llvm-6502/lib/Target/ARM/ARMCodeEmitter.cpp

1427 lines
46 KiB
C++
Raw Normal View History

//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the pass that transforms the ARM machine instructions into
// relocatable machine code.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jit"
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMConstantPoolValue.h"
#include "ARMInstrInfo.h"
#include "ARMRelocations.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
#include "llvm/CodeGen/ObjectCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#ifndef NDEBUG
#include <iomanip>
#endif
using namespace llvm;
STATISTIC(NumEmitted, "Number of machine instructions emitted");
namespace {
class ARMCodeEmitter {
public:
/// getBinaryCodeForInstr - This function, generated by the
/// CodeEmitterGenerator using TableGen, produces the binary encoding for
/// machine instructions.
unsigned getBinaryCodeForInstr(const MachineInstr &MI);
};
template<class CodeEmitter>
class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass,
public ARMCodeEmitter {
ARMJITInfo *JTI;
const ARMInstrInfo *II;
const TargetData *TD;
TargetMachine &TM;
CodeEmitter &MCE;
const std::vector<MachineConstantPoolEntry> *MCPEs;
const std::vector<MachineJumpTableEntry> *MJTEs;
bool IsPIC;
public:
static char ID;
explicit Emitter(TargetMachine &tm, CodeEmitter &mce)
: MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm),
MCE(mce), MCPEs(0), MJTEs(0),
IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
Emitter(TargetMachine &tm, CodeEmitter &mce,
const ARMInstrInfo &ii, const TargetData &td)
: MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm),
MCE(mce), MCPEs(0), MJTEs(0),
IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "ARM Machine Code Emitter";
}
void emitInstruction(const MachineInstr &MI);
private:
void emitWordLE(unsigned Binary);
void emitDWordLE(uint64_t Binary);
void emitConstPoolInstruction(const MachineInstr &MI);
void emitMOVi2piecesInstruction(const MachineInstr &MI);
void emitLEApcrelJTInstruction(const MachineInstr &MI);
void emitPseudoMoveInstruction(const MachineInstr &MI);
void addPCLabel(unsigned LabelID);
void emitPseudoInstruction(const MachineInstr &MI);
unsigned getMachineSoRegOpValue(const MachineInstr &MI,
const TargetInstrDesc &TID,
const MachineOperand &MO,
unsigned OpIdx);
unsigned getMachineSoImmOpValue(unsigned SoImm);
unsigned getAddrModeSBit(const MachineInstr &MI,
const TargetInstrDesc &TID) const;
void emitDataProcessingInstruction(const MachineInstr &MI,
unsigned ImplicitRd = 0,
unsigned ImplicitRn = 0);
void emitLoadStoreInstruction(const MachineInstr &MI,
unsigned ImplicitRd = 0,
unsigned ImplicitRn = 0);
void emitMiscLoadStoreInstruction(const MachineInstr &MI,
unsigned ImplicitRn = 0);
void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
void emitMulFrmInstruction(const MachineInstr &MI);
void emitExtendInstruction(const MachineInstr &MI);
void emitMiscArithInstruction(const MachineInstr &MI);
void emitBranchInstruction(const MachineInstr &MI);
void emitInlineJumpTable(unsigned JTIndex);
void emitMiscBranchInstruction(const MachineInstr &MI);
void emitVFPArithInstruction(const MachineInstr &MI);
void emitVFPConversionInstruction(const MachineInstr &MI);
void emitVFPLoadStoreInstruction(const MachineInstr &MI);
void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
void emitMiscInstruction(const MachineInstr &MI);
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
return getMachineOpValue(MI, MI.getOperand(OpIdx));
}
/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
///
unsigned getShiftOp(unsigned Imm) const ;
/// Routines that handle operands which add machine relocations which are
/// fixed up by the relocation stage.
void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
bool NeedStub, intptr_t ACPV = 0);
void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
intptr_t JTBase = 0);
};
template <class CodeEmitter>
char Emitter<CodeEmitter>::ID = 0;
}
/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
/// to the specified MCE object.
FunctionPass *llvm::createARMCodeEmitterPass(ARMBaseTargetMachine &TM,
MachineCodeEmitter &MCE) {
return new Emitter<MachineCodeEmitter>(TM, MCE);
}
FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
JITCodeEmitter &JCE) {
return new Emitter<JITCodeEmitter>(TM, JCE);
}
FunctionPass *llvm::createARMObjectCodeEmitterPass(ARMBaseTargetMachine &TM,
ObjectCodeEmitter &OCE) {
return new Emitter<ObjectCodeEmitter>(TM, OCE);
}
template<class CodeEmitter>
bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
MF.getTarget().getRelocationModel() != Reloc::Static) &&
"JIT relocation model must be set to static or default!");
II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
MCPEs = &MF.getConstantPool()->getConstants();
MJTEs = &MF.getJumpTableInfo()->getJumpTables();
IsPIC = TM.getRelocationModel() == Reloc::PIC_;
JTI->Initialize(MF, IsPIC);
do {
DEBUG(errs() << "JITTing function '"
<< MF.getFunction()->getName() << "'\n");
MCE.startFunction(MF);
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB) {
MCE.StartMachineBasicBlock(MBB);
for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
I != E; ++I)
emitInstruction(*I);
}
} while (MCE.finishFunction(MF));
return false;
}
/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
///
template<class CodeEmitter>
unsigned Emitter<CodeEmitter>::getShiftOp(unsigned Imm) const {
switch (ARM_AM::getAM2ShiftOpc(Imm)) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::asr: return 2;
case ARM_AM::lsl: return 0;
case ARM_AM::lsr: return 1;
case ARM_AM::ror:
case ARM_AM::rrx: return 3;
}
return 0;
}
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
template<class CodeEmitter>
unsigned Emitter<CodeEmitter>::getMachineOpValue(const MachineInstr &MI,
const MachineOperand &MO) {
if (MO.isReg())
return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
else if (MO.isImm())
return static_cast<unsigned>(MO.getImm());
else if (MO.isGlobal())
emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
else if (MO.isSymbol())
emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
else if (MO.isCPI()) {
const TargetInstrDesc &TID = MI.getDesc();
// For VFP load, the immediate offset is multiplied by 4.
unsigned Reloc = ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
emitConstPoolAddress(MO.getIndex(), Reloc);
} else if (MO.isJTI())
emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
else if (MO.isMBB())
emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
else {
#ifndef NDEBUG
cerr << MO;
#endif
llvm_unreachable(0);
}
return 0;
}
/// emitGlobalAddress - Emit the specified address to the code stream.
///
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
bool NeedStub, intptr_t ACPV) {
MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
GV, ACPV, NeedStub));
}
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
unsigned Reloc) {
MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
Reloc, ES));
}
/// emitConstPoolAddress - Arrange for the address of an constant pool
/// to be emitted to the current location in the function, and allow it to be PC
/// relative.
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI,
unsigned Reloc) {
// Tell JIT emitter we'll resolve the address.
MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
Reloc, CPI, 0, true));
}
/// emitJumpTableAddress - Arrange for the address of a jump table to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTIndex,
unsigned Reloc) {
MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
Reloc, JTIndex, 0, true));
}
/// emitMachineBasicBlock - Emit the specified address basic block.
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitMachineBasicBlock(MachineBasicBlock *BB,
unsigned Reloc, intptr_t JTBase) {
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
Reloc, BB, JTBase));
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitWordLE(unsigned Binary) {
#ifndef NDEBUG
DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
<< Binary << std::dec << "\n";
#endif
MCE.emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitDWordLE(uint64_t Binary) {
#ifndef NDEBUG
DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
<< (unsigned)Binary << std::dec << "\n";
DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
<< (unsigned)(Binary >> 32) << std::dec << "\n";
#endif
MCE.emitDWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI) {
DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI;
MCE.processDebugLoc(MI.getDebugLoc());
NumEmitted++; // Keep track of the # of mi's emitted
switch (MI.getDesc().TSFlags & ARMII::FormMask) {
default: {
llvm_unreachable("Unhandled instruction encoding format!");
break;
}
case ARMII::Pseudo:
emitPseudoInstruction(MI);
break;
case ARMII::DPFrm:
case ARMII::DPSoRegFrm:
emitDataProcessingInstruction(MI);
break;
case ARMII::LdFrm:
case ARMII::StFrm:
emitLoadStoreInstruction(MI);
break;
case ARMII::LdMiscFrm:
case ARMII::StMiscFrm:
emitMiscLoadStoreInstruction(MI);
break;
case ARMII::LdStMulFrm:
emitLoadStoreMultipleInstruction(MI);
break;
case ARMII::MulFrm:
emitMulFrmInstruction(MI);
break;
case ARMII::ExtFrm:
emitExtendInstruction(MI);
break;
case ARMII::ArithMiscFrm:
emitMiscArithInstruction(MI);
break;
case ARMII::BrFrm:
emitBranchInstruction(MI);
break;
case ARMII::BrMiscFrm:
emitMiscBranchInstruction(MI);
break;
// VFP instructions.
case ARMII::VFPUnaryFrm:
case ARMII::VFPBinaryFrm:
emitVFPArithInstruction(MI);
break;
case ARMII::VFPConv1Frm:
case ARMII::VFPConv2Frm:
case ARMII::VFPConv3Frm:
case ARMII::VFPConv4Frm:
case ARMII::VFPConv5Frm:
emitVFPConversionInstruction(MI);
break;
case ARMII::VFPLdStFrm:
emitVFPLoadStoreInstruction(MI);
break;
case ARMII::VFPLdStMulFrm:
emitVFPLoadStoreMultipleInstruction(MI);
break;
case ARMII::VFPMiscFrm:
emitMiscInstruction(MI);
break;
}
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitConstPoolInstruction(const MachineInstr &MI) {
unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
// Remember the CONSTPOOL_ENTRY address for later relocation.
JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
// Emit constpool island entry. In most cases, the actual values will be
// resolved and relocated after code emission.
if (MCPE.isMachineConstantPoolEntry()) {
ARMConstantPoolValue *ACPV =
static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
DOUT << " ** ARM constant pool #" << CPI << " @ "
<< (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n';
GlobalValue *GV = ACPV->getGV();
if (GV) {
assert(!ACPV->isStub() && "Don't know how to deal this yet!");
if (ACPV->isNonLazyPointer())
MCE.addRelocation(MachineRelocation::getIndirectSymbol(
MCE.getCurrentPCOffset(), ARM::reloc_arm_machine_cp_entry, GV,
(intptr_t)ACPV, false));
else
emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
ACPV->isStub() || isa<Function>(GV), (intptr_t)ACPV);
} else {
assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!");
emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
}
emitWordLE(0);
} else {
Constant *CV = MCPE.Val.ConstVal;
DEBUG({
errs() << " ** Constant pool #" << CPI << " @ "
<< (void*)MCE.getCurrentPCValue() << " ";
if (const Function *F = dyn_cast<Function>(CV))
errs() << F->getName();
else
errs() << *CV;
errs() << '\n';
});
if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV));
emitWordLE(0);
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
emitWordLE(Val);
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
if (CFP->getType() == Type::FloatTy)
emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
else if (CFP->getType() == Type::DoubleTy)
emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
else {
llvm_unreachable("Unable to handle this constantpool entry!");
}
} else {
llvm_unreachable("Unable to handle this constantpool entry!");
}
}
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitMOVi2piecesInstruction(const MachineInstr &MI) {
const MachineOperand &MO0 = MI.getOperand(0);
const MachineOperand &MO1 = MI.getOperand(1);
assert(MO1.isImm() && ARM_AM::getSOImmVal(MO1.isImm()) != -1 &&
"Not a valid so_imm value!");
unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
// Emit the 'mov' instruction.
unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
// Set the conditional execution predicate.
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode Rd.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
// Encode so_imm.
// Set bit I(25) to identify this is the immediate form of <shifter_op>
Binary |= 1 << ARMII::I_BitShift;
Binary |= getMachineSoImmOpValue(V1);
emitWordLE(Binary);
// Now the 'orr' instruction.
Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
// Set the conditional execution predicate.
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode Rd.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
// Encode Rn.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
// Encode so_imm.
// Set bit I(25) to identify this is the immediate form of <shifter_op>
Binary |= 1 << ARMII::I_BitShift;
Binary |= getMachineSoImmOpValue(V2);
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitLEApcrelJTInstruction(const MachineInstr &MI) {
// It's basically add r, pc, (LJTI - $+8)
const TargetInstrDesc &TID = MI.getDesc();
// Emit the 'add' instruction.
unsigned Binary = 0x4 << 21; // add: Insts{24-31} = 0b0100
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode S bit if MI modifies CPSR.
Binary |= getAddrModeSBit(MI, TID);
// Encode Rd.
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
// Encode Rn which is PC.
Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
// Encode the displacement.
Binary |= 1 << ARMII::I_BitShift;
emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitPseudoMoveInstruction(const MachineInstr &MI) {
unsigned Opcode = MI.getDesc().Opcode;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode S bit if MI modifies CPSR.
if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
Binary |= 1 << ARMII::S_BitShift;
// Encode register def if there is one.
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
// Encode the shift operation.
switch (Opcode) {
default: break;
case ARM::MOVrx:
// rrx
Binary |= 0x6 << 4;
break;
case ARM::MOVsrl_flag:
// lsr #1
Binary |= (0x2 << 4) | (1 << 7);
break;
case ARM::MOVsra_flag:
// asr #1
Binary |= (0x4 << 4) | (1 << 7);
break;
}
// Encode register Rm.
Binary |= getMachineOpValue(MI, 1);
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::addPCLabel(unsigned LabelID) {
DOUT << " ** LPC" << LabelID << " @ "
<< (void*)MCE.getCurrentPCValue() << '\n';
JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitPseudoInstruction(const MachineInstr &MI) {
unsigned Opcode = MI.getDesc().Opcode;
switch (Opcode) {
default:
llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");//FIXME:
case TargetInstrInfo::INLINEASM: {
// We allow inline assembler nodes with empty bodies - they can
// implicitly define registers, which is ok for JIT.
if (MI.getOperand(0).getSymbolName()[0]) {
llvm_report_error("JIT does not support inline asm!");
}
break;
}
case TargetInstrInfo::DBG_LABEL:
case TargetInstrInfo::EH_LABEL:
MCE.emitLabel(MI.getOperand(0).getImm());
break;
case TargetInstrInfo::IMPLICIT_DEF:
case TargetInstrInfo::DECLARE:
case ARM::DWARF_LOC:
// Do nothing.
break;
case ARM::CONSTPOOL_ENTRY:
emitConstPoolInstruction(MI);
break;
case ARM::PICADD: {
// Remember of the address of the PC label for relocation later.
addPCLabel(MI.getOperand(2).getImm());
// PICADD is just an add instruction that implicitly read pc.
emitDataProcessingInstruction(MI, 0, ARM::PC);
break;
}
case ARM::PICLDR:
case ARM::PICLDRB:
case ARM::PICSTR:
case ARM::PICSTRB: {
// Remember of the address of the PC label for relocation later.
addPCLabel(MI.getOperand(2).getImm());
// These are just load / store instructions that implicitly read pc.
emitLoadStoreInstruction(MI, 0, ARM::PC);
break;
}
case ARM::PICLDRH:
case ARM::PICLDRSH:
case ARM::PICLDRSB:
case ARM::PICSTRH: {
// Remember of the address of the PC label for relocation later.
addPCLabel(MI.getOperand(2).getImm());
// These are just load / store instructions that implicitly read pc.
emitMiscLoadStoreInstruction(MI, ARM::PC);
break;
}
case ARM::MOVi2pieces:
// Two instructions to materialize a constant.
emitMOVi2piecesInstruction(MI);
break;
case ARM::LEApcrelJT:
// Materialize jumptable address.
emitLEApcrelJTInstruction(MI);
break;
case ARM::MOVrx:
case ARM::MOVsrl_flag:
case ARM::MOVsra_flag:
emitPseudoMoveInstruction(MI);
break;
}
}
template<class CodeEmitter>
unsigned Emitter<CodeEmitter>::getMachineSoRegOpValue(
const MachineInstr &MI,
const TargetInstrDesc &TID,
const MachineOperand &MO,
unsigned OpIdx) {
unsigned Binary = getMachineOpValue(MI, MO);
const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
// Encode the shift opcode.
unsigned SBits = 0;
unsigned Rs = MO1.getReg();
if (Rs) {
// Set shift operand (bit[7:4]).
// LSL - 0001
// LSR - 0011
// ASR - 0101
// ROR - 0111
// RRX - 0110 and bit[11:8] clear.
switch (SOpc) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x1; break;
case ARM_AM::lsr: SBits = 0x3; break;
case ARM_AM::asr: SBits = 0x5; break;
case ARM_AM::ror: SBits = 0x7; break;
case ARM_AM::rrx: SBits = 0x6; break;
}
} else {
// Set shift operand (bit[6:4]).
// LSL - 000
// LSR - 010
// ASR - 100
// ROR - 110
switch (SOpc) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x0; break;
case ARM_AM::lsr: SBits = 0x2; break;
case ARM_AM::asr: SBits = 0x4; break;
case ARM_AM::ror: SBits = 0x6; break;
}
}
Binary |= SBits << 4;
if (SOpc == ARM_AM::rrx)
return Binary;
// Encode the shift operation Rs or shift_imm (except rrx).
if (Rs) {
// Encode Rs bit[11:8].
assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
return Binary |
(ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
}
// Encode shift_imm bit[11:7].
return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
}
template<class CodeEmitter>
unsigned Emitter<CodeEmitter>::getMachineSoImmOpValue(unsigned SoImm) {
int SoImmVal = ARM_AM::getSOImmVal(SoImm);
assert(SoImmVal != -1 && "Not a valid so_imm value!");
// Encode rotate_imm.
unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
<< ARMII::SoRotImmShift;
// Encode immed_8.
Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
return Binary;
}
template<class CodeEmitter>
unsigned Emitter<CodeEmitter>::getAddrModeSBit(const MachineInstr &MI,
const TargetInstrDesc &TID) const {
for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
const MachineOperand &MO = MI.getOperand(i-1);
if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
return 1 << ARMII::S_BitShift;
}
return 0;
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitDataProcessingInstruction(
const MachineInstr &MI,
unsigned ImplicitRd,
unsigned ImplicitRn) {
const TargetInstrDesc &TID = MI.getDesc();
if (TID.Opcode == ARM::BFC) {
llvm_report_error("ERROR: ARMv6t2 JIT is not yet supported.");
}
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode S bit if MI modifies CPSR.
Binary |= getAddrModeSBit(MI, TID);
// Encode register def if there is one.
unsigned NumDefs = TID.getNumDefs();
unsigned OpIdx = 0;
if (NumDefs)
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
else if (ImplicitRd)
// Special handling for implicit use (e.g. PC).
Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
<< ARMII::RegRdShift);
// If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
++OpIdx;
// Encode first non-shifter register operand if there is one.
bool isUnary = TID.TSFlags & ARMII::UnaryDP;
if (!isUnary) {
if (ImplicitRn)
// Special handling for implicit use (e.g. PC).
Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
<< ARMII::RegRnShift);
else {
Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
++OpIdx;
}
}
// Encode shifter operand.
const MachineOperand &MO = MI.getOperand(OpIdx);
if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
// Encode SoReg.
emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
return;
}
if (MO.isReg()) {
// Encode register Rm.
emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
return;
}
// Encode so_imm.
Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitLoadStoreInstruction(
const MachineInstr &MI,
unsigned ImplicitRd,
unsigned ImplicitRn) {
const TargetInstrDesc &TID = MI.getDesc();
unsigned Form = TID.TSFlags & ARMII::FormMask;
bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Operand 0 of a pre- and post-indexed store is the address base
// writeback. Skip it.
bool Skipped = false;
if (IsPrePost && Form == ARMII::StFrm) {
++OpIdx;
Skipped = true;
}
// Set first operand
if (ImplicitRd)
// Special handling for implicit use (e.g. PC).
Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
<< ARMII::RegRdShift);
else
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
// Set second operand
if (ImplicitRn)
// Special handling for implicit use (e.g. PC).
Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
<< ARMII::RegRnShift);
else
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
// If this is a two-address operand, skip it. e.g. LDR_PRE.
if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
++OpIdx;
const MachineOperand &MO2 = MI.getOperand(OpIdx);
unsigned AM2Opc = (ImplicitRn == ARM::PC)
? 0 : MI.getOperand(OpIdx+1).getImm();
// Set bit U(23) according to sign of immed value (positive or negative).
Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
ARMII::U_BitShift);
if (!MO2.getReg()) { // is immediate
if (ARM_AM::getAM2Offset(AM2Opc))
// Set the value of offset_12 field
Binary |= ARM_AM::getAM2Offset(AM2Opc);
emitWordLE(Binary);
return;
}
// Set bit I(25), because this is not in immediate enconding.
Binary |= 1 << ARMII::I_BitShift;
assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
// Set bit[3:0] to the corresponding Rm register
Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
// If this instr is in scaled register offset/index instruction, set
// shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
Binary |= ShImm << ARMII::ShiftShift; // shift_immed
}
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitMiscLoadStoreInstruction(const MachineInstr &MI,
unsigned ImplicitRn) {
const TargetInstrDesc &TID = MI.getDesc();
unsigned Form = TID.TSFlags & ARMII::FormMask;
bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Operand 0 of a pre- and post-indexed store is the address base
// writeback. Skip it.
bool Skipped = false;
if (IsPrePost && Form == ARMII::StMiscFrm) {
++OpIdx;
Skipped = true;
}
// Set first operand
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
// Skip LDRD and STRD's second operand.
if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
++OpIdx;
// Set second operand
if (ImplicitRn)
// Special handling for implicit use (e.g. PC).
Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
<< ARMII::RegRnShift);
else
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
// If this is a two-address operand, skip it. e.g. LDRH_POST.
if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
++OpIdx;
const MachineOperand &MO2 = MI.getOperand(OpIdx);
unsigned AM3Opc = (ImplicitRn == ARM::PC)
? 0 : MI.getOperand(OpIdx+1).getImm();
// Set bit U(23) according to sign of immed value (positive or negative)
Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
ARMII::U_BitShift);
// If this instr is in register offset/index encoding, set bit[3:0]
// to the corresponding Rm register.
if (MO2.getReg()) {
Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
emitWordLE(Binary);
return;
}
// This instr is in immediate offset/index encoding, set bit 22 to 1.
Binary |= 1 << ARMII::AM3_I_BitShift;
if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
// Set operands
Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
Binary |= (ImmOffs & 0xF); // immedL
}
emitWordLE(Binary);
}
static unsigned getAddrModeUPBits(unsigned Mode) {
unsigned Binary = 0;
// Set addressing mode by modifying bits U(23) and P(24)
// IA - Increment after - bit U = 1 and bit P = 0
// IB - Increment before - bit U = 1 and bit P = 1
// DA - Decrement after - bit U = 0 and bit P = 0
// DB - Decrement before - bit U = 0 and bit P = 1
switch (Mode) {
default: llvm_unreachable("Unknown addressing sub-mode!");
case ARM_AM::da: break;
case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
}
return Binary;
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitLoadStoreMultipleInstruction(
const MachineInstr &MI) {
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Set base address operand
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
// Set addressing mode by modifying bits U(23) and P(24)
const MachineOperand &MO = MI.getOperand(1);
Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
// Set bit W(21)
if (ARM_AM::getAM4WBFlag(MO.getImm()))
Binary |= 0x1 << ARMII::W_BitShift;
// Set registers
for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || MO.isImplicit())
break;
unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
RegNum < 16);
Binary |= 0x1 << RegNum;
}
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitMulFrmInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode S bit if MI modifies CPSR.
Binary |= getAddrModeSBit(MI, TID);
// 32x32->64bit operations have two destination registers. The number
// of register definitions will tell us if that's what we're dealing with.
unsigned OpIdx = 0;
if (TID.getNumDefs() == 2)
Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
// Encode Rd
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
// Encode Rm
Binary |= getMachineOpValue(MI, OpIdx++);
// Encode Rs
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
// Many multiple instructions (e.g. MLA) have three src operands. Encode
// it as Rn (for multiply, that's in the same offset as RdLo.
if (TID.getNumOperands() > OpIdx &&
!TID.OpInfo[OpIdx].isPredicate() &&
!TID.OpInfo[OpIdx].isOptionalDef())
Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitExtendInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Encode Rd
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
const MachineOperand &MO1 = MI.getOperand(OpIdx++);
const MachineOperand &MO2 = MI.getOperand(OpIdx);
if (MO2.isReg()) {
// Two register operand form.
// Encode Rn.
Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
// Encode Rm.
Binary |= getMachineOpValue(MI, MO2);
++OpIdx;
} else {
Binary |= getMachineOpValue(MI, MO1);
}
// Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
if (MI.getOperand(OpIdx).isImm() &&
!TID.OpInfo[OpIdx].isPredicate() &&
!TID.OpInfo[OpIdx].isOptionalDef())
Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitMiscArithInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Encode Rd
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
const MachineOperand &MO = MI.getOperand(OpIdx++);
if (OpIdx == TID.getNumOperands() ||
TID.OpInfo[OpIdx].isPredicate() ||
TID.OpInfo[OpIdx].isOptionalDef()) {
// Encode Rm and it's done.
Binary |= getMachineOpValue(MI, MO);
emitWordLE(Binary);
return;
}
// Encode Rn.
Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
// Encode Rm.
Binary |= getMachineOpValue(MI, OpIdx++);
// Encode shift_imm.
unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
Binary |= ShiftAmt << ARMII::ShiftShift;
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitBranchInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
if (TID.Opcode == ARM::TPsoft) {
llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
}
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Set signed_immed_24 field
Binary |= getMachineOpValue(MI, 0);
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitInlineJumpTable(unsigned JTIndex) {
// Remember the base address of the inline jump table.
uintptr_t JTBase = MCE.getCurrentPCValue();
JTI->addJumpTableBaseAddr(JTIndex, JTBase);
DOUT << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase << '\n';
// Now emit the jump table entries.
const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
if (IsPIC)
// DestBB address - JT base.
emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
else
// Absolute DestBB address.
emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
emitWordLE(0);
}
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitMiscBranchInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
// Handle jump tables.
if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
// First emit a ldr pc, [] instruction.
emitDataProcessingInstruction(MI, ARM::PC);
// Then emit the inline jump table.
unsigned JTIndex =
(TID.Opcode == ARM::BR_JTr)
? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
emitInlineJumpTable(JTIndex);
return;
} else if (TID.Opcode == ARM::BR_JTm) {
// First emit a ldr pc, [] instruction.
emitLoadStoreInstruction(MI, ARM::PC);
// Then emit the inline jump table.
emitInlineJumpTable(MI.getOperand(3).getIndex());
return;
}
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
if (TID.Opcode == ARM::BX_RET)
// The return register is LR.
Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
else
// otherwise, set the return register
Binary |= getMachineOpValue(MI, 0);
emitWordLE(Binary);
}
static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegD = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
bool isSPVFP = false;
RegD = ARMRegisterInfo::getRegisterNumbering(RegD, &isSPVFP);
if (!isSPVFP)
Binary |= RegD << ARMII::RegRdShift;
else {
Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
Binary |= (RegD & 0x01) << ARMII::D_BitShift;
}
return Binary;
}
static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegN = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
bool isSPVFP = false;
RegN = ARMRegisterInfo::getRegisterNumbering(RegN, &isSPVFP);
if (!isSPVFP)
Binary |= RegN << ARMII::RegRnShift;
else {
Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
Binary |= (RegN & 0x01) << ARMII::N_BitShift;
}
return Binary;
}
static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegM = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
bool isSPVFP = false;
RegM = ARMRegisterInfo::getRegisterNumbering(RegM, &isSPVFP);
if (!isSPVFP)
Binary |= RegM;
else {
Binary |= ((RegM & 0x1E) >> 1);
Binary |= (RegM & 0x01) << ARMII::M_BitShift;
}
return Binary;
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitVFPArithInstruction(const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
assert((Binary & ARMII::D_BitShift) == 0 &&
(Binary & ARMII::N_BitShift) == 0 &&
(Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
// Encode Dd / Sd.
Binary |= encodeVFPRd(MI, OpIdx++);
// If this is a two-address operand, skip it, e.g. FMACD.
if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
++OpIdx;
// Encode Dn / Sn.
if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
Binary |= encodeVFPRn(MI, OpIdx++);
if (OpIdx == TID.getNumOperands() ||
TID.OpInfo[OpIdx].isPredicate() ||
TID.OpInfo[OpIdx].isOptionalDef()) {
// FCMPEZD etc. has only one operand.
emitWordLE(Binary);
return;
}
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, OpIdx);
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitVFPConversionInstruction(
const MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
unsigned Form = TID.TSFlags & ARMII::FormMask;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
switch (Form) {
default: break;
case ARMII::VFPConv1Frm:
case ARMII::VFPConv2Frm:
case ARMII::VFPConv3Frm:
// Encode Dd / Sd.
Binary |= encodeVFPRd(MI, 0);
break;
case ARMII::VFPConv4Frm:
// Encode Dn / Sn.
Binary |= encodeVFPRn(MI, 0);
break;
case ARMII::VFPConv5Frm:
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, 0);
break;
}
switch (Form) {
default: break;
case ARMII::VFPConv1Frm:
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, 1);
break;
case ARMII::VFPConv2Frm:
case ARMII::VFPConv3Frm:
// Encode Dn / Sn.
Binary |= encodeVFPRn(MI, 1);
break;
case ARMII::VFPConv4Frm:
case ARMII::VFPConv5Frm:
// Encode Dd / Sd.
Binary |= encodeVFPRd(MI, 1);
break;
}
if (Form == ARMII::VFPConv5Frm)
// Encode Dn / Sn.
Binary |= encodeVFPRn(MI, 2);
else if (Form == ARMII::VFPConv3Frm)
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, 2);
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Encode Dd / Sd.
Binary |= encodeVFPRd(MI, OpIdx++);
// Encode address base.
const MachineOperand &Base = MI.getOperand(OpIdx++);
Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
// If there is a non-zero immediate offset, encode it.
if (Base.isReg()) {
const MachineOperand &Offset = MI.getOperand(OpIdx);
if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
Binary |= 1 << ARMII::U_BitShift;
Binary |= ImmOffs;
emitWordLE(Binary);
return;
}
}
// If immediate offset is omitted, default to +0.
Binary |= 1 << ARMII::U_BitShift;
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitVFPLoadStoreMultipleInstruction(
const MachineInstr &MI) {
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Set base address operand
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
// Set addressing mode by modifying bits U(23) and P(24)
const MachineOperand &MO = MI.getOperand(1);
Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm()));
// Set bit W(21)
if (ARM_AM::getAM5WBFlag(MO.getImm()))
Binary |= 0x1 << ARMII::W_BitShift;
// First register is encoded in Dd.
Binary |= encodeVFPRd(MI, 4);
// Number of registers are encoded in offset field.
unsigned NumRegs = 1;
for (unsigned i = 5, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || MO.isImplicit())
break;
++NumRegs;
}
Binary |= NumRegs * 2;
emitWordLE(Binary);
}
template<class CodeEmitter>
void Emitter<CodeEmitter>::emitMiscInstruction(const MachineInstr &MI) {
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
emitWordLE(Binary);
}
#include "ARMGenCodeEmitter.inc"