCMPGTBrm },
{ X86::PCMPGTDrr, X86::PCMPGTDrm },
{ X86::PCMPGTWrr, X86::PCMPGTWrm },
{ X86::PINSRWrri, X86::PINSRWrmi },
{ X86::PMADDWDrr, X86::PMADDWDrm },
{ X86::PMAXSWrr, X86::PMAXSWrm },
{ X86::PMAXUBrr, X86::PMAXUBrm },
{ X86::PMINSWrr, X86::PMINSWrm },
{ X86::PMINUBrr, X86::PMINUBrm },
{ X86::PMULHUWrr, X86::PMULHUWrm },
{ X86::PMULHWrr, X86::PMULHWrm },
{ X86::PMULLWrr, X86::PMULLWrm },
{ X86::PMULUDQrr, X86::PMULUDQrm },
{ X86::PORrr, X86::PORrm },
{ X86::PSADBWrr, X86::PSADBWrm },
{ X86::PSLLDrr, X86::PSLLDrm },
{ X86::PSLLQrr, X86::PSLLQrm },
{ X86::PSLLWrr, X86::PSLLWrm },
{ X86::PSRADrr, X86::PSRADrm },
{ X86::PSRAWrr, X86::PSRAWrm },
{ X86::PSRLDrr, X86::PSRLDrm },
{ X86::PSRLQrr, X86::PSRLQrm },
{ X86::PSRLWrr, X86::PSRLWrm },
{ X86::PSUBBrr, X86::PSUBBrm },
{ X86::PSUBDrr, X86::PSUBDrm },
{ X86::PSUBSBrr, X86::PSUBSBrm },
{ X86::PSUBSWrr, X86::PSUBSWrm },
{ X86::PSUBWrr, X86::PSUBWrm },
{ X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
{ X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
{ X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
{ X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
{ X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
{ X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
{ X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
{ X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
{ X86::PXORrr, X86::PXORrm },
{ X86::SBB32rr, X86::SBB32rm },
{ X86::SBB64rr, X86::SBB64rm },
{ X86::SHUFPDrri, X86::SHUFPDrmi },
{ X86::SHUFPSrri, X86::SHUFPSrmi },
{ X86::SUB16rr, X86::SUB16rm },
{ X86::SUB32rr, X86::SUB32rm },
{ X86::SUB64rr, X86::SUB64rm },
{ X86::SUB8rr, X86::SUB8rm },
{ X86::SUBPDrr, X86::SUBPDrm },
{ X86::SUBPSrr, X86::SUBPSrm },
{ X86::SUBSDrr, X86::SUBSDrm },
{ X86::SUBSSrr, X86::SUBSSrm },
// FIXME: TEST*rr -> swapped operand of TEST*mr.
{ X86::UNPCKHPDrr, X86::UNPCKHPDrm },
{ X86::UNPCKHPSrr, X86::UNPCKHPSrm },
{ X86::UNPCKLPDrr, X86::UNPCKLPDrm },
{ X86::UNPCKLPSrr, X86::UNPCKLPSrm },
{ X86::XOR16rr, X86::XOR16rm },
{ X86::XOR32rr, X86::XOR32rm },
{ X86::XOR64rr, X86::XOR64rm },
{ X86::XOR8rr, X86::XOR8rm },
{ X86::XORPDrr, X86::XORPDrm },
{ X86::XORPSrr, X86::XORPSrm }
};
for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
unsigned RegOp = OpTbl2[i][0];
unsigned MemOp = OpTbl2[i][1];
if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
assert(false && "Duplicated entries?");
unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
std::make_pair(RegOp, AuxInfo))))
AmbEntries.push_back(MemOp);
}
// Remove ambiguous entries.
assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
}
// getDwarfRegNum - This function maps LLVM register identifiers to the
// Dwarf specific numbering, used in debug info and exception tables.
// The registers are given "basic" dwarf numbers in the .td files,
// which are collected by TableGen into X86GenRegisterInfo::getDwarfRegNum.
// This wrapper allows for target-specific overrides.
int X86RegisterInfo::getDwarfRegNum(unsigned RegNo) const {
int n = X86GenRegisterInfo::getDwarfRegNum(RegNo);
const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
if (Subtarget->isDarwin) {
// ESP and EBP are switched.
if (n==4) return 5;
if (n==5) return 4;
}
return n;
}
// getX86RegNum - This function maps LLVM register identifiers to their X86
// specific numbering, which is used in various places encoding instructions.
//
unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
switch(RegNo) {
case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
return N86::ESP;
case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
return N86::EBP;
case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
return N86::ESI;
case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
return N86::EDI;
case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B:
return N86::EAX;
case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B:
return N86::ECX;
case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
return N86::EDX;
case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
return N86::EBX;
case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
return N86::ESP;
case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
return N86::EBP;
case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
return N86::ESI;
case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
return N86::EDI;
case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
return RegNo-X86::ST0;
case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7:
return getDwarfRegNum(RegNo) - getDwarfRegNum(X86::XMM0);
case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
return getDwarfRegNum(RegNo) - getDwarfRegNum(X86::XMM8);
default:
assert(isVirtualRegister(RegNo) && "Unknown physical register!");
assert(0 && "Register allocator hasn't allocated reg correctly yet!");
return 0;
}
}
bool X86RegisterInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI) const {
if (CSI.empty())
return false;
MachineFunction &MF = *MBB.getParent();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
for (unsigned i = CSI.size(); i != 0; --i) {
unsigned Reg = CSI[i-1].getReg();
// Add the callee-saved register as live-in. It's killed at the spill.
MBB.addLiveIn(Reg);
BuildMI(MBB, MI, TII.get(Opc)).addReg(Reg);
}
return true;
}
bool X86RegisterInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI) const {
if (CSI.empty())
return false;
unsigned Opc = Is64Bit ? X86::POP64r : X86::POP32r;
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
BuildMI(MBB, MI, TII.get(Opc), Reg);
}
return true;
}
static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
MachineOperand &MO) {
if (MO.isRegister())
MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit());
else if (MO.isImmediate())
MIB = MIB.addImm(MO.getImm());
else if (MO.isFrameIndex())
MIB = MIB.addFrameIndex(MO.getFrameIndex());
else if (MO.isGlobalAddress())
MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
else if (MO.isConstantPoolIndex())
MIB = MIB.addConstantPoolIndex(MO.getConstantPoolIndex(), MO.getOffset());
else if (MO.isJumpTableIndex())
MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex());
else if (MO.isExternalSymbol())
MIB = MIB.addExternalSymbol(MO.getSymbolName());
else
assert(0 && "Unknown operand for X86InstrAddOperand!");
return MIB;
}
static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
unsigned StackAlign) {
unsigned Opc = 0;
if (RC == &X86::GR64RegClass) {
Opc = X86::MOV64mr;
} else if (RC == &X86::GR32RegClass) {
Opc = X86::MOV32mr;
} else if (RC == &X86::GR16RegClass) {
Opc = X86::MOV16mr;
} else if (RC == &X86::GR8RegClass) {
Opc = X86::MOV8mr;
} else if (RC == &X86::GR32_RegClass) {
Opc = X86::MOV32_mr;
} else if (RC == &X86::GR16_RegClass) {
Opc = X86::MOV16_mr;
} else if (RC == &X86::RFP80RegClass) {
Opc = X86::ST_FpP80m; // pops
} else if (RC == &X86::RFP64RegClass) {
Opc = X86::ST_Fp64m;
} else if (RC == &X86::RFP32RegClass) {
Opc = X86::ST_Fp32m;
} else if (RC == &X86::FR32RegClass) {
Opc = X86::MOVSSmr;
} else if (RC == &X86::FR64RegClass) {
Opc = X86::MOVSDmr;
} else if (RC == &X86::VR128RegClass) {
// FIXME: Use movaps once we are capable of selectively
// aligning functions that spill SSE registers on 16-byte boundaries.
Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
} else if (RC == &X86::VR64RegClass) {
Opc = X86::MMX_MOVQ64mr;
} else {
assert(0 && "Unknown regclass");
abort();
}
return Opc;
}
void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, int FrameIdx,
const TargetRegisterClass *RC) const {
unsigned Opc = getStoreRegOpcode(RC, StackAlign);
addFrameReference(BuildMI(MBB, MI, TII.get(Opc)), FrameIdx)
.addReg(SrcReg, false, false, true);
}
void X86RegisterInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
unsigned Opc = getStoreRegOpcode(RC, StackAlign);
MachineInstrBuilder MIB = BuildMI(TII.get(Opc));
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB = X86InstrAddOperand(MIB, Addr[i]);
MIB.addReg(SrcReg, false, false, true);
NewMIs.push_back(MIB);
}
static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
unsigned StackAlign) {
unsigned Opc = 0;
if (RC == &X86::GR64RegClass) {
Opc = X86::MOV64rm;
} else if (RC == &X86::GR32RegClass) {
Opc = X86::MOV32rm;
} else if (RC == &X86::GR16RegClass) {
Opc = X86::MOV16rm;
} else if (RC == &X86::GR8RegClass) {
Opc = X86::MOV8rm;
} else if (RC == &X86::GR32_RegClass) {
Opc = X86::MOV32_rm;
} else if (RC == &X86::GR16_RegClass) {
Opc = X86::MOV16_rm;
} else if (RC == &X86::RFP80RegClass) {
Opc = X86::LD_Fp80m;
} else if (RC == &X86::RFP64RegClass) {
Opc = X86::LD_Fp64m;
} else if (RC == &X86::RFP32RegClass) {
Opc = X86::LD_Fp32m;
} else if (RC == &X86::FR32RegClass) {
Opc = X86::MOVSSrm;
} else if (RC == &X86::FR64RegClass) {
Opc = X86::MOVSDrm;
} else if (RC == &X86::VR128RegClass) {
// FIXME: Use movaps once we are capable of selectively
// aligning functions that spill SSE registers on 16-byte boundaries.
Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
} else if (RC == &X86::VR64RegClass) {
Opc = X86::MMX_MOVQ64rm;
} else {
assert(0 && "Unknown regclass");
abort();
}
return Opc;
}
void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC) const{
unsigned Opc = getLoadRegOpcode(RC, StackAlign);
addFrameReference(BuildMI(MBB, MI, TII.get(Opc), DestReg), FrameIdx);
}
void X86RegisterInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
unsigned Opc = getLoadRegOpcode(RC, StackAlign);
MachineInstrBuilder MIB = BuildMI(TII.get(Opc), DestReg);
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB = X86InstrAddOperand(MIB, Addr[i]);
NewMIs.push_back(MIB);
}
void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, unsigned SrcReg,
const TargetRegisterClass *DestRC,
const TargetRegisterClass *SrcRC) const {
if (DestRC != SrcRC) {
// Moving EFLAGS to / from another register requires a push and a pop.
if (SrcRC == &X86::CCRRegClass) {
assert(SrcReg == X86::EFLAGS);
if (DestRC == &X86::GR64RegClass) {
BuildMI(MBB, MI, TII.get(X86::PUSHFQ));
BuildMI(MBB, MI, TII.get(X86::POP64r), DestReg);
return;
} else if (DestRC == &X86::GR32RegClass) {
BuildMI(MBB, MI, TII.get(X86::PUSHFD));
BuildMI(MBB, MI, TII.get(X86::POP32r), DestReg);
return;
}
} else if (DestRC == &X86::CCRRegClass) {
assert(DestReg == X86::EFLAGS);
if (SrcRC == &X86::GR64RegClass) {
BuildMI(MBB, MI, TII.get(X86::PUSH64r)).addReg(SrcReg);
BuildMI(MBB, MI, TII.get(X86::POPFQ));
return;
} else if (SrcRC == &X86::GR32RegClass) {
BuildMI(MBB, MI, TII.get(X86::PUSH32r)).addReg(SrcReg);
BuildMI(MBB, MI, TII.get(X86::POPFD));
return;
}
}
cerr << "Not yet supported!";
abort();
}
unsigned Opc;
if (DestRC == &X86::GR64RegClass) {
Opc = X86::MOV64rr;
} else if (DestRC == &X86::GR32RegClass) {
Opc = X86::MOV32rr;
} else if (DestRC == &X86::GR16RegClass) {
Opc = X86::MOV16rr;
} else if (DestRC == &X86::GR8RegClass) {
Opc = X86::MOV8rr;
} else if (DestRC == &X86::GR32_RegClass) {
Opc = X86::MOV32_rr;
} else if (DestRC == &X86::GR16_RegClass) {
Opc = X86::MOV16_rr;
} else if (DestRC == &X86::RFP32RegClass) {
Opc = X86::MOV_Fp3232;
} else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
Opc = X86::MOV_Fp6464;
} else if (DestRC == &X86::RFP80RegClass) {
Opc = X86::MOV_Fp8080;
} else if (DestRC == &X86::FR32RegClass) {
Opc = X86::FsMOVAPSrr;
} else if (DestRC == &X86::FR64RegClass) {
Opc = X86::FsMOVAPDrr;
} else if (DestRC == &X86::VR128RegClass) {
Opc = X86::MOVAPSrr;
} else if (DestRC == &X86::VR64RegClass) {
Opc = X86::MMX_MOVQ64rr;
} else {
assert(0 && "Unknown regclass");
abort();
}
BuildMI(MBB, MI, TII.get(Opc), DestReg).addReg(SrcReg);
}
const TargetRegisterClass *
X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
if (RC == &X86::CCRRegClass)
if (Is64Bit)
return &X86::GR64RegClass;
else
return &X86::GR32RegClass;
return NULL;
}
void X86RegisterInfo::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg,
const MachineInstr *Orig) const {
// MOV32r0 etc. are implemented with xor which clobbers condition code.
// Re-materialize them as movri instructions to avoid side effects.
switch (Orig->getOpcode()) {
case X86::MOV8r0:
BuildMI(MBB, I, TII.get(X86::MOV8ri), DestReg).addImm(0);
break;
case X86::MOV16r0:
BuildMI(MBB, I, TII.get(X86::MOV16ri), DestReg).addImm(0);
break;
case X86::MOV32r0:
BuildMI(MBB, I, TII.get(X86::MOV32ri), DestReg).addImm(0);
break;
case X86::MOV64r0:
BuildMI(MBB, I, TII.get(X86::MOV64ri32), DestReg).addImm(0);
break;
default: {
MachineInstr *MI = Orig->clone();
MI->getOperand(0).setReg(DestReg);
MBB.insert(I, MI);
break;
}
}
}
static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
SmallVector<MachineOperand,4> &MOs,
MachineInstr *MI, const TargetInstrInfo &TII) {
// Create the base instruction with the memory operand as the first part.
MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
MachineInstrBuilder MIB(NewMI);
unsigned NumAddrOps = MOs.size();
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB = X86InstrAddOperand(MIB, MOs[i]);
if (NumAddrOps < 4) // FrameIndex only
MIB.addImm(1).addReg(0).addImm(0);
// Loop over the rest of the ri operands, converting them over.
unsigned NumOps = TII.getNumOperands(MI->getOpcode())-2;
for (unsigned i = 0; i != NumOps; ++i) {
MachineOperand &MO = MI->getOperand(i+2);
MIB = X86InstrAddOperand(MIB, MO);
}
for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
MIB = X86InstrAddOperand(MIB, MO);
}
return MIB;
}
static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
SmallVector<MachineOperand,4> &MOs,
MachineInstr *MI, const TargetInstrInfo &TII) {
MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
MachineInstrBuilder MIB(NewMI);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (i == OpNo) {
assert(MO.isRegister() && "Expected to fold into reg operand!");
unsigned NumAddrOps = MOs.size();
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB = X86InstrAddOperand(MIB, MOs[i]);
if (NumAddrOps < 4) // FrameIndex only
MIB.addImm(1).addReg(0).addImm(0);
} else {
MIB = X86InstrAddOperand(MIB, MO);
}
}
return MIB;
}
static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
SmallVector<MachineOperand,4> &MOs,
MachineInstr *MI) {
MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
unsigned NumAddrOps = MOs.size();
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB = X86InstrAddOperand(MIB, MOs[i]);
if (NumAddrOps < 4) // FrameIndex only
MIB.addImm(1).addReg(0).addImm(0);
return MIB.addImm(0);
}
MachineInstr*
X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
SmallVector<MachineOperand,4> &MOs) const {
const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
bool isTwoAddrFold = false;
unsigned NumOps = TII.getNumOperands(MI->getOpcode());
bool isTwoAddr = NumOps > 1 &&
MI->getInstrDescriptor()->getOperandConstraint(1, TOI::TIED_TO) != -1;
MachineInstr *NewMI = NULL;
// Folding a memory location into the two-address part of a two-address
// instruction is different than folding it other places. It requires
// replacing the *two* registers with the memory location.
if (isTwoAddr && NumOps >= 2 && i < 2 &&
MI->getOperand(0).isRegister() &&
MI->getOperand(1).isRegister() &&
MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
isTwoAddrFold = true;
} else if (i == 0) { // If operand 0
if (MI->getOpcode() == X86::MOV16r0)
NewMI = MakeM0Inst(TII, X86::MOV16mi, MOs, MI);
else if (MI->getOpcode() == X86::MOV32r0)
NewMI = MakeM0Inst(TII, X86::MOV32mi, MOs, MI);
else if (MI->getOpcode() == X86::MOV64r0)
NewMI = MakeM0Inst(TII, X86::MOV64mi32, MOs, MI);
else if (MI->getOpcode() == X86::MOV8r0)
NewMI = MakeM0Inst(TII, X86::MOV8mi, MOs, MI);
if (NewMI) {
NewMI->copyKillDeadInfo(MI);
return NewMI;
}
OpcodeTablePtr = &RegOp2MemOpTable0;
} else if (i == 1) {
OpcodeTablePtr = &RegOp2MemOpTable1;
} else if (i == 2) {
OpcodeTablePtr = &RegOp2MemOpTable2;
}
// If table selected...
if (OpcodeTablePtr) {
// Find the Opcode to fuse
DenseMap<unsigned*, unsigned>::iterator I =
OpcodeTablePtr->find((unsigned*)MI->getOpcode());
if (I != OpcodeTablePtr->end()) {
if (isTwoAddrFold)
NewMI = FuseTwoAddrInst(I->second, MOs, MI, TII);
else
NewMI = FuseInst(I->second, i, MOs, MI, TII);
NewMI->copyKillDeadInfo(MI);
return NewMI;
}
}
// No fusion
if (PrintFailedFusing)
cerr << "We failed to fuse ("
<< ((i == 1) ? "r" : "s") << "): " << *MI;
return NULL;
}
MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned OpNum,
int FrameIndex) const {
// Check switch flag
if (NoFusing) return NULL;
SmallVector<MachineOperand,4> MOs;
MOs.push_back(MachineOperand::CreateFrameIndex(FrameIndex));
return foldMemoryOperand(MI, OpNum, MOs);
}
MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned OpNum,
MachineInstr *LoadMI) const {
// Check switch flag
if (NoFusing) return NULL;
SmallVector<MachineOperand,4> MOs;
unsigned NumOps = TII.getNumOperands(LoadMI->getOpcode());
for (unsigned i = NumOps - 4; i != NumOps; ++i)
MOs.push_back(LoadMI->getOperand(i));
return foldMemoryOperand(MI, OpNum, MOs);
}
unsigned X86RegisterInfo::getOpcodeAfterMemoryFold(unsigned Opc,
unsigned OpNum) const {
// Check switch flag
if (NoFusing) return 0;
const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
unsigned NumOps = TII.getNumOperands(Opc);
bool isTwoAddr = NumOps > 1 &&
TII.getOperandConstraint(Opc, 1, TOI::TIED_TO) != -1;
// Folding a memory location into the two-address part of a two-address
// instruction is different than folding it other places. It requires
// replacing the *two* registers with the memory location.
if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
} else if (OpNum == 0) { // If operand 0
switch (Opc) {
case X86::MOV16r0:
return X86::MOV16mi;
case X86::MOV32r0:
return X86::MOV32mi;
case X86::MOV64r0:
return X86::MOV64mi32;
case X86::MOV8r0:
return X86::MOV8mi;
default: break;
}
OpcodeTablePtr = &RegOp2MemOpTable0;
} else if (OpNum == 1) {
OpcodeTablePtr = &RegOp2MemOpTable1;
} else if (OpNum == 2) {
OpcodeTablePtr = &RegOp2MemOpTable2;
}
if (OpcodeTablePtr) {
// Find the Opcode to fuse
DenseMap<unsigned*, unsigned>::iterator I =
OpcodeTablePtr->find((unsigned*)Opc);
if (I != OpcodeTablePtr->end())
return I->second;
}
return 0;
}
bool X86RegisterInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
if (I == MemOp2RegOpTable.end())
return false;
unsigned Opc = I->second.first;
unsigned Index = I->second.second & 0xf;
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
if (UnfoldLoad && !FoldedLoad)
return false;
UnfoldLoad &= FoldedLoad;
if (UnfoldStore && !FoldedStore)
return false;
UnfoldStore &= FoldedStore;
const TargetInstrDescriptor &TID = TII.get(Opc);
const TargetOperandInfo &TOI = TID.OpInfo[Index];
const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
? TII.getPointerRegClass() : getRegClass(TOI.RegClass);
SmallVector<MachineOperand,4> AddrOps;
SmallVector<MachineOperand,2> BeforeOps;
SmallVector<MachineOperand,2> AfterOps;
SmallVector<MachineOperand,4> ImpOps;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (i >= Index && i < Index+4)
AddrOps.push_back(Op);
else if (Op.isRegister() && Op.isImplicit())
ImpOps.push_back(Op);
else if (i < Index)
BeforeOps.push_back(Op);
else if (i > Index)
AfterOps.push_back(Op);
}
// Emit the load instruction.
if (UnfoldLoad) {
loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
if (UnfoldStore) {
// Address operands cannot be marked isKill.
for (unsigned i = 1; i != 5; ++i) {
MachineOperand &MO = NewMIs[0]->getOperand(i);
if (MO.isRegister())
MO.unsetIsKill();
}
}
}
// Emit the data processing instruction.
MachineInstr *DataMI = new MachineInstr(TID, true);
MachineInstrBuilder MIB(DataMI);
if (FoldedStore)
MIB.addReg(Reg, true);
for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
if (FoldedLoad)
MIB.addReg(Reg);
for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
MIB = X86InstrAddOperand(MIB, AfterOps[i]);
for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
MachineOperand &MO = ImpOps[i];
MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
}
NewMIs.push_back(MIB);
// Emit the store instruction.
if (UnfoldStore) {
const TargetOperandInfo &DstTOI = TID.OpInfo[0];
const TargetRegisterClass *DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
? TII.getPointerRegClass() : getRegClass(DstTOI.RegClass);
storeRegToAddr(MF, Reg, AddrOps, DstRC, NewMIs);
}
return true;
}
bool
X86RegisterInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const {
if (!N->isTargetOpcode())
return false;
DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
if (I == MemOp2RegOpTable.end())
return false;
unsigned Opc = I->second.first;
unsigned Index = I->second.second & 0xf;
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
const TargetInstrDescriptor &TID = TII.get(Opc);
const TargetOperandInfo &TOI = TID.OpInfo[Index];
const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
? TII.getPointerRegClass() : getRegClass(TOI.RegClass);
std::vector<SDOperand> AddrOps;
std::vector<SDOperand> BeforeOps;
std::vector<SDOperand> AfterOps;
unsigned NumOps = N->getNumOperands();
for (unsigned i = 0; i != NumOps-1; ++i) {
SDOperand Op = N->getOperand(i);
if (i >= Index && i < Index+4)
AddrOps.push_back(Op);
else if (i < Index)
BeforeOps.push_back(Op);
else if (i > Index)
AfterOps.push_back(Op);
}
SDOperand Chain = N->getOperand(NumOps-1);
AddrOps.push_back(Chain);
// Emit the load instruction.
SDNode *Load = 0;
if (FoldedLoad) {
MVT::ValueType VT = *RC->vt_begin();
Load = DAG.getTargetNode(getLoadRegOpcode(RC, StackAlign), VT, MVT::Other,
&AddrOps[0], AddrOps.size());
NewNodes.push_back(Load);
}
// Emit the data processing instruction.
std::vector<MVT::ValueType> VTs;
const TargetRegisterClass *DstRC = 0;
if (TID.numDefs > 0) {
const TargetOperandInfo &DstTOI = TID.OpInfo[0];
DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
? TII.getPointerRegClass() : getRegClass(DstTOI.RegClass);
VTs.push_back(*DstRC->vt_begin());
}
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
MVT::ValueType VT = N->getValueType(i);
if (VT != MVT::Other && i >= TID.numDefs)
VTs.push_back(VT);
}
if (Load)
BeforeOps.push_back(SDOperand(Load, 0));
std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
NewNodes.push_back(NewNode);
// Emit the store instruction.
if (FoldedStore) {
AddrOps.pop_back();
AddrOps.push_back(SDOperand(NewNode, 0));
AddrOps.push_back(Chain);
SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, StackAlign),
MVT::Other, &AddrOps[0], AddrOps.size());
NewNodes.push_back(Store);
}
return true;
}
unsigned X86RegisterInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore) const {
DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
MemOp2RegOpTable.find((unsigned*)Opc);
if (I == MemOp2RegOpTable.end())
return 0;
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
if (UnfoldLoad && !FoldedLoad)
return 0;
if (UnfoldStore && !FoldedStore)
return 0;
return I->second.first;
}
const unsigned *
X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
static const unsigned CalleeSavedRegs32Bit[] = {
X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0
};
static const unsigned CalleeSavedRegs32EHRet[] = {
X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0
};
static const unsigned CalleeSavedRegs64Bit[] = {
X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
};
if (Is64Bit)
return CalleeSavedRegs64Bit;
else {
if (MF) {
MachineFrameInfo *MFI = MF->getFrameInfo();
MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
if (MMI && MMI->callsEHReturn())
return CalleeSavedRegs32EHRet;
}
return CalleeSavedRegs32Bit;
}
}
const TargetRegisterClass* const*
X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
&X86::GR32RegClass, &X86::GR32RegClass,
&X86::GR32RegClass, &X86::GR32RegClass, 0
};
static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
&X86::GR32RegClass, &X86::GR32RegClass,
&X86::GR32RegClass, &X86::GR32RegClass,
&X86::GR32RegClass, &X86::GR32RegClass, 0
};
static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
&X86::GR64RegClass, &X86::GR64RegClass,
&X86::GR64RegClass, &X86::GR64RegClass,
&X86::GR64RegClass, &X86::GR64RegClass, 0
};
if (Is64Bit)
return CalleeSavedRegClasses64Bit;
else {
if (MF) {
MachineFrameInfo *MFI = MF->getFrameInfo();
MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
if (MMI && MMI->callsEHReturn())
return CalleeSavedRegClasses32EHRet;
}
return CalleeSavedRegClasses32Bit;
}
}
BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
Reserved.set(X86::RSP);
Reserved.set(X86::ESP);
Reserved.set(X86::SP);
Reserved.set(X86::SPL);
if (hasFP(MF)) {
Reserved.set(X86::RBP);
Reserved.set(X86::EBP);
Reserved.set(X86::BP);
Reserved.set(X86::BPL);
}
return Reserved;
}
//===----------------------------------------------------------------------===//
// Stack Frame Processing methods
//===----------------------------------------------------------------------===//
// hasFP - Return true if the specified function should have a dedicated frame
// pointer register. This is true if the function has variable sized allocas or
// if frame pointer elimination is disabled.
//
bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
return (NoFramePointerElim ||
MFI->hasVarSizedObjects() ||
MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
(MMI && MMI->callsUnwindInit()));
}
bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
return !MF.getFrameInfo()->hasVarSizedObjects();
}
void X86RegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
if (!hasReservedCallFrame(MF)) {
// If the stack pointer can be changed after prologue, turn the
// adjcallstackup instruction into a 'sub ESP, <amt>' and the
// adjcallstackdown instruction into 'add ESP, <amt>'
// TODO: consider using push / pop instead of sub + store / add
MachineInstr *Old = I;
uint64_t Amount = Old->getOperand(0).getImm();
if (Amount != 0) {
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
Amount = (Amount+StackAlign-1)/StackAlign*StackAlign;
MachineInstr *New = 0;
if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) {
New=BuildMI(TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), StackPtr)
.addReg(StackPtr).addImm(Amount);
} else {
assert(Old->getOpcode() == X86::ADJCALLSTACKUP);
// factor out the amount the callee already popped.
uint64_t CalleeAmt = Old->getOperand(1).getImm();
Amount -= CalleeAmt;
if (Amount) {
unsigned Opc = (Amount < 128) ?
(Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
(Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
New = BuildMI(TII.get(Opc), StackPtr)
.addReg(StackPtr).addImm(Amount);
}
}
// Replace the pseudo instruction with a new instruction...
if (New) MBB.insert(I, New);
}
} else if (I->getOpcode() == X86::ADJCALLSTACKUP) {
// If we are performing frame pointer elimination and if the callee pops
// something off the stack pointer, add it back. We do this until we have
// more advanced stack pointer tracking ability.
if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
unsigned Opc = (CalleeAmt < 128) ?
(Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
MachineInstr *New =
BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt);
MBB.insert(I, New);
}
}
MBB.erase(I);
}
void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, RegScavenger *RS) const{
assert(SPAdj == 0 && "Unexpected");
unsigned i = 0;
MachineInstr &MI = *II;
MachineFunction &MF = *MI.getParent()->getParent();
while (!MI.getOperand(i).isFrameIndex()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
int FrameIndex = MI.getOperand(i).getFrameIndex();
// This must be part of a four operand memory reference. Replace the
// FrameIndex with base register with EBP. Add an offset to the offset.
MI.getOperand(i).ChangeToRegister(hasFP(MF) ? FramePtr : StackPtr, false);
// Now add the frame object offset to the offset from EBP.
int64_t Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
MI.getOperand(i+3).getImm()+SlotSize;
if (!hasFP(MF))
Offset += MF.getFrameInfo()->getStackSize();
else {
Offset += SlotSize; // Skip the saved EBP
// Skip the RETADDR move area
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta;
}
MI.getOperand(i+3).ChangeToImmediate(Offset);
}
void
X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
if (TailCallReturnAddrDelta < 0) {
// create RETURNADDR area
// arg
// arg
// RETADDR
// { ...
// RETADDR area
// ...
// }
// [EBP]
MF.getFrameInfo()->
CreateFixedObject(-TailCallReturnAddrDelta,
(-1*SlotSize)+TailCallReturnAddrDelta);
}
if (hasFP(MF)) {
assert((TailCallReturnAddrDelta <= 0) &&
"The Delta should always be zero or negative");
// Create a frame entry for the EBP register that must be saved.
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize,
(int)SlotSize * -2+
TailCallReturnAddrDelta);
assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
"Slot for EBP register must be last in order to be found!");
}
}
/// emitSPUpdate - Emit a series of instructions to increment / decrement the
/// stack pointer by a constant value.
static
void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
const TargetInstrInfo &TII) {
bool isSub = NumBytes < 0;
uint64_t Offset = isSub ? -NumBytes : NumBytes;
unsigned Opc = isSub
? ((Offset < 128) ?
(Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
: ((Offset < 128) ?
(Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
(Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
uint64_t Chunk = (1LL << 31) - 1;
while (Offset) {
uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(ThisVal);
Offset -= ThisVal;
}
}
// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
static
void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
unsigned StackPtr, uint64_t *NumBytes = NULL) {
if (MBBI == MBB.begin()) return;
MachineBasicBlock::iterator PI = prior(MBBI);
unsigned Opc = PI->getOpcode();
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
PI->getOperand(0).getReg() == StackPtr) {
if (NumBytes)
*NumBytes += PI->getOperand(2).getImm();
MBB.erase(PI);
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
PI->getOperand(0).getReg() == StackPtr) {
if (NumBytes)
*NumBytes -= PI->getOperand(2).getImm();
MBB.erase(PI);
}
}
// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
static
void mergeSPUpdatesDown(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned StackPtr, uint64_t *NumBytes = NULL) {
return;
if (MBBI == MBB.end()) return;
MachineBasicBlock::iterator NI = next(MBBI);
if (NI == MBB.end()) return;
unsigned Opc = NI->getOpcode();
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
NI->getOperand(0).getReg() == StackPtr) {
if (NumBytes)
*NumBytes -= NI->getOperand(2).getImm();
MBB.erase(NI);
MBBI = NI;
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
NI->getOperand(0).getReg() == StackPtr) {
if (NumBytes)
*NumBytes += NI->getOperand(2).getImm();
MBB.erase(NI);
MBBI = NI;
}
}
/// mergeSPUpdates - Checks the instruction before/after the passed
/// instruction. If it is an ADD/SUB instruction it is deleted
/// argument and the stack adjustment is returned as a positive value for ADD
/// and a negative for SUB.
static int mergeSPUpdates(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned StackPtr,
bool doMergeWithPrevious) {
if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
(!doMergeWithPrevious && MBBI == MBB.end()))
return 0;
int Offset = 0;
MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI);
unsigned Opc = PI->getOpcode();
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
PI->getOperand(0).getReg() == StackPtr){
Offset += PI->getOperand(2).getImm();
MBB.erase(PI);
if (!doMergeWithPrevious) MBBI = NI;
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
PI->getOperand(0).getReg() == StackPtr) {
Offset -= PI->getOperand(2).getImm();
MBB.erase(PI);
if (!doMergeWithPrevious) MBBI = NI;
}
return Offset;
}
void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
MachineFrameInfo *MFI = MF.getFrameInfo();
const Function* Fn = MF.getFunction();
const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
MachineBasicBlock::iterator MBBI = MBB.begin();
// Prepare for frame info.
unsigned FrameLabelId = 0;
// Get the number of bytes to allocate from the FrameInfo.
uint64_t StackSize = MFI->getStackSize();
// Add RETADDR move area to callee saved frame size.
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
if (TailCallReturnAddrDelta < 0)
X86FI->setCalleeSavedFrameSize(
X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta));
uint64_t NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
// Insert stack pointer adjustment for later moving of return addr. Only
// applies to tail call optimized functions where the callee argument stack
// size is bigger than the callers.
if (TailCallReturnAddrDelta < 0) {
BuildMI(MBB, MBBI, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta);
}
if (hasFP(MF)) {
// Get the offset of the stack slot for the EBP register... which is
// guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
// Update the frame offset adjustment.
MFI->setOffsetAdjustment(SlotSize-NumBytes);
// Save EBP into the appropriate stack slot...
BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
.addReg(FramePtr);
NumBytes -= SlotSize;
if (MMI && MMI->needsFrameInfo()) {
// Mark effective beginning of when frame pointer becomes valid.
FrameLabelId = MMI->NextLabelID();
BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(FrameLabelId);
}
// Update EBP with the new base value...
BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
.addReg(StackPtr);
}
unsigned ReadyLabelId = 0;
if (MMI && MMI->needsFrameInfo()) {
// Mark effective beginning of when frame pointer is ready.
ReadyLabelId = MMI->NextLabelID();
BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(ReadyLabelId);
}
// Skip the callee-saved push instructions.
while (MBBI != MBB.end() &&
(MBBI->getOpcode() == X86::PUSH32r ||
MBBI->getOpcode() == X86::PUSH64r))
++MBBI;
if (NumBytes) { // adjust stack pointer: ESP -= numbytes
if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
// Check, whether EAX is livein for this function
bool isEAXAlive = false;
for (MachineFunction::livein_iterator II = MF.livein_begin(),
EE = MF.livein_end(); (II != EE) && !isEAXAlive; ++II) {
unsigned Reg = II->first;
isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
Reg == X86::AH || Reg == X86::AL);
}
// Function prologue calls _alloca to probe the stack when allocating
// more than 4k bytes in one go. Touching the stack at 4K increments is
// necessary to ensure that the guard pages used by the OS virtual memory
// manager are allocated in correct sequence.
if (!isEAXAlive) {
BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes);
BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32))
.addExternalSymbol("_alloca");
} else {
// Save EAX
BuildMI(MBB, MBBI, TII.get(X86::PUSH32r), X86::EAX);
// Allocate NumBytes-4 bytes on stack. We'll also use 4 already
// allocated bytes for EAX.
BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes-4);
BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32))
.addExternalSymbol("_alloca");
// Restore EAX
MachineInstr *MI = addRegOffset(BuildMI(TII.get(X86::MOV32rm),X86::EAX),
StackPtr, NumBytes-4);
MBB.insert(MBBI, MI);
}
} else {
// If there is an SUB32ri of ESP immediately before this instruction,
// merge the two. This can be the case when tail call elimination is
// enabled and the callee has more arguments then the caller.
NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
// If there is an ADD32ri or SUB32ri of ESP immediately after this
// instruction, merge the two instructions.
mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
if (NumBytes)
emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
}
}
if (MMI && MMI->needsFrameInfo()) {
std::vector<MachineMove> &Moves = MMI->getFrameMoves();
const TargetData *TD = MF.getTarget().getTargetData();
// Calculate amount of bytes used for return address storing
int stackGrowth =
(MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TD->getPointerSize() : -TD->getPointerSize());
if (StackSize) {
// Show update of SP.
if (hasFP(MF)) {
// Adjust SP
MachineLocation SPDst(MachineLocation::VirtualFP);
MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth);
Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
} else {
MachineLocation SPDst(MachineLocation::VirtualFP);
MachineLocation SPSrc(MachineLocation::VirtualFP, -StackSize+stackGrowth);
Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
}
} else {
//FIXME: Verify & implement for FP
MachineLocation SPDst(StackPtr);
MachineLocation SPSrc(StackPtr, stackGrowth);
Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
}
// Add callee saved registers to move list.
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
// FIXME: This is dirty hack. The code itself is pretty mess right now.
// It should be rewritten from scratch and generalized sometimes.
// Determine maximum offset (minumum due to stack growth)
int64_t MaxOffset = 0;
for (unsigned I = 0, E = CSI.size(); I!=E; ++I)
MaxOffset = std::min(MaxOffset,
MFI->getObjectOffset(CSI[I].getFrameIdx()));
// Calculate offsets
int64_t saveAreaOffset = (hasFP(MF) ? 3 : 2)*stackGrowth;
for (unsigned I = 0, E = CSI.size(); I!=E; ++I) {
int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx());
unsigned Reg = CSI[I].getReg();
Offset = (MaxOffset-Offset+saveAreaOffset);
MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
MachineLocation CSSrc(Reg);
Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc));
}
if (hasFP(MF)) {
// Save FP
MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth);
MachineLocation FPSrc(FramePtr);
Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
}
MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr);
MachineLocation FPSrc(MachineLocation::VirtualFP);
Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
}
// If it's main() on Cygwin\Mingw32 we should align stack as well
if (Fn->hasExternalLinkage() && Fn->getName() == "main" &&
Subtarget->isTargetCygMing()) {
BuildMI(MBB, MBBI, TII.get(X86::AND32ri), X86::ESP)
.addReg(X86::ESP).addImm(-StackAlign);
// Probe the stack
BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(StackAlign);
BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca");
}
}
void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const Function* Fn = MF.getFunction();
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
MachineBasicBlock::iterator MBBI = prior(MBB.end());
unsigned RetOpcode = MBBI->getOpcode();
switch (RetOpcode) {
case X86::RET:
case X86::RETI:
case X86::TCRETURNdi:
case X86::TCRETURNri:
case X86::TCRETURNri64:
case X86::TCRETURNdi64:
case X86::EH_RETURN:
case X86::TAILJMPd:
case X86::TAILJMPr:
case X86::TAILJMPm: break; // These are ok
default:
assert(0 && "Can only insert epilog into returning blocks");
}
// Get the number of bytes to allocate from the FrameInfo
uint64_t StackSize = MFI->getStackSize();
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
uint64_t NumBytes = StackSize - CSSize;
if (hasFP(MF)) {
// pop EBP.
BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
NumBytes -= SlotSize;
}
// Skip the callee-saved pop instructions.
while (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PI = prior(MBBI);
unsigned Opc = PI->getOpcode();
if (Opc != X86::POP32r && Opc != X86::POP64r && !TII.isTerminatorInstr(Opc))
break;
--MBBI;
}
// If there is an ADD32ri or SUB32ri of ESP immediately before this
// instruction, merge the two instructions.
if (NumBytes || MFI->hasVarSizedObjects())
mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
// If dynamic alloca is used, then reset esp to point to the last callee-saved
// slot before popping them off! Also, if it's main() on Cygwin/Mingw32 we
// aligned stack in the prologue, - revert stack changes back. Note: we're
// assuming, that frame pointer was forced for main()
if (MFI->hasVarSizedObjects() ||
(Fn->hasExternalLinkage() && Fn->getName() == "main" &&
Subtarget->isTargetCygMing())) {
unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
if (CSSize) {
MachineInstr *MI = addRegOffset(BuildMI(TII.get(Opc), StackPtr),
FramePtr, -CSSize);
MBB.insert(MBBI, MI);
} else
BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr).
addReg(FramePtr);
NumBytes = 0;
}
// adjust stack pointer back: ESP += numbytes
if (NumBytes)
emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
// We're returning from function via eh_return.
if (RetOpcode == X86::EH_RETURN) {
MBBI = prior(MBB.end());
MachineOperand &DestAddr = MBBI->getOperand(0);
assert(DestAddr.isRegister() && "Offset should be in register!");
BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr).
addReg(DestAddr.getReg());
// Tail call return: adjust the stack pointer and jump to callee
} else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
MBBI = prior(MBB.end());
MachineOperand &JumpTarget = MBBI->getOperand(0);
MachineOperand &StackAdjust = MBBI->getOperand(1);
assert( StackAdjust.isImmediate() && "Expecting immediate value.");
// Adjust stack pointer.
int StackAdj = StackAdjust.getImm();
int MaxTCDelta = X86FI->getTCReturnAddrDelta();
int Offset = 0;
assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
// Incoporate the retaddr area.
Offset = StackAdj-MaxTCDelta;
assert(Offset >= 0 && "Offset should never be negative");
if (Offset) {
// Check for possible merge with preceeding ADD instruction.
Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
}
// Jump to label or value in register.
if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64)
BuildMI(MBB, MBBI, TII.get(X86::TAILJMPd)).
addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
else if (RetOpcode== X86::TCRETURNri64) {
BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr64), JumpTarget.getReg());
} else
BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr), JumpTarget.getReg());
// Delete the pseudo instruction TCRETURN.
MBB.erase(MBBI);
} else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
(X86FI->getTCReturnAddrDelta() < 0)) {
// Add the return addr area delta back since we are not tail calling.
int delta = -1*X86FI->getTCReturnAddrDelta();
MBBI = prior(MBB.end());
// Check for possible merge with preceeding ADD instruction.
delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
}
}
unsigned X86RegisterInfo::getRARegister() const {
if (Is64Bit)
return X86::RIP; // Should have dwarf #16
else
return X86::EIP; // Should have dwarf #8
}
unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
return hasFP(MF) ? FramePtr : StackPtr;
}
void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
const {
// Calculate amount of bytes used for return address storing
int stackGrowth = (Is64Bit ? -8 : -4);
// Initial state of the frame pointer is esp+4.
MachineLocation Dst(MachineLocation::VirtualFP);
MachineLocation Src(StackPtr, stackGrowth);
Moves.push_back(MachineMove(0, Dst, Src));
// Add return address to move list
MachineLocation CSDst(StackPtr, stackGrowth);
MachineLocation CSSrc(getRARegister());
Moves.push_back(MachineMove(0, CSDst, CSSrc));
}
unsigned X86RegisterInfo::getEHExceptionRegister() const {
assert(0 && "What is the exception register");
return 0;
}
unsigned X86RegisterInfo::getEHHandlerRegister() const {
assert(0 && "What is the exception handler register");
return 0;
}
namespace llvm {
unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) {
switch (VT) {
default: return Reg;
case MVT::i8:
if (High) {
switch (Reg) {
default: return 0;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AH;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::DH;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::CH;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::BH;
}
} else {
switch (Reg) {
default: return 0;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AL;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::DL;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::CL;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::BL;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::SIL;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::DIL;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::BPL;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::SPL;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8B;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9B;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10B;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11B;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12B;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13B;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14B;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15B;
}
}
case MVT::i16:
switch (Reg) {
default: return Reg;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::AX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::DX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::CX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::BX;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::SI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::DI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::BP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::SP;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8W;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9W;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10W;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11W;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12W;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13W;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14W;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15W;
}
case MVT::i32:
switch (Reg) {
default: return Reg;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::EAX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::EDX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::ECX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::EBX;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::ESI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::EDI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::EBP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::ESP;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8D;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9D;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10D;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11D;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12D;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13D;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14D;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15D;
}
case MVT::i64:
switch (Reg) {
default: return Reg;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
return X86::RAX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
return X86::RDX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
return X86::RCX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
return X86::RBX;
case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
return X86::RSI;
case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
return X86::RDI;
case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
return X86::RBP;
case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
return X86::RSP;
case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
return X86::R8;
case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
return X86::R9;
case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
return X86::R10;
case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
return X86::R11;
case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
return X86::R12;
case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
return X86::R13;
case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
return X86::R14;
case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
return X86::R15;
}
}
return Reg;
}
}
#include "X86GenRegisterInfo.inc"