in the case where a loop exit value cannot be computed, instead of only in
some cases while using SCEVCouldNotCompute in others. This simplifies
getSCEVAtScope's callers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72375 91177308-0d34-0410-b5e6-96231b3b80d8
sending SCEVUnknowns to expandAddToGEP. This avoids the need for
expandAddToGEP to bend the rules and peek into SCEVUnknown
expressions.
Factor out the code for testing whether a SCEV can be factored by
a constant for use in a GEP index. This allows it to handle
SCEVAddRecExprs, by recursing.
As a result, SCEVExpander can now put more things in GEP indices,
so it emits fewer explicit mul instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72366 91177308-0d34-0410-b5e6-96231b3b80d8
Fix by clearing the rewriter cache before deleting the trivially dead
instructions.
Also make InsertedExpressions use an AssertingVH to catch these
bugs easier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72364 91177308-0d34-0410-b5e6-96231b3b80d8
and it wasn't generating calls through @PLT for these functions.
hasLocalLinkage() is now false for available_externally,
I attempted to fix the inliner and dce to handle available_externally properly.
It passed make check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72328 91177308-0d34-0410-b5e6-96231b3b80d8
will allow simplifying LegalizeDAG to eliminate type legalization. (I
have a patch to do that, but it's not quite finished; I'll commit it
once it's finished and I've fixed any review comments for this patch.)
See the comment at the beginning of
lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp for more details on the
motivation for this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72325 91177308-0d34-0410-b5e6-96231b3b80d8
code in preparation for code generation. The main thing it does
is handle the case when eh.exception calls (and, in a future
patch, eh.selector calls) are far away from landing pads. Right
now in practice you only find eh.exception calls close to landing
pads: either in a landing pad (the common case) or in a landing
pad successor, due to loop passes shifting them about. However
future exception handling improvements will result in calls far
from landing pads:
(1) Inlining of rewinds. Consider the following case:
In function @f:
...
invoke @g to label %normal unwind label %unwinds
...
unwinds:
%ex = call i8* @llvm.eh.exception()
...
In function @g:
...
invoke @something to label %continue unwind label %handler
...
handler:
%ex = call i8* @llvm.eh.exception()
... perform cleanups ...
"rethrow exception"
Now inline @g into @f. Currently this is turned into:
In function @f:
...
invoke @something to label %continue unwind label %handler
...
handler:
%ex = call i8* @llvm.eh.exception()
... perform cleanups ...
invoke "rethrow exception" to label %normal unwind label %unwinds
unwinds:
%ex = call i8* @llvm.eh.exception()
...
However we would like to simplify invoke of "rethrow exception" into
a branch to the %unwinds label. Then %unwinds is no longer a landing
pad, and the eh.exception call there is then far away from any landing
pads.
(2) Using the unwind instruction for cleanups.
It would be nice to have codegen handle the following case:
invoke @something to label %continue unwind label %run_cleanups
...
handler:
... perform cleanups ...
unwind
This requires turning "unwind" into a library call, which
necessarily takes a pointer to the exception as an argument
(this patch also does this unwind lowering). But that means
you are using eh.exception again far from a landing pad.
(3) Bugpoint simplifications. When bugpoint is simplifying
exception handling code it often generates eh.exception calls
far from a landing pad, which then causes codegen to assert.
Bugpoint then latches on to this assertion and loses sight
of the original problem.
Note that it is currently rare for this pass to actually do
anything. And in fact it normally shouldn't do anything at
all given the code coming out of llvm-gcc! But it does fire
a few times in the testsuite. As far as I can see this is
almost always due to the LoopStrengthReduce codegen pass
introducing pointless loop preheader blocks which are landing
pads and only contain a branch to another block. This other
block contains an eh.exception call. So probably by tweaking
LoopStrengthReduce a bit this can be avoided.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72276 91177308-0d34-0410-b5e6-96231b3b80d8
If this causes any new assertion failures that I didn't catch in
testing, the fix is usually to change "&v[0]" to "v.data()" for some
SmallVector v.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72221 91177308-0d34-0410-b5e6-96231b3b80d8
type as a target independent constant expression. I confess
that I didn't check that this method works as intended (though
I did test the equivalent hand-written IR a little). But what
could possibly go wrong!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72213 91177308-0d34-0410-b5e6-96231b3b80d8
mutex support. LLVM_MULTITHREADED indicates (or will indicate) the ability to run LLVM itself across multiple threads, and requires atomics support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72140 91177308-0d34-0410-b5e6-96231b3b80d8
instructions. It attempts to create high-level multi-operand GEPs,
though in cases where this isn't possible it falls back to casting
the pointer to i8* and emitting a GEP with that. Using GEP instructions
instead of ptrtoint+arithmetic+inttoptr helps pointer analyses that
don't use ScalarEvolution, such as BasicAliasAnalysis.
Also, make the AddrModeMatcher more aggressive in handling GEPs.
Previously it assumed that operand 0 of a GEP would require a register
in almost all cases. It now does extra checking and can do more
matching if operand 0 of the GEP is foldable. This fixes a problem
that was exposed by SCEVExpander using GEPs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72093 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce a new class (MachineCodeInfo) that the JIT can fill in with details. Right now, just the address and the size of the machine code are reported.
Patch by Evan Phoenix!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72040 91177308-0d34-0410-b5e6-96231b3b80d8
The following is checked:
* Operand counts: All explicit operands must be present.
* Register classes: All physical and virtual register operands must be
compatible with the register class required by the instruction descriptor.
* Register live intervals: Registers must be defined only once, and must be
defined before use.
The machine code verifier is enabled with the command-line option
'-verify-machineinstrs', or by defining the environment variable
LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive all the
verifier errors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71918 91177308-0d34-0410-b5e6-96231b3b80d8
to low-level sync operations.
The only one present at the moment is MemoryFence(), and only for the platforms
for which I could easily discern the proper way to do it. If your favorite platform
isn't represented, patches are welcome!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71770 91177308-0d34-0410-b5e6-96231b3b80d8
llvm.eh.sjlj.* for better clarity as to their purpose and scope. Add
a description of llvm.eh.sjlj.setjmp to ExceptionHandling.html.
(llvm.eh.sjlj.longjmp documentation coming when that implementation is
added).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71758 91177308-0d34-0410-b5e6-96231b3b80d8
of exception handling builtin sjlj targets in functions turns out not to
be necessary. Marking the intrinsic implementation in the .td file as
defining all registers is sufficient to get the context saved properly by
the containing function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71743 91177308-0d34-0410-b5e6-96231b3b80d8
booleans. This gives a better indication of what the "addReg()" is
doing. Remembering what all of those booleans mean isn't easy, especially if you
aren't spending all of your time in that code.
I took Jakob's suggestion and made it illegal to pass in "true" for the
flag. This should hopefully prevent any unintended misuse of this (by reverting
to the old way of using addReg()).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71722 91177308-0d34-0410-b5e6-96231b3b80d8
getNoopOrSignExtend, and getTruncateOrNoop. These are similar
to getTruncateOrZeroExtend etc., except that they assert that
the conversion is either not widening or narrowing, as
appropriate. These will be used in some upcoming fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71632 91177308-0d34-0410-b5e6-96231b3b80d8
without one. Use it where we were using abs on
int64_t objects.
(I strongly suspect the casts to unsigned in the
fragments in LoopStrengthReduce are not doing whatever
the original intent was, but the obvious change to
uint64_t doesn't work. Maybe later.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71612 91177308-0d34-0410-b5e6-96231b3b80d8
a supporting preliminary patch for GCC-compatible SjLJ exception handling. Note that these intrinsics are not designed to be invoked directly by the user, but
rather used by the front-end as target hooks for exception handling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71610 91177308-0d34-0410-b5e6-96231b3b80d8
and generalize it so that it can be used by IndVarSimplify. Implement the
base IndVarSimplify transformation code using IVUsers. This removes
TestOrigIVForWrap and associated code, as ScalarEvolution now has enough
builtin overflow detection and folding logic to handle all the same cases,
and more. Run "opt -iv-users -analyze -disable-output" on your favorite
loop for an example of what IVUsers does.
This lets IndVarSimplify eliminate IV casts and compute trip counts in
more cases. Also, this happens to finally fix the remaining testcases
in PR1301.
Now that IndVarSimplify is being more aggressive, it occasionally runs
into the problem where ScalarEvolutionExpander's code for avoiding
duplicate expansions makes it difficult to ensure that all expanded
instructions dominate all the instructions that will use them. As a
temporary measure, IndVarSimplify now uses a FixUsesBeforeDefs function
to fix up instructions inserted by SCEVExpander. Fortunately, this code
is contained, and can be easily removed once a more comprehensive
solution is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71535 91177308-0d34-0410-b5e6-96231b3b80d8
- reduces _static_ callee saved register spills
and restores similar to Chow's original algorithm.
- iterative implementation with simple heuristic
limits to mitigate compile time impact.
- handles placing spills/restores for multi-entry,
multi-exit regions in the Machine CFG without
splitting edges.
- passes test-suite in LLCBETA mode.
Added contains() method to ADT/SparseBitVector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71438 91177308-0d34-0410-b5e6-96231b3b80d8
which are not analyzed with SCEV techniques, which can require
brute-forcing through a large number of instructions. This
fixes a massive compile-time issue on 400.perlbench (in
particular, the loop in MD5Transform).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71259 91177308-0d34-0410-b5e6-96231b3b80d8
checking for bcopy... no
checking for getc_unlocked... Assertion failed: (0 && "Unknown SCEV kind!"), function operator(), file /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmCore.roots/llvmCore~obj/src/lib/Analysis/ScalarEvolution.cpp, line 511.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/libdecnumber/decUtility.c:360: internal compiler error: Abort trap
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[4]: *** [decUtility.o] Error 1
make[4]: *** Waiting for unfinished jobs....
Assertion failed: (0 && "Unknown SCEV kind!"), function operator(), file /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmCore.roots/llvmCore~obj/src/lib/Analysis/ScalarEvolution.cpp, line 511.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/libdecnumber/decNumber.c:5591: internal compiler error: Abort trap
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[4]: *** [decNumber.o] Error 1
make[3]: *** [all-stage2-libdecnumber] Error 2
make[3]: *** Waiting for unfinished jobs....
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71165 91177308-0d34-0410-b5e6-96231b3b80d8
the optimizers about this. For example, a readonly
function with no uses cannot be removed unless it is
also marked nounwind.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71071 91177308-0d34-0410-b5e6-96231b3b80d8
CallbackVH, with fixes. allUsesReplacedWith need to
walk the def-use chains and invalidate all users of a
value that is replaced. SCEVs of users need to be
recalcualted even if the new value is equivalent. Also,
make forgetLoopPHIs walk def-use chains, since any
SCEV that depends on a PHI should be recalculated when
more information about that PHI becomes available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70927 91177308-0d34-0410-b5e6-96231b3b80d8
shows up in -print-machineinstrs. This doesn't appear to affect anything, but it was
weird for some DBG_LABELs to have DebugLocs but not all of them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70921 91177308-0d34-0410-b5e6-96231b3b80d8
VirtRegMap keeps track of allocations so it knows what's not used. As a horrible hack, the stack coloring can color spill slots with *free* registers. That is, it replace reload and spills with copies from and to the free register. It unfold instructions that load and store the spill slot and replace them with register using variants.
Not yet enabled. This is part 1. More coming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70787 91177308-0d34-0410-b5e6-96231b3b80d8
makes ScalarEvolution::deleteValueFromRecords, and it's code that
subtly needed to be called before ReplaceAllUsesWith, unnecessary.
It also makes ValueDeletionListener unnecessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70645 91177308-0d34-0410-b5e6-96231b3b80d8
to make the copy constructor and destructor protected, and corresponding
adjustments to the unittests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70644 91177308-0d34-0410-b5e6-96231b3b80d8
of returning a list of pointers to Values that are deleted. This was
unsafe, because the pointers in the list are, by nature of what
RecursivelyDeleteDeadInstructions does, always dangling. Replace this
with a simple callback mechanism. This may eventually be removed if
all clients can reasonably be expected to use CallbackVH.
Use this to factor out the dead-phi-cycle-elimination code from LSR
utility function, and generalize it to use the
RecursivelyDeleteTriviallyDeadInstructions utility function.
This makes LSR more aggressive about eliminating dead PHI cycles;
adjust tests to either be less trivial or to simply expect fewer
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70636 91177308-0d34-0410-b5e6-96231b3b80d8
it also forget any SCEVs associated with loop-header PHIs in the loop,
as they may be dependent on trip count information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70633 91177308-0d34-0410-b5e6-96231b3b80d8
classes.
This is implemented as a function rather than a method on TargetRegisterClass
because it is symmetric in its arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70512 91177308-0d34-0410-b5e6-96231b3b80d8
compute an upper-bound value for the trip count, in addition to
the actual trip count. Use this to allow getZeroExtendExpr and
getSignExtendExpr to fold casts in more cases.
This may eventually morph into a more general value-range
analysis capability; there are certainly plenty of places where
more complete value-range information would allow more folding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70509 91177308-0d34-0410-b5e6-96231b3b80d8
an optimization level instead of a simple boolean telling it to generate code
"fast" or the other type of "fast".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70347 91177308-0d34-0410-b5e6-96231b3b80d8
Massive check in. This changes the "-fast" flag to "-O#" in llc. If you want to
use the old behavior, the flag is -O0. This change allows for finer-grained
control over which optimizations are run at different -O levels.
Most of this work was pretty mechanical. The majority of the fixes came from
verifying that a "fast" variable wasn't used anymore. The JIT still uses a
"Fast" flag. I'll change the JIT with a follow-up patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70343 91177308-0d34-0410-b5e6-96231b3b80d8
Also make the method non-asserting. It will return NULL when given an invalid subreg index.
The method is needed by an upcoming patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70296 91177308-0d34-0410-b5e6-96231b3b80d8
use the old behavior, the flag is -O0. This change allows for finer-grained
control over which optimizations are run at different -O levels.
Most of this work was pretty mechanical. The majority of the fixes came from
verifying that a "fast" variable wasn't used anymore. The JIT still uses a
"Fast" flag. I'm not 100% sure if it's necessary to change it there...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70270 91177308-0d34-0410-b5e6-96231b3b80d8
the comparison operators were not only unnecessary in the presence of the
implicit conversion; they caused ambiguous overload errors. So I deleted them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70243 91177308-0d34-0410-b5e6-96231b3b80d8
PR2957
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70225 91177308-0d34-0410-b5e6-96231b3b80d8
BLOCKNAME and SETRECORDNAME. This allows a bitcode
file to be self describing with pretty names for
records and blocks in addition to numbers. This
enhances llvm-bcanalyzer to use this to print prettily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70165 91177308-0d34-0410-b5e6-96231b3b80d8
state out of the BitstreamReader class into a BitstreamCursor class.
Doing this allows the client to have multiple cursors into the same
file, each with potentially different live block stacks and
abbreviation records.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70157 91177308-0d34-0410-b5e6-96231b3b80d8
true), and casts make me nervous and are verbose anyway, so here's a
ConstantInt::getSigned(Ty, int64_t) method. Just overloading
ConstantInt::get() to take an int64_t too would cause ambiguous
overload errors."
Patch by Jeffrey Yasskin!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69958 91177308-0d34-0410-b5e6-96231b3b80d8
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
A clean up of x86 shuffle code, and some canonicalizing in DAGCombiner is next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69952 91177308-0d34-0410-b5e6-96231b3b80d8
with the persistent insertion point, and change IndVars to make
use of it. This fixes a bug where IndVars was holding on to a
stale insertion point and forcing the SCEVExpander to continue to
use it.
This fixes PR4038.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69892 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a very subtle bug. vr defined by an implicit_def is allowed overlap with any register since it doesn't actually modify anything. However, if it's used as a two-address use, its live range can be extended and it can be spilled. The spiller must take care not to emit a reload for the vn number that's defined by the implicit_def. This is both a correctness and performance issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69743 91177308-0d34-0410-b5e6-96231b3b80d8
in the MachineFunction class, renaming it to addLiveIn for consistency with
the same method in MachineBasicBlock. Thanks for Anton for suggesting this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69615 91177308-0d34-0410-b5e6-96231b3b80d8
64 bit platforms when building with optimization.
So replace them by a hand-coded implementation.
This fixes PR3822.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69597 91177308-0d34-0410-b5e6-96231b3b80d8
value type union: this field was causing problems for
some compilers on 64 bit systems, presumably because
SimpleTy is 32 bits wide while the other fields are
64 bits wide.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69515 91177308-0d34-0410-b5e6-96231b3b80d8
type as the vector element type: allow them to be of
a wider integer type than the element type all the way
through the system, and not just as far as LegalizeDAG.
This should be safe because it used to be this way
(the old type legalizer would produce such nodes), so
backends should be able to handle it. In fact only
targets which have legal vector types with an illegal
promoted element type will ever see this (eg: <4 x i16>
on ppc). This fixes a regression with the new type
legalizer (vec_splat.ll). Also, treat SCALAR_TO_VECTOR
the same as BUILD_VECTOR. After all, it is just a
special case of BUILD_VECTOR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69467 91177308-0d34-0410-b5e6-96231b3b80d8
have pointer types, though in contrast to C pointer types, SCEV
addition is never implicitly scaled. This not only eliminates the
need for special code like IndVars' EliminatePointerRecurrence
and LSR's own GEP expansion code, it also does a better job because
it lets the normal optimizations handle pointer expressions just
like integer expressions.
Also, since LLVM IR GEPs can't directly index into multi-dimensional
VLAs, moving the GEP analysis out of client code and into the SCEV
framework makes it easier for clients to handle multi-dimensional
VLAs the same way as other arrays.
Some existing regression tests show improved optimization.
test/CodeGen/ARM/2007-03-13-InstrSched.ll in particular improved to
the point where if-conversion started kicking in; I turned it off
for this test to preserve the intent of the test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69258 91177308-0d34-0410-b5e6-96231b3b80d8
to support replacing a node with another that has a superset of
the result types. Use this instead of calling
ReplaceAllUsesOfValueWith for each value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69209 91177308-0d34-0410-b5e6-96231b3b80d8
promoted to legal types without changing the type of the vector. This is
following a suggestion from Duncan
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2009-February/019923.html).
The transformation that used to be done during type legalization is now
postponed to DAG legalization. This allows the BUILD_VECTORs to be optimized
and potentially handled specially by target-specific code.
It turns out that this is also consistent with an optimization done by the
DAG combiner: a BUILD_VECTOR and INSERT_VECTOR_ELT may be combined by
replacing one of the BUILD_VECTOR operands with the newly inserted element;
but INSERT_VECTOR_ELT allows its scalar operand to be larger than the
element type, with any extra high bits being implicitly truncated. The
result is a BUILD_VECTOR where one of the operands has a type larger the
the vector element type.
Any code that operates on BUILD_VECTORs may now need to be aware of the
potential type discrepancy between the vector element type and the
BUILD_VECTOR operands. This patch updates all of the places that I could
find to handle that case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68996 91177308-0d34-0410-b5e6-96231b3b80d8
Now debug_inlined section is covered by TAI->doesDwarfUsesInlineInfoSection(), which is false by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68964 91177308-0d34-0410-b5e6-96231b3b80d8
This will be used to replace things like X86's MOV32to32_.
Enhance ScheduleDAGSDNodesEmit to be more flexible and robust
in the presense of subregister superclasses and subclasses. It
can now cope with the definition of a virtual register being in
a subclass of a use.
Re-introduce the code for recording register superreg classes and
subreg classes. This is needed because when subreg extracts and
inserts get coalesced away, the virtual registers are left in
the correct subclass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68961 91177308-0d34-0410-b5e6-96231b3b80d8
to support C99 inline, GNU extern inline, etc. Related bugzilla's
include PR3517, PR3100, & PR2933. Nothing uses this yet, but it
appears to work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68940 91177308-0d34-0410-b5e6-96231b3b80d8
Create debug_inlined dwarf section using these information. This info is used by gdb, at least on Darwin, to enable better experience debugging inlined functions. See DwarfWriter.cpp for more information on structure of debug_inlined section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68847 91177308-0d34-0410-b5e6-96231b3b80d8
the key. This will cause it to create a new std::string, which isn't
wanted. Instead, pass back the "const char*". Modify the EmitString() method to
take a "const char*".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68741 91177308-0d34-0410-b5e6-96231b3b80d8
register destinations that are tied to source operands. The
TargetInstrDescr::findTiedToSrcOperand method silently fails for inline
assembly. The existing MachineInstr::isRegReDefinedByTwoAddr was very
close to doing what is needed, so this revision makes a few changes to
that method and also renames it to isRegTiedToUseOperand (for consistency
with the very similar isRegTiedToDefOperand and because it handles both
two-address instructions and inline assembly with tied registers).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68714 91177308-0d34-0410-b5e6-96231b3b80d8
with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce
SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG
instructions), and teach the DAGCombiner to take advantage of this on
targets which support it. This eliminates many redundant
zero-extension operations on x86-64.
This adds a new TargetLowering hook, isZExtFree. It's similar to
isTruncateFree, except it only applies to actual definitions, and not
no-op truncates which may not zero the high bits.
Also, this adds a new optimization to SimplifyDemandedBits: transform
operations like x+y into (zext (add (trunc x), (trunc y))) on targets
where all the casts are no-ops. In contexts where the high part of the
add is explicitly masked off, this allows the mask operation to be
eliminated. Fix the DAGCombiner to avoid undoing these transformations
to eliminate casts on targets where the casts are no-ops.
Also, this adds a new two-address lowering heuristic. Since
two-address lowering runs before coalescing, it helps to be able to
look through copies when deciding whether commuting and/or
three-address conversion are profitable.
Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle
the case that a clobber range extended both before and beyond an
existing live range. In that case, multiple live ranges need to be
added. This was exposed by the new subreg coalescing code.
Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the
spiller behavior it was looking for no longer occurrs with the new
instruction selection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
When compiling in Thumb mode, only the low (R0-R7) registers are available
for most instructions. Breaking the low registers into a new register class
handles this. Uses of R12, SP, etc, are handled explicitly where needed
with copies inserted to move results into low registers where the rest of
the code generator can deal with them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68545 91177308-0d34-0410-b5e6-96231b3b80d8
elements in a form that is efficient for the reader to just get a
pointer in memory and start reading. APIs to do efficient reading
and writing are still todo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68465 91177308-0d34-0410-b5e6-96231b3b80d8
Constant, MDString and MDNode which can only be used by globals with a name
that starts with "llvm." or as arguments to a function with the same naming
restriction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68420 91177308-0d34-0410-b5e6-96231b3b80d8
- Particularly nice for small constant strings, which get optimized
down nicely. On a synthetic benchmark writing out "hello" in a
loop, this is about 2x faster with gcc and 3x faster with
llvm-gcc. llc on insn-attrtab.bc from 403.gcc is about .5% faster.
- I tried for a fancier solution which wouldn't increase code size as
much (by trying to match constant arrays), but can't quite make it
fly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68396 91177308-0d34-0410-b5e6-96231b3b80d8
Note that these are distinct from TargetInstrInfo::INSERT_SUBREG
and TargetInstrInfo::EXTRACT_SUBREG, which are used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68355 91177308-0d34-0410-b5e6-96231b3b80d8
"The code was doing "if (End+NumInputs > Capacity) ...". If End is
close to 0xFFFFFFFF and NumInputs is large, it'll overflow, the
condition will come out false, and the vector won't grow to
accommodate the new elements, and the program will crash in memmove."
Patch by Jeffrey Yasskin!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68277 91177308-0d34-0410-b5e6-96231b3b80d8
- The code is silly, I'm just amusing myself. Rewrite to be efficient
if you like. :)
Also, if you wish to debate the proper names of the triple components
I'm all ears.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68252 91177308-0d34-0410-b5e6-96231b3b80d8
is appropriate. This helps visually differentiate host-oriented
calculations from target-oriented calculations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68227 91177308-0d34-0410-b5e6-96231b3b80d8
which are effectively smart pointers to Value*'s. They are both very light
weight and simple, and react to values being destroyed or being RAUW'd.
WeakVN does a best effort to follow a value around, including through RAUW
operations and will get nulled out of the value is destroyed. This is useful
for the eventual "metadata that references a value" work, because it is a
reference to a value that does not show up on its use_* list.
AssertingVH is a pointer that compiles down to a dumb raw pointer when
assertions are disabled. When enabled, it emits an assertion if the
pointed-to value is destroyed while it is still being referenced. This
is very useful for Maps and other things, and should have caught the recent
bugs in CallGraph and Reassociate, for example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68149 91177308-0d34-0410-b5e6-96231b3b80d8
entered via fall-through. Don't miss fallthroughs from blocks
terminated by conditional branches. Also, move
isOnlyReachableByFallthrough out of line.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68129 91177308-0d34-0410-b5e6-96231b3b80d8
llvm::sys::getOS{Name,Version}.
Right now the implementation just derives from LLVM_HOSTTRIPLE (which
is wrong, but it doesn't look like we have a define for the target
triple). Ideally this routine would actually be able to compute the
triple for targets we care about.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68118 91177308-0d34-0410-b5e6-96231b3b80d8
only reachable via fall-through edges. This dramatically reduces the
number of labels printed, and thus also the number of labels the
assembler must parse and remember.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68073 91177308-0d34-0410-b5e6-96231b3b80d8
you to do things like:
/// PointerUnion<int*, float*> P;
/// P = (int*)0;
/// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0"
/// X = P.get<int*>(); // ok.
/// Y = P.get<float*>(); // runtime assertion failure.
/// Z = P.get<double*>(); // does not compile.
/// P = (float*)0;
/// Y = P.get<float*>(); // ok.
/// X = P.get<int*>(); // runtime assertion failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67987 91177308-0d34-0410-b5e6-96231b3b80d8
function with a new NumLowBitsAvailable enum, which makes the
value available as an integer constant expression.
Add PointerLikeTypeTraits specializations for Instruction* and
Use** since they are only guaranteed 4-byte aligned.
Enhance PointerIntPair to know about (and enforce) the alignment
specified by PointerLikeTypeTraits. This should allow things
like PointerIntPair<PointerIntPair<void*, 1,bool>, 1, bool>
because the inner one knows that 2 low bits are free.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67979 91177308-0d34-0410-b5e6-96231b3b80d8
x * 40
=>
shlq $3, %rdi
leaq (%rdi,%rdi,4), %rax
This has the added benefit of allowing more multiply to be folded into addressing mode. e.g.
a * 24 + b
=>
leaq (%rdi,%rdi,2), %rax
leaq (%rsi,%rax,8), %rax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67917 91177308-0d34-0410-b5e6-96231b3b80d8
causing a bootstrap failure. Bootstraps here on
x86-32-linux and x86-64-linux. Requested by the
author Gabor Greif who says that a bug that might
have been causing the failure has since been fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67844 91177308-0d34-0410-b5e6-96231b3b80d8
static member functions, and add getIncomingValueNumForOperand
and getIncomingBlockNumForOperand, which are the respective
inverses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67522 91177308-0d34-0410-b5e6-96231b3b80d8
- Make type declarations match the struct/class keyword of the definition.
- Move AddSignalHandler into the namespace where it belongs.
- Correctly call functions from template base.
- Some other small changes.
With this patch, LLVM and Clang should build properly and with far less noise under VS2008.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67347 91177308-0d34-0410-b5e6-96231b3b80d8
the inliner; prevents nondeterministic behavior
when the same address is reallocated.
Don't build call graph nodes for debug intrinsic calls;
they're useless, and there were typically a lot of them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67311 91177308-0d34-0410-b5e6-96231b3b80d8
the set of blocks in which values are used, the set in which
values are live-through, and the set in which values are
killed. For the live-through and killed sets, conservative
approximations are used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67309 91177308-0d34-0410-b5e6-96231b3b80d8
- Use for exceptional buffer conditions in raw_ostream:write to shave
off a cycle or two.
- Please rename if you have a better one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67103 91177308-0d34-0410-b5e6-96231b3b80d8
a single character requires only one branch to follow slow path.
- Never use a buffer when writing on an unbuffered stream.
- Move default buffer size to header.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67066 91177308-0d34-0410-b5e6-96231b3b80d8
write as arguments.
- Add raw_ostream::GetNumBytesInBuffer.
- Privatize buffer pointers.
- Get rid of slow and unnecessary code for writing out large strings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67060 91177308-0d34-0410-b5e6-96231b3b80d8
- Flush a known non-empty buffers; enforces the interface to
flush_impl and kills off HandleFlush (which I saw no reason to be
an inline method, Chris?).
- Clarify invariant that flush_impl is only called with OutBufCur >
OutBufStart.
- This also cleary collects all places where we have to deal with the
buffer possibly not existing.
- A few more comments and fixing the unbuffered behavior remain in
this commit sequence.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67057 91177308-0d34-0410-b5e6-96231b3b80d8
by inserting explicit zero extensions where necessary. Included
is a testcase where SelectionDAG produces a virtual register
holding an i1 value which FastISel previously mistakenly assumed
to be zero-extended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66941 91177308-0d34-0410-b5e6-96231b3b80d8
changes.
For InvokeInst now all arguments begin at op_begin().
The Callee, Cont and Fail are now faster to get by
access relative to op_end().
This patch introduces some temporary uglyness in CallSite.
Next I'll bring CallInst up to a similar scheme and then
the uglyness will magically vanish.
This patch also exposes all the reliance of the libraries
on InvokeInst's operand ordering. I am thinking of taking
care of that too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66920 91177308-0d34-0410-b5e6-96231b3b80d8
1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants.
2. MachineConstantPool alignment field is also a log2 value.
3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values.
4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries.
5. Asm printer uses expensive data structure multimap to track constant pool entries by sections.
6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic.
Solutions:
1. ConstantPoolSDNode alignment field is changed to keep non-log2 value.
2. MachineConstantPool alignment field is also changed to keep non-log2 value.
3. Functions that create ConstantPool nodes are passing in non-log2 alignments.
4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT.
5. Asm printer uses cheaper data structure to group constant pool entries.
6. Asm printer compute entry offsets after grouping is done.
7. Change JIT code to compute entry offsets on the fly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8