system headers above the includes of generated '.inc' files that
actually contain code. In a few targets this was already done pretty
consistently, but it wasn't done *really* consistently anywhere. It is
strictly cleaner IMO and necessary in a bunch of places where the
DEBUG_TYPE is referenced from the generated code. Consistency with the
necessary places trumps. Hopefully the build bots are OK with the
movement of intrin.h...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206838 91177308-0d34-0410-b5e6-96231b3b80d8
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.
This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:
- Header files that need to provide a DEBUG_TYPE for some inline code
can do so by defining the macro before their inline code and undef-ing
it afterward so the macro does not escape.
- We no longer have rampant ODR violations due to including headers with
different DEBUG_TYPE definitions. This may be mostly an academic
violation today, but with modules these types of violations are easy
to check for and potentially very relevant.
Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.
The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206822 91177308-0d34-0410-b5e6-96231b3b80d8
The comment claimed that the register class information wasn't available
in the assembly parser, but that's not really true. It's just annoying to
get to. Replace the helper functions with references to the auto-generated
information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206802 91177308-0d34-0410-b5e6-96231b3b80d8
Make sure only general purpose registers are valid for offset regs and
that 32-bit regs are only valid for sxtw and uxtw extends.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206799 91177308-0d34-0410-b5e6-96231b3b80d8
The canonical form for the extended addressing mode (e.g.,
"[x1, w2, uxtw #3]" is for the MCInst to have the second register be the
full 64-bit GPR64 register class. The instruction printer cleans up
the output for display to show the 32-bit register instead, per the
specification.
This simplifies 205893 now that the aliasing is handled in the printer
in 206495 so that the codegen path and the disassembler path give the
same MCInst form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206797 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This port includes the rudimentary latencies that were provided for
the Cortex-A53 Machine Model in the AArch64 backend. It also changes
the SchedAlias for COPY in the Cyclone model to an explicit
WriteRes mapping to avoid conflicts in other subtargets.
Differential Revision: http://reviews.llvm.org/D3427
Patch by Dave Estes <cestes@codeaurora.org>!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206652 91177308-0d34-0410-b5e6-96231b3b80d8
Code mostly copied from AArch64, just tidied up a trifle and plumbed
into the ARM64 way of doing things.
This also enables the AArch64 tests which inspired the previous
untested commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206574 91177308-0d34-0410-b5e6-96231b3b80d8
A vector extract followed by a dup can become a single instruction even if the
types don't match. AArch64 handled this in ISelLowering, but a few reasonably
simple patterns can take care of it in TableGen, so that's where I've put it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206573 91177308-0d34-0410-b5e6-96231b3b80d8
Tests will be coming very shortly when all the optimisations needed to
support AArch64's neon-copy.ll file are committed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206572 91177308-0d34-0410-b5e6-96231b3b80d8
Tests will be committed shortly when all optimisations needed to
support AArch64's neon-copy.ll file are supported.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206571 91177308-0d34-0410-b5e6-96231b3b80d8
ARM64 was scalarizing some vector comparisons which don't quite map to
AArch64's compare and mask instructions. AArch64's approach of sacrificing a
little efficiency to emulate them with the limited set available was better, so
I ported it across.
More "inspired by" than copy/paste since the backend's internal expectations
were a bit different, but the tests were invaluable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206570 91177308-0d34-0410-b5e6-96231b3b80d8
I enhanced it a little in the process. The decision shouldn't really be beased
on whether a BUILD_VECTOR is a splat: any set of constants will do the job
provided they're related in the correct way.
Also, the BUILD_VECTOR could be any operand of the incoming AND nodes, so it's
best to check for all 4 possibilities rather than assuming it'll be the RHS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206569 91177308-0d34-0410-b5e6-96231b3b80d8
It's not actually used to handle C or C++ ABI rules on ARM64, but could well be
emitted by other language front-ends, so it's as well to have a sensible
implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206568 91177308-0d34-0410-b5e6-96231b3b80d8
This patch improves the performance of vector creation in caseiswhere where
several of the lanes in the vector are a constant floating point value. It
also includes new patterns to fold together some of the instructions when the
value is 0.0f. Test cases included.
rdar://16349427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206496 91177308-0d34-0410-b5e6-96231b3b80d8
Update the SXT[BHW]/UXTW instruction aliases and the shifted reg addressing
mode handling.
PR19455 and rdar://16650642
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206495 91177308-0d34-0410-b5e6-96231b3b80d8
The commit of r205855:
Author: Arnold Schwaighofer <aschwaighofer@apple.com>
Date: Wed Apr 9 14:20:47 2014 +0000
SLPVectorizer: Only vectorize intrinsics whose operands are widened equally
The vectorizer only knows how to vectorize intrinics by widening all operands by
the same factor.
Patch by Tyler Nowicki!
exposed a backend bug causing a regression (Cannot select ctpop).
The commit msg is a bit confusing because the patch actually changes the
behavior for the loop-vectorizer as well. As things got refactored into a
helper ctpop got snuck in to the trivially-vectorizable helper which is now
used by both vectorizers. In other words, we started seeing vector-ctpops in
the backend.
This change makes ctpop LegalizeAction::Expand for the types not supported by
the byte-only CNT instruction. We may be able to custom-lower these later to
a single CNT but this is to fix the compiler crash first.
Fixes <rdar://problem/16578951>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206433 91177308-0d34-0410-b5e6-96231b3b80d8
The most important part here is that we should actuall emit the stubs we refer
to in the exception table, but as a side issue this uses more sensible & GCC
compatible representations for some of the bits of information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206380 91177308-0d34-0410-b5e6-96231b3b80d8
If we know that a particular 64-bit constant has all high bits zero, then we
can rely on the fact that 32-bit ARM64 instructions automatically zero out the
high bits of an x-register. This gives the expansion logic less constraints to
satisfy and so sometimes allows it to pick better sequences.
Came up while porting test/CodeGen/AArch64/movw-consts.ll: this will allow a
32-bit MOVN to be used in @test8 soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206379 91177308-0d34-0410-b5e6-96231b3b80d8
The second half of a split i128 was ending up in x7, which is not a good thing.
This is another part of PR19432.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206366 91177308-0d34-0410-b5e6-96231b3b80d8
Range'ify a bunch of loops, mainly. As a result, we have a variety
of objects via reference rather than by pointer, so propogate that
through the various helper functions where it makes sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206337 91177308-0d34-0410-b5e6-96231b3b80d8
Sometimes we need emit the bits that would actually be a MOVN when producing a
relocated MOVZ instruction (don't ask). But not always, a check which ARM64 got
wrong until now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206289 91177308-0d34-0410-b5e6-96231b3b80d8
I've left the MachO CodeGen as it is, there's a reasonable chance it should use
the GOT like ConstPools, but I'm not certain.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206288 91177308-0d34-0410-b5e6-96231b3b80d8
This brings it into line with the AArch64 behaviour and should open the way for
certain OpenCL features.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206286 91177308-0d34-0410-b5e6-96231b3b80d8
Code is mostly copied directly across, with a slight extension of the
ISelDAGToDAG function so that it can cope with the floating-point constants
being behind a litpool.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206285 91177308-0d34-0410-b5e6-96231b3b80d8