llvm-6502/lib/Target/X86/X86ISelLowering.h

553 lines
24 KiB
C
Raw Normal View History

//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef X86ISELLOWERING_H
#define X86ISELLOWERING_H
#include "X86Subtarget.h"
#include "X86RegisterInfo.h"
#include "X86MachineFunctionInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/CallingConvLower.h"
namespace llvm {
namespace X86ISD {
// X86 Specific DAG Nodes
enum NodeType {
// Start the numbering where the builtin ops leave off.
FIRST_NUMBER = ISD::BUILTIN_OP_END+X86::INSTRUCTION_LIST_END,
/// BSF - Bit scan forward.
/// BSR - Bit scan reverse.
BSF,
BSR,
/// SHLD, SHRD - Double shift instructions. These correspond to
/// X86::SHLDxx and X86::SHRDxx instructions.
SHLD,
SHRD,
/// FAND - Bitwise logical AND of floating point values. This corresponds
/// to X86::ANDPS or X86::ANDPD.
FAND,
/// FOR - Bitwise logical OR of floating point values. This corresponds
/// to X86::ORPS or X86::ORPD.
FOR,
/// FXOR - Bitwise logical XOR of floating point values. This corresponds
/// to X86::XORPS or X86::XORPD.
FXOR,
/// FSRL - Bitwise logical right shift of floating point values. These
/// corresponds to X86::PSRLDQ.
FSRL,
/// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
/// integer source in memory and FP reg result. This corresponds to the
/// X86::FILD*m instructions. It has three inputs (token chain, address,
/// and source type) and two outputs (FP value and token chain). FILD_FLAG
/// also produces a flag).
FILD,
FILD_FLAG,
/// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
/// integer destination in memory and a FP reg source. This corresponds
/// to the X86::FIST*m instructions and the rounding mode change stuff. It
/// has two inputs (token chain and address) and two outputs (int value
/// and token chain).
FP_TO_INT16_IN_MEM,
FP_TO_INT32_IN_MEM,
FP_TO_INT64_IN_MEM,
/// FLD - This instruction implements an extending load to FP stack slots.
/// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
/// operand, ptr to load from, and a ValueType node indicating the type
/// to load to.
FLD,
/// FST - This instruction implements a truncating store to FP stack
/// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
/// chain operand, value to store, address, and a ValueType to store it
/// as.
FST,
/// FP_GET_RESULT - This corresponds to FpGETRESULT pseudo instruction
/// which copies from ST(0) to the destination. It takes a chain and
/// writes a RFP result and a chain.
FP_GET_RESULT,
/// FP_GET_RESULT2 - Same as FP_GET_RESULT except it copies two values
/// ST(0) and ST(1).
FP_GET_RESULT2,
/// FP_SET_RESULT - This corresponds to FpSETRESULT pseudo instruction
/// which copies the source operand to ST(0). It takes a chain+value and
/// returns a chain and a flag.
FP_SET_RESULT,
/// CALL/TAILCALL - These operations represent an abstract X86 call
/// instruction, which includes a bunch of information. In particular the
/// operands of these node are:
///
/// #0 - The incoming token chain
/// #1 - The callee
/// #2 - The number of arg bytes the caller pushes on the stack.
/// #3 - The number of arg bytes the callee pops off the stack.
/// #4 - The value to pass in AL/AX/EAX (optional)
/// #5 - The value to pass in DL/DX/EDX (optional)
///
/// The result values of these nodes are:
///
/// #0 - The outgoing token chain
/// #1 - The first register result value (optional)
/// #2 - The second register result value (optional)
///
/// The CALL vs TAILCALL distinction boils down to whether the callee is
/// known not to modify the caller's stack frame, as is standard with
/// LLVM.
CALL,
TAILCALL,
/// RDTSC_DAG - This operation implements the lowering for
/// readcyclecounter
RDTSC_DAG,
/// X86 compare and logical compare instructions.
CMP, COMI, UCOMI,
/// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag
/// operand produced by a CMP instruction.
SETCC,
/// X86 conditional moves. Operand 1 and operand 2 are the two values
/// to select from (operand 1 is a R/W operand). Operand 3 is the
/// condition code, and operand 4 is the flag operand produced by a CMP
/// or TEST instruction. It also writes a flag result.
CMOV,
/// X86 conditional branches. Operand 1 is the chain operand, operand 2
/// is the block to branch if condition is true, operand 3 is the
/// condition code, and operand 4 is the flag operand produced by a CMP
/// or TEST instruction.
BRCOND,
/// Return with a flag operand. Operand 1 is the chain operand, operand
/// 2 is the number of bytes of stack to pop.
RET_FLAG,
/// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
REP_STOS,
/// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
REP_MOVS,
/// GlobalBaseReg - On Darwin, this node represents the result of the popl
/// at function entry, used for PIC code.
GlobalBaseReg,
/// Wrapper - A wrapper node for TargetConstantPool,
/// TargetExternalSymbol, and TargetGlobalAddress.
Wrapper,
/// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
/// relative displacements.
WrapperRIP,
/// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
/// i32, corresponds to X86::PEXTRB.
PEXTRB,
/// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
/// i32, corresponds to X86::PEXTRW.
PEXTRW,
/// INSERTPS - Insert any element of a 4 x float vector into any element
/// of a destination 4 x floatvector.
INSERTPS,
/// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
/// corresponds to X86::PINSRB.
PINSRB,
/// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
/// corresponds to X86::PINSRW.
PINSRW,
/// FMAX, FMIN - Floating point max and min.
///
FMAX, FMIN,
/// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
/// approximation. Note that these typically require refinement
/// in order to obtain suitable precision.
FRSQRT, FRCP,
// Thread Local Storage
TLSADDR, THREAD_POINTER,
// Exception Handling helpers
EH_RETURN,
// tail call return
// oeprand #0 chain
// operand #1 callee (register or absolute)
// operand #2 stack adjustment
// operand #3 optional in flag
TC_RETURN,
// compare and swap
LCMPXCHG_DAG,
// Store FP control world into i16 memory
FNSTCW16m
};
}
/// Define some predicates that are used for node matching.
namespace X86 {
/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFD.
bool isPSHUFDMask(SDNode *N);
/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFD.
bool isPSHUFHWMask(SDNode *N);
/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFD.
bool isPSHUFLWMask(SDNode *N);
/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to SHUFP*.
bool isSHUFPMask(SDNode *N);
/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
bool isMOVHLPSMask(SDNode *N);
/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
/// <2, 3, 2, 3>
bool isMOVHLPS_v_undef_Mask(SDNode *N);
/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
bool isMOVLPMask(SDNode *N);
/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
/// as well as MOVLHPS.
bool isMOVHPMask(SDNode *N);
/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKL.
bool isUNPCKLMask(SDNode *N, bool V2IsSplat = false);
/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKH.
bool isUNPCKHMask(SDNode *N, bool V2IsSplat = false);
/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
/// <0, 0, 1, 1>
bool isUNPCKL_v_undef_Mask(SDNode *N);
/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
/// <2, 2, 3, 3>
bool isUNPCKH_v_undef_Mask(SDNode *N);
/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSS,
/// MOVSD, and MOVD, i.e. setting the lowest element.
bool isMOVLMask(SDNode *N);
/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
bool isMOVSHDUPMask(SDNode *N);
/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
bool isMOVSLDUPMask(SDNode *N);
/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of a single element.
bool isSplatMask(SDNode *N);
/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of zero element.
bool isSplatLoMask(SDNode *N);
/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
/// instructions.
unsigned getShuffleSHUFImmediate(SDNode *N);
/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
/// instructions.
unsigned getShufflePSHUFHWImmediate(SDNode *N);
/// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
/// instructions.
unsigned getShufflePSHUFLWImmediate(SDNode *N);
}
namespace X86 {
/// X86_64SRet - These represent different ways to implement x86_64 struct
/// returns call results.
enum X86_64SRet {
InMemory, // Really is sret, returns in memory.
InGPR64, // Returns in a pair of 64-bit integer registers.
InSSE, // Returns in a pair of SSE registers.
InX87 // Returns in a pair of f80 X87 registers.
};
}
//===--------------------------------------------------------------------===//
// X86TargetLowering - X86 Implementation of the TargetLowering interface
class X86TargetLowering : public TargetLowering {
int VarArgsFrameIndex; // FrameIndex for start of varargs area.
int RegSaveFrameIndex; // X86-64 vararg func register save area.
unsigned VarArgsGPOffset; // X86-64 vararg func int reg offset.
unsigned VarArgsFPOffset; // X86-64 vararg func fp reg offset.
int BytesToPopOnReturn; // Number of arg bytes ret should pop.
int BytesCallerReserves; // Number of arg bytes caller makes.
public:
explicit X86TargetLowering(TargetMachine &TM);
/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
/// jumptable.
SDOperand getPICJumpTableRelocBase(SDOperand Table,
SelectionDAG &DAG) const;
// Return the number of bytes that a function should pop when it returns (in
// addition to the space used by the return address).
//
unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
// Return the number of bytes that the caller reserves for arguments passed
// to this function.
unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
/// getStackPtrReg - Return the stack pointer register we are using: either
/// ESP or RSP.
unsigned getStackPtrReg() const { return X86StackPtr; }
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. For X86, aggregates
/// that contains are placed at 16-byte boundaries while the rest are at
/// 4-byte boundaries.
virtual unsigned getByValTypeAlignment(const Type *Ty) const;
/// LowerOperation - Provide custom lowering hooks for some operations.
///
virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
/// ExpandOperation - Custom lower the specified operation, splitting the
/// value into two pieces.
///
virtual SDNode *ExpandOperationResult(SDNode *N, SelectionDAG &DAG);
virtual SDOperand PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB);
/// getTargetNodeName - This method returns the name of a target specific
/// DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const;
/// computeMaskedBitsForTargetNode - Determine which of the bits specified
/// in Mask are known to be either zero or one and return them in the
/// KnownZero/KnownOne bitsets.
virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
const APInt &Mask,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth = 0) const;
SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG);
ConstraintType getConstraintType(const std::string &Constraint) const;
std::vector<unsigned>
getRegClassForInlineAsmConstraint(const std::string &Constraint,
MVT::ValueType VT) const;
virtual void lowerXConstraint(MVT::ValueType ConstraintVT,
std::string&) const;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
virtual void LowerAsmOperandForConstraint(SDOperand Op,
char ConstraintLetter,
std::vector<SDOperand> &Ops,
SelectionDAG &DAG);
/// getRegForInlineAsmConstraint - Given a physical register constraint
/// (e.g. {edx}), return the register number and the register class for the
/// register. This should only be used for C_Register constraints. On
/// error, this returns a register number of 0.
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
MVT::ValueType VT) const;
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
/// isTruncateFree - Return true if it's free to truncate a value of
/// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
/// register EAX to i16 by referencing its sub-register AX.
virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
virtual bool isTruncateFree(MVT::ValueType VT1, MVT::ValueType VT2) const;
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask
/// values are assumed to be legal.
virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const;
/// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
/// used by Targets can use this to indicate if there is a suitable
/// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
/// pool entry.
virtual bool isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
MVT::ValueType EVT,
SelectionDAG &DAG) const;
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Target which want to do tail call
/// optimization should implement this function.
virtual bool IsEligibleForTailCallOptimization(SDOperand Call,
SDOperand Ret,
SelectionDAG &DAG) const;
virtual const TargetSubtarget* getSubtarget() {
return static_cast<const TargetSubtarget*>(Subtarget);
}
/// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
/// computed in an SSE register, not on the X87 floating point stack.
bool isScalarFPTypeInSSEReg(MVT::ValueType VT) const {
return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
(VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
}
private:
/// Subtarget - Keep a pointer to the X86Subtarget around so that we can
/// make the right decision when generating code for different targets.
const X86Subtarget *Subtarget;
const TargetRegisterInfo *RegInfo;
/// X86StackPtr - X86 physical register used as stack ptr.
unsigned X86StackPtr;
/// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
/// floating point ops.
/// When SSE is available, use it for f32 operations.
/// When SSE2 is available, use it for f64 operations.
bool X86ScalarSSEf32;
bool X86ScalarSSEf64;
X86::X86_64SRet ClassifyX86_64SRetCallReturn(const Function *Fn);
void X86_64AnalyzeSRetCallOperands(SDNode*, CCAssignFn*, CCState&);
SDNode *LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode*TheCall,
unsigned CallingConv, SelectionDAG &DAG);
SDNode *LowerCallResultToTwo64BitRegs(SDOperand Chain, SDOperand InFlag,
SDNode *TheCall, unsigned Reg1,
unsigned Reg2, MVT::ValueType VT,
SelectionDAG &DAG);
SDNode *LowerCallResultToTwoX87Regs(SDOperand Chain, SDOperand InFlag,
SDNode *TheCall, SelectionDAG &DAG);
SDOperand LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
const CCValAssign &VA, MachineFrameInfo *MFI,
unsigned CC, SDOperand Root, unsigned i);
SDOperand LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
const SDOperand &StackPtr,
const CCValAssign &VA, SDOperand Chain,
SDOperand Arg);
// Call lowering helpers.
bool IsCalleePop(SDOperand Op);
bool CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall);
bool CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall);
CCAssignFn *CCAssignFnForNode(SDOperand Op) const;
NameDecorationStyle NameDecorationForFORMAL_ARGUMENTS(SDOperand Op);
unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG);
std::pair<SDOperand,SDOperand> FP_TO_SINTHelper(SDOperand Op,
SelectionDAG &DAG);
SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerShift(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerFABS(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerFNEG(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerSELECT(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerBRCOND(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerMEMSET(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerMEMCPYInline(SDOperand Dest, SDOperand Source,
SDOperand Chain, unsigned Size, unsigned Align,
SelectionDAG &DAG);
SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerVACOPY(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerFRAME_TO_ARGS_OFFSET(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerTRAMPOLINE(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerCTLZ(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerCTTZ(SDOperand Op, SelectionDAG &DAG);
SDOperand LowerCAS(SDOperand Op, SelectionDAG &DAG);
SDNode *ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG);
SDNode *ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG);
};
}
#endif // X86ISELLOWERING_H