llvm-6502/lib/Target/Mips/MipsAsmPrinter.cpp

1090 lines
37 KiB
C++
Raw Normal View History

//===-- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format MIPS assembly language.
//
//===----------------------------------------------------------------------===//
#include "InstPrinter/MipsInstPrinter.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "MCTargetDesc/MipsMCNaCl.h"
#include "Mips.h"
#include "MipsAsmPrinter.h"
#include "MipsInstrInfo.h"
#include "MipsMCInstLower.h"
#include "MipsTargetMachine.h"
#include "MipsTargetStreamer.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Mangler.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
Remove some really nasty uses of hasRawTextSupport. When MC was first added, targets could use hasRawTextSupport to keep features working before they were added to the MC interface. The design goal of MC is to provide an uniform api for printing assembly and object files. Short of relaxations and other corner cases, a object file is just another representation of the assembly. It was never the intention that targets would keep doing things like if (hasRawTextSupport()) Set flags in one way. else Set flags in another way. When they do that they create two code paths and the object file is no longer just another representation of the assembly. This also then requires testing with llc -filetype=obj, which is extremelly brittle. This patch removes some of these hacks by replacing them with smaller ones. The ARM flag setting is trivial, so I just moved it to the constructor. For Mips, the patch adds two temporary hack directives that allow the assembly to represent the same things as the object file was already able to. The hope is that the mips developers will replace the hack directives with the same ones that gas uses and drop the -print-hack-directives flag. I will also try to implement a target streamer interface, so that we can move this out of the common code. In summary, for any new work, two rules of the thumb are * Don't use "llc -filetype=obj" in tests. * Don't add calls to hasRawTextSupport. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192035 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-05 16:42:21 +00:00
#include "llvm/MC/MCELFStreamer.h"
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
#include <string>
using namespace llvm;
#define DEBUG_TYPE "mips-asm-printer"
MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
return static_cast<MipsTargetStreamer &>(*OutStreamer.getTargetStreamer());
}
bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<MipsSubtarget>();
This patch enables llvm to switch between compiling for mips32/mips64 and mips16 on a per function basis. Because this patch is somewhat involved I have provide an overview of the key pieces of it. The patch is written so as to not change the behavior of the non mixed mode. We have tested this a lot but it is something new to switch subtargets so we don't want any chance of regression in the mainline compiler until we have more confidence in this. Mips32/64 are very different from Mip16 as is the case of ARM vs Thumb1. For that reason there are derived versions of the register info, frame info, instruction info and instruction selection classes. Now we register three separate passes for instruction selection. One which is used to switch subtargets (MipsModuleISelDAGToDAG.cpp) and then one for each of the current subtargets (Mips16ISelDAGToDAG.cpp and MipsSEISelDAGToDAG.cpp). When the ModuleISel pass runs, it determines if there is a need to switch subtargets and if so, the owning pointers in MipsTargetMachine are appropriately changed. When 16Isel or SEIsel is run, they will return immediately without doing any work if the current subtarget mode does not apply to them. In addition, MipsAsmPrinter needs to be reset on a function basis. The pass BasicTargetTransformInfo is substituted with a null pass since the pass is immutable and really needs to be a function pass for it to be used with changing subtargets. This will be fixed in a follow on patch. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179118 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-09 19:46:01 +00:00
// Initialize TargetLoweringObjectFile.
const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
This patch enables llvm to switch between compiling for mips32/mips64 and mips16 on a per function basis. Because this patch is somewhat involved I have provide an overview of the key pieces of it. The patch is written so as to not change the behavior of the non mixed mode. We have tested this a lot but it is something new to switch subtargets so we don't want any chance of regression in the mainline compiler until we have more confidence in this. Mips32/64 are very different from Mip16 as is the case of ARM vs Thumb1. For that reason there are derived versions of the register info, frame info, instruction info and instruction selection classes. Now we register three separate passes for instruction selection. One which is used to switch subtargets (MipsModuleISelDAGToDAG.cpp) and then one for each of the current subtargets (Mips16ISelDAGToDAG.cpp and MipsSEISelDAGToDAG.cpp). When the ModuleISel pass runs, it determines if there is a need to switch subtargets and if so, the owning pointers in MipsTargetMachine are appropriately changed. When 16Isel or SEIsel is run, they will return immediately without doing any work if the current subtarget mode does not apply to them. In addition, MipsAsmPrinter needs to be reset on a function basis. The pass BasicTargetTransformInfo is substituted with a null pass since the pass is immutable and really needs to be a function pass for it to be used with changing subtargets. This will be fixed in a follow on patch. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179118 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-09 19:46:01 +00:00
.Initialize(OutContext, TM);
MipsFI = MF.getInfo<MipsFunctionInfo>();
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
if (Subtarget->inMips16Mode())
for (std::map<
const char *,
const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator
it = MipsFI->StubsNeeded.begin();
it != MipsFI->StubsNeeded.end(); ++it) {
const char *Symbol = it->first;
const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second;
if (StubsNeeded.find(Symbol) == StubsNeeded.end())
StubsNeeded[Symbol] = Signature;
}
MCP = MF.getConstantPool();
// In NaCl, all indirect jump targets must be aligned to bundle size.
if (Subtarget->isTargetNaCl())
NaClAlignIndirectJumpTargets(MF);
AsmPrinter::runOnMachineFunction(MF);
return true;
}
bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
MCOp = MCInstLowering.LowerOperand(MO);
return MCOp.isValid();
}
#include "MipsGenMCPseudoLowering.inc"
// Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
// JALR, or JALR64 as appropriate for the target
void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
const MachineInstr *MI) {
[mips][mips64r6] Use JALR for returns instead of JR (which is not available on MIPS32r6/MIPS64r6) Summary: RET, and RET_MM have been replaced by a pseudo named PseudoReturn. In addition a version with a 64-bit GPR named PseudoReturn64 has been added. Instruction selection for a return matches RetRA, which is expanded post register allocation to PseudoReturn/PseudoReturn64. During MipsAsmPrinter, this PseudoReturn/PseudoReturn64 are emitted as: - (JALR64 $zero, $rs) on MIPS64r6 - (JALR $zero, $rs) on MIPS32r6 - (JR_MM $rs) on microMIPS - (JR $rs) otherwise On MIPS32r6/MIPS64r6, 'jr $rs' is an alias for 'jalr $zero, $rs'. To aid development and review (specifically, to ensure all cases of jr are updated), these aliases are temporarily named 'r6.jr' instead of 'jr'. A follow up patch will change them back to the correct mnemonic. Added (JALR $zero, $rs) to MipsNaClELFStreamer's definition of an indirect jump, and removed it from its definition of a call. Note: I haven't accounted for MIPS64 in MipsNaClELFStreamer since it's doesn't appear to account for any MIPS64-specifics. The return instruction created as part of eh_return expansion is now expanded using expandRetRA() so we use the right return instruction on MIPS32r6/MIPS64r6 ('jalr $zero, $rs'). Also, fixed a misuse of isABI_N64() to detect 64-bit wide registers in expandEhReturn(). Reviewers: jkolek, vmedic, mseaborn, zoran.jovanovic, dsanders Reviewed By: dsanders Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D4268 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212604 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-09 10:16:07 +00:00
bool HasLinkReg = false;
MCInst TmpInst0;
if (Subtarget->hasMips64r6()) {
// MIPS64r6 should use (JALR64 ZERO_64, $rs)
TmpInst0.setOpcode(Mips::JALR64);
HasLinkReg = true;
} else if (Subtarget->hasMips32r6()) {
// MIPS32r6 should use (JALR ZERO, $rs)
TmpInst0.setOpcode(Mips::JALR);
HasLinkReg = true;
} else if (Subtarget->inMicroMipsMode())
// microMIPS should use (JR_MM $rs)
TmpInst0.setOpcode(Mips::JR_MM);
else {
// Everything else should use (JR $rs)
TmpInst0.setOpcode(Mips::JR);
}
MCOperand MCOp;
if (HasLinkReg) {
unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
TmpInst0.addOperand(MCOperand::CreateReg(ZeroReg));
}
lowerOperand(MI->getOperand(0), MCOp);
TmpInst0.addOperand(MCOp);
EmitToStreamer(OutStreamer, TmpInst0);
}
void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) {
MipsTargetStreamer &TS = getTargetStreamer();
TS.forbidModuleDirective();
if (MI->isDebugValue()) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
PrintDebugValueComment(MI, OS);
return;
}
// If we just ended a constant pool, mark it as such.
if (InConstantPool && MI->getOpcode() != Mips::CONSTPOOL_ENTRY) {
OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
InConstantPool = false;
}
if (MI->getOpcode() == Mips::CONSTPOOL_ENTRY) {
// CONSTPOOL_ENTRY - This instruction represents a floating
//constant pool in the function. The first operand is the ID#
// for this instruction, the second is the index into the
// MachineConstantPool that this is, the third is the size in
// bytes of this constant pool entry.
// The required alignment is specified on the basic block holding this MI.
//
unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
// If this is the first entry of the pool, mark it.
if (!InConstantPool) {
OutStreamer.EmitDataRegion(MCDR_DataRegion);
InConstantPool = true;
}
OutStreamer.EmitLabel(GetCPISymbol(LabelId));
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
if (MCPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
else
EmitGlobalConstant(MCPE.Val.ConstVal);
return;
}
MachineBasicBlock::const_instr_iterator I = MI;
MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
do {
// Do any auto-generated pseudo lowerings.
if (emitPseudoExpansionLowering(OutStreamer, &*I))
continue;
[mips][mips64r6] Use JALR for returns instead of JR (which is not available on MIPS32r6/MIPS64r6) Summary: RET, and RET_MM have been replaced by a pseudo named PseudoReturn. In addition a version with a 64-bit GPR named PseudoReturn64 has been added. Instruction selection for a return matches RetRA, which is expanded post register allocation to PseudoReturn/PseudoReturn64. During MipsAsmPrinter, this PseudoReturn/PseudoReturn64 are emitted as: - (JALR64 $zero, $rs) on MIPS64r6 - (JALR $zero, $rs) on MIPS32r6 - (JR_MM $rs) on microMIPS - (JR $rs) otherwise On MIPS32r6/MIPS64r6, 'jr $rs' is an alias for 'jalr $zero, $rs'. To aid development and review (specifically, to ensure all cases of jr are updated), these aliases are temporarily named 'r6.jr' instead of 'jr'. A follow up patch will change them back to the correct mnemonic. Added (JALR $zero, $rs) to MipsNaClELFStreamer's definition of an indirect jump, and removed it from its definition of a call. Note: I haven't accounted for MIPS64 in MipsNaClELFStreamer since it's doesn't appear to account for any MIPS64-specifics. The return instruction created as part of eh_return expansion is now expanded using expandRetRA() so we use the right return instruction on MIPS32r6/MIPS64r6 ('jalr $zero, $rs'). Also, fixed a misuse of isABI_N64() to detect 64-bit wide registers in expandEhReturn(). Reviewers: jkolek, vmedic, mseaborn, zoran.jovanovic, dsanders Reviewed By: dsanders Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D4268 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212604 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-09 10:16:07 +00:00
if (I->getOpcode() == Mips::PseudoReturn ||
I->getOpcode() == Mips::PseudoReturn64 ||
I->getOpcode() == Mips::PseudoIndirectBranch ||
I->getOpcode() == Mips::PseudoIndirectBranch64) {
emitPseudoIndirectBranch(OutStreamer, &*I);
[mips][mips64r6] Use JALR for returns instead of JR (which is not available on MIPS32r6/MIPS64r6) Summary: RET, and RET_MM have been replaced by a pseudo named PseudoReturn. In addition a version with a 64-bit GPR named PseudoReturn64 has been added. Instruction selection for a return matches RetRA, which is expanded post register allocation to PseudoReturn/PseudoReturn64. During MipsAsmPrinter, this PseudoReturn/PseudoReturn64 are emitted as: - (JALR64 $zero, $rs) on MIPS64r6 - (JALR $zero, $rs) on MIPS32r6 - (JR_MM $rs) on microMIPS - (JR $rs) otherwise On MIPS32r6/MIPS64r6, 'jr $rs' is an alias for 'jalr $zero, $rs'. To aid development and review (specifically, to ensure all cases of jr are updated), these aliases are temporarily named 'r6.jr' instead of 'jr'. A follow up patch will change them back to the correct mnemonic. Added (JALR $zero, $rs) to MipsNaClELFStreamer's definition of an indirect jump, and removed it from its definition of a call. Note: I haven't accounted for MIPS64 in MipsNaClELFStreamer since it's doesn't appear to account for any MIPS64-specifics. The return instruction created as part of eh_return expansion is now expanded using expandRetRA() so we use the right return instruction on MIPS32r6/MIPS64r6 ('jalr $zero, $rs'). Also, fixed a misuse of isABI_N64() to detect 64-bit wide registers in expandEhReturn(). Reviewers: jkolek, vmedic, mseaborn, zoran.jovanovic, dsanders Reviewed By: dsanders Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D4268 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212604 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-09 10:16:07 +00:00
continue;
}
// The inMips16Mode() test is not permanent.
// Some instructions are marked as pseudo right now which
// would make the test fail for the wrong reason but
// that will be fixed soon. We need this here because we are
// removing another test for this situation downstream in the
// callchain.
//
if (I->isPseudo() && !Subtarget->inMips16Mode()
&& !isLongBranchPseudo(I->getOpcode()))
llvm_unreachable("Pseudo opcode found in EmitInstruction()");
MCInst TmpInst0;
MCInstLowering.Lower(I, TmpInst0);
EmitToStreamer(OutStreamer, TmpInst0);
} while ((++I != E) && I->isInsideBundle()); // Delay slot check
}
//===----------------------------------------------------------------------===//
//
// Mips Asm Directives
//
// -- Frame directive "frame Stackpointer, Stacksize, RARegister"
// Describe the stack frame.
//
// -- Mask directives "(f)mask bitmask, offset"
// Tells the assembler which registers are saved and where.
// bitmask - contain a little endian bitset indicating which registers are
// saved on function prologue (e.g. with a 0x80000000 mask, the
// assembler knows the register 31 (RA) is saved at prologue.
// offset - the position before stack pointer subtraction indicating where
// the first saved register on prologue is located. (e.g. with a
//
// Consider the following function prologue:
//
// .frame $fp,48,$ra
// .mask 0xc0000000,-8
// addiu $sp, $sp, -48
// sw $ra, 40($sp)
// sw $fp, 36($sp)
//
// With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
// 30 (FP) are saved at prologue. As the save order on prologue is from
// left to right, RA is saved first. A -8 offset means that after the
// stack pointer subtration, the first register in the mask (RA) will be
// saved at address 48-8=40.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Mask directives
//===----------------------------------------------------------------------===//
// Create a bitmask with all callee saved registers for CPU or Floating Point
// registers. For CPU registers consider RA, GP and FP for saving if necessary.
void MipsAsmPrinter::printSavedRegsBitmask() {
// CPU and FPU Saved Registers Bitmasks
unsigned CPUBitmask = 0, FPUBitmask = 0;
int CPUTopSavedRegOff, FPUTopSavedRegOff;
// Set the CPU and FPU Bitmasks
const MachineFrameInfo *MFI = MF->getFrameInfo();
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
// size of stack area to which FP callee-saved regs are saved.
unsigned CPURegSize = Mips::GPR32RegClass.getSize();
unsigned FGR32RegSize = Mips::FGR32RegClass.getSize();
unsigned AFGR64RegSize = Mips::AFGR64RegClass.getSize();
bool HasAFGR64Reg = false;
unsigned CSFPRegsSize = 0;
for (const auto &I : CSI) {
unsigned Reg = I.getReg();
unsigned RegNum = TRI->getEncodingValue(Reg);
// If it's a floating point register, set the FPU Bitmask.
// If it's a general purpose register, set the CPU Bitmask.
if (Mips::FGR32RegClass.contains(Reg)) {
FPUBitmask |= (1 << RegNum);
CSFPRegsSize += FGR32RegSize;
} else if (Mips::AFGR64RegClass.contains(Reg)) {
FPUBitmask |= (3 << RegNum);
CSFPRegsSize += AFGR64RegSize;
HasAFGR64Reg = true;
} else if (Mips::GPR32RegClass.contains(Reg))
CPUBitmask |= (1 << RegNum);
}
// FP Regs are saved right below where the virtual frame pointer points to.
FPUTopSavedRegOff = FPUBitmask ?
(HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
// CPU Regs are saved below FP Regs.
CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
MipsTargetStreamer &TS = getTargetStreamer();
// Print CPUBitmask
TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
// Print FPUBitmask
TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
}
//===----------------------------------------------------------------------===//
// Frame and Set directives
//===----------------------------------------------------------------------===//
/// Frame Directive
void MipsAsmPrinter::emitFrameDirective() {
const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();
unsigned stackReg = RI.getFrameRegister(*MF);
unsigned returnReg = RI.getRARegister();
unsigned stackSize = MF->getFrameInfo()->getStackSize();
getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
}
/// Emit Set directives.
const char *MipsAsmPrinter::getCurrentABIString() const {
switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
case MipsABIInfo::ABI::O32: return "abi32";
case MipsABIInfo::ABI::N32: return "abiN32";
case MipsABIInfo::ABI::N64: return "abi64";
case MipsABIInfo::ABI::EABI: return "eabi32"; // TODO: handle eabi64
default: llvm_unreachable("Unknown Mips ABI");
}
}
void MipsAsmPrinter::EmitFunctionEntryLabel() {
MipsTargetStreamer &TS = getTargetStreamer();
// NaCl sandboxing requires that indirect call instructions are masked.
// This means that function entry points should be bundle-aligned.
if (Subtarget->isTargetNaCl())
EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
if (Subtarget->inMicroMipsMode())
TS.emitDirectiveSetMicroMips();
else
TS.emitDirectiveSetNoMicroMips();
if (Subtarget->inMips16Mode())
TS.emitDirectiveSetMips16();
else
TS.emitDirectiveSetNoMips16();
TS.emitDirectiveEnt(*CurrentFnSym);
OutStreamer.EmitLabel(CurrentFnSym);
}
/// EmitFunctionBodyStart - Targets can override this to emit stuff before
/// the first basic block in the function.
void MipsAsmPrinter::EmitFunctionBodyStart() {
MipsTargetStreamer &TS = getTargetStreamer();
MCInstLowering.Initialize(&MF->getContext());
bool IsNakedFunction = MF->getFunction()->hasFnAttribute(Attribute::Naked);
if (!IsNakedFunction)
emitFrameDirective();
if (!IsNakedFunction)
printSavedRegsBitmask();
if (!Subtarget->inMips16Mode()) {
TS.emitDirectiveSetNoReorder();
TS.emitDirectiveSetNoMacro();
TS.emitDirectiveSetNoAt();
}
}
/// EmitFunctionBodyEnd - Targets can override this to emit stuff after
/// the last basic block in the function.
void MipsAsmPrinter::EmitFunctionBodyEnd() {
MipsTargetStreamer &TS = getTargetStreamer();
// There are instruction for this macros, but they must
// always be at the function end, and we can't emit and
// break with BB logic.
if (!Subtarget->inMips16Mode()) {
TS.emitDirectiveSetAt();
TS.emitDirectiveSetMacro();
TS.emitDirectiveSetReorder();
}
TS.emitDirectiveEnd(CurrentFnSym->getName());
// Make sure to terminate any constant pools that were at the end
// of the function.
if (!InConstantPool)
return;
InConstantPool = false;
OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
}
/// isBlockOnlyReachableByFallthough - Return true if the basic block has
/// exactly one predecessor and the control transfer mechanism between
/// the predecessor and this block is a fall-through.
bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
MBB) const {
// The predecessor has to be immediately before this block.
const MachineBasicBlock *Pred = *MBB->pred_begin();
// If the predecessor is a switch statement, assume a jump table
// implementation, so it is not a fall through.
if (const BasicBlock *bb = Pred->getBasicBlock())
if (isa<SwitchInst>(bb->getTerminator()))
return false;
// If this is a landing pad, it isn't a fall through. If it has no preds,
// then nothing falls through to it.
if (MBB->isLandingPad() || MBB->pred_empty())
return false;
// If there isn't exactly one predecessor, it can't be a fall through.
MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
++PI2;
if (PI2 != MBB->pred_end())
return false;
// The predecessor has to be immediately before this block.
if (!Pred->isLayoutSuccessor(MBB))
return false;
// If the block is completely empty, then it definitely does fall through.
if (Pred->empty())
return true;
// Otherwise, check the last instruction.
// Check if the last terminator is an unconditional branch.
MachineBasicBlock::const_iterator I = Pred->end();
while (I != Pred->begin() && !(--I)->isTerminator()) ;
return !I->isBarrier();
}
// Print out an operand for an inline asm expression.
bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
const MachineOperand &MO = MI->getOperand(OpNum);
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI,OpNum,AsmVariant,ExtraCode,O);
case 'X': // hex const int
if ((MO.getType()) != MachineOperand::MO_Immediate)
return true;
O << "0x" << StringRef(utohexstr(MO.getImm())).lower();
return false;
case 'x': // hex const int (low 16 bits)
if ((MO.getType()) != MachineOperand::MO_Immediate)
return true;
O << "0x" << StringRef(utohexstr(MO.getImm() & 0xffff)).lower();
return false;
case 'd': // decimal const int
if ((MO.getType()) != MachineOperand::MO_Immediate)
return true;
O << MO.getImm();
return false;
case 'm': // decimal const int minus 1
if ((MO.getType()) != MachineOperand::MO_Immediate)
return true;
O << MO.getImm() - 1;
return false;
case 'z': {
// $0 if zero, regular printing otherwise
if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) {
O << "$0";
return false;
}
// If not, call printOperand as normal.
break;
}
case 'D': // Second part of a double word register operand
case 'L': // Low order register of a double word register operand
case 'M': // High order register of a double word register operand
{
if (OpNum == 0)
return true;
const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
if (!FlagsOP.isImm())
return true;
unsigned Flags = FlagsOP.getImm();
unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
// Number of registers represented by this operand. We are looking
// for 2 for 32 bit mode and 1 for 64 bit mode.
if (NumVals != 2) {
if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
unsigned Reg = MO.getReg();
O << '$' << MipsInstPrinter::getRegisterName(Reg);
return false;
}
return true;
}
unsigned RegOp = OpNum;
if (!Subtarget->isGP64bit()){
// Endianess reverses which register holds the high or low value
// between M and L.
switch(ExtraCode[0]) {
case 'M':
RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
break;
case 'L':
RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
break;
case 'D': // Always the second part
RegOp = OpNum + 1;
}
if (RegOp >= MI->getNumOperands())
return true;
const MachineOperand &MO = MI->getOperand(RegOp);
if (!MO.isReg())
return true;
unsigned Reg = MO.getReg();
O << '$' << MipsInstPrinter::getRegisterName(Reg);
return false;
}
}
case 'w':
// Print MSA registers for the 'f' constraint
// In LLVM, the 'w' modifier doesn't need to do anything.
// We can just call printOperand as normal.
break;
}
}
printOperand(MI, OpNum, O);
return false;
}
bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum, unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
const MachineOperand &BaseMO = MI->getOperand(OpNum);
const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
assert(BaseMO.isReg() && "Unexpected base pointer for inline asm memory operand.");
assert(OffsetMO.isImm() && "Unexpected offset for inline asm memory operand.");
int Offset = OffsetMO.getImm();
// Currently we are expecting either no ExtraCode or 'D'
if (ExtraCode) {
if (ExtraCode[0] == 'D')
Offset += 4;
else
return true; // Unknown modifier.
// FIXME: M = high order bits
// FIXME: L = low order bits
}
O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg()) << ")";
return false;
}
void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
raw_ostream &O) {
const DataLayout *DL = TM.getDataLayout();
const MachineOperand &MO = MI->getOperand(opNum);
bool closeP = false;
if (MO.getTargetFlags())
closeP = true;
switch(MO.getTargetFlags()) {
case MipsII::MO_GPREL: O << "%gp_rel("; break;
case MipsII::MO_GOT_CALL: O << "%call16("; break;
case MipsII::MO_GOT: O << "%got("; break;
case MipsII::MO_ABS_HI: O << "%hi("; break;
case MipsII::MO_ABS_LO: O << "%lo("; break;
case MipsII::MO_TLSGD: O << "%tlsgd("; break;
case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
}
switch (MO.getType()) {
case MachineOperand::MO_Register:
O << '$'
<< StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
break;
case MachineOperand::MO_Immediate:
O << MO.getImm();
break;
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
case MachineOperand::MO_GlobalAddress:
O << *getSymbol(MO.getGlobal());
break;
case MachineOperand::MO_BlockAddress: {
MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
O << BA->getName();
break;
}
case MachineOperand::MO_ConstantPoolIndex:
O << DL->getPrivateGlobalPrefix() << "CPI"
<< getFunctionNumber() << "_" << MO.getIndex();
if (MO.getOffset())
O << "+" << MO.getOffset();
break;
default:
llvm_unreachable("<unknown operand type>");
}
if (closeP) O << ")";
}
void MipsAsmPrinter::printUnsignedImm(const MachineInstr *MI, int opNum,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(opNum);
if (MO.isImm())
O << (unsigned short int)MO.getImm();
else
printOperand(MI, opNum, O);
}
void MipsAsmPrinter::printUnsignedImm8(const MachineInstr *MI, int opNum,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(opNum);
if (MO.isImm())
O << (unsigned short int)(unsigned char)MO.getImm();
else
printOperand(MI, opNum, O);
}
void MipsAsmPrinter::
printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
// Load/Store memory operands -- imm($reg)
// If PIC target the target is loaded as the
// pattern lw $25,%call16($28)
// opNum can be invalid if instruction has reglist as operand.
// MemOperand is always last operand of instruction (base + offset).
switch (MI->getOpcode()) {
default:
break;
case Mips::SWM32_MM:
case Mips::LWM32_MM:
opNum = MI->getNumOperands() - 2;
break;
}
printOperand(MI, opNum+1, O);
O << "(";
printOperand(MI, opNum, O);
O << ")";
}
void MipsAsmPrinter::
printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
// when using stack locations for not load/store instructions
// print the same way as all normal 3 operand instructions.
printOperand(MI, opNum, O);
O << ", ";
printOperand(MI, opNum+1, O);
return;
}
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
void MipsAsmPrinter::
printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
const char *Modifier) {
const MachineOperand &MO = MI->getOperand(opNum);
O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
Several changes to Mips backend, experimental fp support being the most important. - Cleanup in the Subtarget info with addition of new features, not all support yet, but they allow the future inclusion of features easier. Among new features, we have : Arch family info (mips1, mips2, ...), ABI info (o32, eabi), 64-bit integer and float registers, allegrex vector FPU (VFPU), single float only support. - TargetMachine now detects allegrex core. - Added allegrex (Mips32r2) sext_inreg instructions. - *Added Float Point Instructions*, handling single float only, and aliased accesses for 32-bit FPUs. - Some cleanup in FP instruction formats and FP register classes. - Calling conventions improved to support mips 32-bit EABI. - Added Asm Printer support for fp cond codes. - Added support for sret copy to a return register. - EABI support added into LowerCALL and FORMAL_ARGS. - MipsFunctionInfo now keeps a virtual register per function to track the sret on function entry until function ret. - MipsInstrInfo FP support into methods (isMoveInstr, isLoadFromStackSlot, ...), FP cond codes mapping and initial FP Branch Analysis. - Two new Mips SDNode to handle fp branch and compare instructions : FPBrcond, FPCmp - MipsTargetLowering : handling different FP classes, Allegrex support, sret return copy, no homing location within EABI, non 32-bit stack objects arguments, and asm constraint for float. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53146 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-05 19:05:21 +00:00
}
void MipsAsmPrinter::
printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
if (i != opNum) O << ", ";
printOperand(MI, i, O);
}
}
void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) {
// Compute MIPS architecture attributes based on the default subtarget
// that we'd have constructed. Module level directives aren't LTO
// clean anyhow.
// FIXME: For ifunc related functions we could iterate over and look
// for a feature string that doesn't match the default one.
StringRef TT = TM.getTargetTriple();
StringRef CPU =
MIPS_MC::selectMipsCPU(TM.getTargetTriple(), TM.getTargetCPU());
StringRef FS = TM.getTargetFeatureString();
const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM);
bool IsABICalls = STI.isABICalls();
const MipsABIInfo &ABI = MTM.getABI();
if (IsABICalls) {
getTargetStreamer().emitDirectiveAbiCalls();
Reloc::Model RM = TM.getRelocationModel();
// FIXME: This condition should be a lot more complicated that it is here.
// Ideally it should test for properties of the ABI and not the ABI
// itself.
// For the moment, I'm only correcting enough to make MIPS-IV work.
if (RM == Reloc::Static && !ABI.IsN64())
getTargetStreamer().emitDirectiveOptionPic0();
}
// Tell the assembler which ABI we are using
std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
OutStreamer.SwitchSection(
OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));
// NaN: At the moment we only support:
// 1. .nan legacy (default)
// 2. .nan 2008
STI.isNaN2008() ? getTargetStreamer().emitDirectiveNaN2008()
: getTargetStreamer().emitDirectiveNaNLegacy();
// TODO: handle O64 ABI
if (ABI.IsEABI()) {
if (STI.isGP32bit())
OutStreamer.SwitchSection(OutContext.getELFSection(".gcc_compiled_long32",
ELF::SHT_PROGBITS, 0));
else
OutStreamer.SwitchSection(OutContext.getELFSection(".gcc_compiled_long64",
ELF::SHT_PROGBITS, 0));
}
[mips] Add support for -modd-spreg/-mno-odd-spreg Summary: When -mno-odd-spreg is in effect, 32-bit floating point values are not permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit floating point comparison results from being written to odd registers. This option has three purposes: * It allows support for certain MIPS implementations such as loongson-3a that do not allow the use of odd registers for single precision arithmetic. * When using -mfpxx, -mno-odd-spreg is the default and this allows us to statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1 instructions to/from odd registers are guaranteed not to appear for any reason. Once this has been established, the user can then re-enable -modd-spreg to regain the use of all 32 single-precision registers. * When using -mfp64 and -mno-odd-spreg together, an O32 extension named O32 FP64A is used as the ABI. This is intended to provide almost all functionality of an FR=1 processor but can also be executed on a FR=0 core with the assistance of a hardware compatibility mode which emulates FR=0 behaviour on an FR=1 processor. * Added '.module oddspreg' and '.module nooddspreg' each of which update the .MIPS.abiflags section appropriately * Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller doesn't have to remember to do it. * MipsABIFlags now calculates the flags1 and flags2 member on demand rather than trying to maintain them in the same format they will be emitted in. There is one portion of the -mfp64 and -mno-odd-spreg combination that is not implemented yet. Moves to/from odd-numbered double-precision registers must not use mtc1. I will fix this in a follow-up. Differential Revision: http://reviews.llvm.org/D4383 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212717 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-10 13:38:23 +00:00
getTargetStreamer().updateABIInfo(STI);
// We should always emit a '.module fp=...' but binutils 2.24 does not accept
// it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
// -mfp64) and omit it otherwise.
if (ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit()))
getTargetStreamer().emitDirectiveModuleFP();
// We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
// accept it. We therefore emit it when it contradicts the default or an
// option has changed the default (i.e. FPXX) and omit it otherwise.
if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
getTargetStreamer().emitDirectiveModuleOddSPReg(STI.useOddSPReg(),
ABI.IsO32());
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
}
void MipsAsmPrinter::emitInlineAsmStart() const {
MipsTargetStreamer &TS = getTargetStreamer();
// GCC's choice of assembler options for inline assembly code ('at', 'macro'
// and 'reorder') is different from LLVM's choice for generated code ('noat',
// 'nomacro' and 'noreorder').
// In order to maintain compatibility with inline assembly code which depends
// on GCC's assembler options being used, we have to switch to those options
// for the duration of the inline assembly block and then switch back.
TS.emitDirectiveSetPush();
TS.emitDirectiveSetAt();
TS.emitDirectiveSetMacro();
TS.emitDirectiveSetReorder();
OutStreamer.AddBlankLine();
}
void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
const MCSubtargetInfo *EndInfo) const {
OutStreamer.AddBlankLine();
getTargetStreamer().emitDirectiveSetPop();
}
void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
MCInst I;
I.setOpcode(Mips::JAL);
I.addOperand(
MCOperand::CreateExpr(MCSymbolRefExpr::Create(Symbol, OutContext)));
OutStreamer.EmitInstruction(I, STI);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
}
void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
unsigned Reg) {
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
MCInst I;
I.setOpcode(Opcode);
I.addOperand(MCOperand::CreateReg(Reg));
OutStreamer.EmitInstruction(I, STI);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
}
void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
unsigned Opcode, unsigned Reg1,
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
unsigned Reg2) {
MCInst I;
//
// Because of the current td files for Mips32, the operands for MTC1
// appear backwards from their normal assembly order. It's not a trivial
// change to fix this in the td file so we adjust for it here.
//
if (Opcode == Mips::MTC1) {
unsigned Temp = Reg1;
Reg1 = Reg2;
Reg2 = Temp;
}
I.setOpcode(Opcode);
I.addOperand(MCOperand::CreateReg(Reg1));
I.addOperand(MCOperand::CreateReg(Reg2));
OutStreamer.EmitInstruction(I, STI);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
}
void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
unsigned Opcode, unsigned Reg1,
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
unsigned Reg2, unsigned Reg3) {
MCInst I;
I.setOpcode(Opcode);
I.addOperand(MCOperand::CreateReg(Reg1));
I.addOperand(MCOperand::CreateReg(Reg2));
I.addOperand(MCOperand::CreateReg(Reg3));
OutStreamer.EmitInstruction(I, STI);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
}
void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
unsigned MovOpc, unsigned Reg1,
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
unsigned Reg2, unsigned FPReg1,
unsigned FPReg2, bool LE) {
if (!LE) {
unsigned temp = Reg1;
Reg1 = Reg2;
Reg2 = temp;
}
EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
}
void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
Mips16HardFloatInfo::FPParamVariant PV,
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
bool LE, bool ToFP) {
using namespace Mips16HardFloatInfo;
unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
switch (PV) {
case FSig:
EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
break;
case FFSig:
EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
break;
case FDSig:
EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
break;
case DSig:
EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
break;
case DDSig:
EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
break;
case DFSig:
EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
break;
case NoSig:
return;
}
}
void MipsAsmPrinter::EmitSwapFPIntRetval(
const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
bool LE) {
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
using namespace Mips16HardFloatInfo;
unsigned MovOpc = Mips::MFC1;
switch (RV) {
case FRet:
EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
break;
case DRet:
EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
break;
case CFRet:
EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
break;
case CDRet:
EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
break;
case NoFPRet:
break;
}
}
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
void MipsAsmPrinter::EmitFPCallStub(
const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
MCSymbol *MSymbol = OutContext.GetOrCreateSymbol(StringRef(Symbol));
using namespace Mips16HardFloatInfo;
bool LE = getDataLayout().isLittleEndian();
// Construct a local MCSubtargetInfo here.
// This is because the MachineFunction won't exist (but have not yet been
// freed) and since we're at the global level we can use the default
// constructed subtarget.
std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
TM.getTargetTriple(), TM.getTargetCPU(), TM.getTargetFeatureString()));
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
//
// .global xxxx
//
OutStreamer.EmitSymbolAttribute(MSymbol, MCSA_Global);
const char *RetType;
//
// make the comment field identifying the return and parameter
// types of the floating point stub
// # Stub function to call rettype xxxx (params)
//
switch (Signature->RetSig) {
case FRet:
RetType = "float";
break;
case DRet:
RetType = "double";
break;
case CFRet:
RetType = "complex";
break;
case CDRet:
RetType = "double complex";
break;
case NoFPRet:
RetType = "";
break;
}
const char *Parms;
switch (Signature->ParamSig) {
case FSig:
Parms = "float";
break;
case FFSig:
Parms = "float, float";
break;
case FDSig:
Parms = "float, double";
break;
case DSig:
Parms = "double";
break;
case DDSig:
Parms = "double, double";
break;
case DFSig:
Parms = "double, float";
break;
case NoSig:
Parms = "";
break;
}
OutStreamer.AddComment("\t# Stub function to call " + Twine(RetType) + " " +
Twine(Symbol) + " (" + Twine(Parms) + ")");
//
// probably not necessary but we save and restore the current section state
//
OutStreamer.PushSection();
//
// .section mips16.call.fpxxxx,"ax",@progbits
//
const MCSectionELF *M = OutContext.getELFSection(
".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
OutStreamer.SwitchSection(M, nullptr);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
//
// .align 2
//
OutStreamer.EmitValueToAlignment(4);
MipsTargetStreamer &TS = getTargetStreamer();
//
// .set nomips16
// .set nomicromips
//
TS.emitDirectiveSetNoMips16();
TS.emitDirectiveSetNoMicroMips();
//
// .ent __call_stub_fp_xxxx
// .type __call_stub_fp_xxxx,@function
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
// __call_stub_fp_xxxx:
//
std::string x = "__call_stub_fp_" + std::string(Symbol);
MCSymbol *Stub = OutContext.GetOrCreateSymbol(StringRef(x));
TS.emitDirectiveEnt(*Stub);
MCSymbol *MType =
OutContext.GetOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
OutStreamer.EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
OutStreamer.EmitLabel(Stub);
// Only handle non-pic for now.
assert(TM.getRelocationModel() != Reloc::PIC_ &&
"should not be here if we are compiling pic");
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
TS.emitDirectiveSetReorder();
//
// We need to add a MipsMCExpr class to MCTargetDesc to fully implement
// stubs without raw text but this current patch is for compiler generated
// functions and they all return some value.
// The calling sequence for non pic is different in that case and we need
// to implement %lo and %hi in order to handle the case of no return value
// See the corresponding method in Mips16HardFloat for details.
//
// mov the return address to S2.
// we have no stack space to store it and we are about to make another call.
// We need to make sure that the enclosing function knows to save S2
// This should have already been handled.
//
// Mov $18, $31
EmitInstrRegRegReg(*STI, Mips::ADDu, Mips::S2, Mips::RA, Mips::ZERO);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
// Jal xxxx
//
EmitJal(*STI, MSymbol);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
// fix return values
EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
//
// do the return
// if (Signature->RetSig == NoFPRet)
// llvm_unreachable("should not be any stubs here with no return value");
// else
EmitInstrReg(*STI, Mips::JR, Mips::S2);
This patch has two main functions: 1) Fix a specific bug when certain conversion functions are called in a program compiled as mips16 with hard float and the program is linked as c++. There are two libraries that are reversed in the link order with gcc/g++ and clang/clang++ for mips16 in this case and the proper stubs will then not be called. These stubs are normally handled in the Mips16HardFloat pass but in this case we don't know at that time that we need to generate the stubs. This must all be handled later in code generation and we have moved this functionality to MipsAsmPrinter. When linked as C (gcc or clang) the proper stubs are linked in from libc. 2) Set up the infrastructure to handle 90% of what is in the Mips16HardFloat pass in this new area of MipsAsmPrinter. This is a more logical place to handle this and we have known for some time that we needed to move the code later and not implement it using inline asm as we do now but it was not clear exactly where to do this and what mechanism should be used. Now it's clear to us how to do this and this patch contains the infrastructure to move most of this to MipsAsmPrinter but the actual moving will be done in a follow on patch. The same infrastructure is used to fix this current bug as described in #1. This change was requested by the list during the original putback of the Mips16HardFloat pass but was not practical for us do at that time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201426 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-14 19:16:39 +00:00
MCSymbol *Tmp = OutContext.CreateTempSymbol();
OutStreamer.EmitLabel(Tmp);
const MCSymbolRefExpr *E = MCSymbolRefExpr::Create(Stub, OutContext);
const MCSymbolRefExpr *T = MCSymbolRefExpr::Create(Tmp, OutContext);
const MCExpr *T_min_E = MCBinaryExpr::CreateSub(T, E, OutContext);
OutStreamer.EmitELFSize(Stub, T_min_E);
TS.emitDirectiveEnd(x);
OutStreamer.PopSection();
}
void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) {
// Emit needed stubs
//
for (std::map<
const char *,
const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator
it = StubsNeeded.begin();
it != StubsNeeded.end(); ++it) {
const char *Symbol = it->first;
const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second;
EmitFPCallStub(Symbol, Signature);
}
// return to the text section
OutStreamer.SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
}
void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
raw_ostream &OS) {
// TODO: implement
}
// Align all targets of indirect branches on bundle size. Used only if target
// is NaCl.
void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
// Align all blocks that are jumped to through jump table.
if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
for (unsigned I = 0; I < JT.size(); ++I) {
const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs;
for (unsigned J = 0; J < MBBs.size(); ++J)
MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
}
}
// If basic block address is taken, block can be target of indirect branch.
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB) {
if (MBB->hasAddressTaken())
MBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
}
}
bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
return (Opcode == Mips::LONG_BRANCH_LUi
|| Opcode == Mips::LONG_BRANCH_ADDiu
|| Opcode == Mips::LONG_BRANCH_DADDiu);
}
// Force static initialization.
extern "C" void LLVMInitializeMipsAsmPrinter() {
RegisterAsmPrinter<MipsAsmPrinter> X(TheMipsTarget);
RegisterAsmPrinter<MipsAsmPrinter> Y(TheMipselTarget);
RegisterAsmPrinter<MipsAsmPrinter> A(TheMips64Target);
RegisterAsmPrinter<MipsAsmPrinter> B(TheMips64elTarget);
Reapply TargetRegistry refactoring commits. --- Reverse-merging r75799 into '.': U test/Analysis/PointerTracking U include/llvm/Target/TargetMachineRegistry.h U include/llvm/Target/TargetMachine.h U include/llvm/Target/TargetRegistry.h U include/llvm/Target/TargetSelect.h U tools/lto/LTOCodeGenerator.cpp U tools/lto/LTOModule.cpp U tools/llc/llc.cpp U lib/Target/PowerPC/PPCTargetMachine.h U lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp U lib/Target/PowerPC/PPCTargetMachine.cpp U lib/Target/PowerPC/PPC.h U lib/Target/ARM/ARMTargetMachine.cpp U lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp U lib/Target/ARM/ARMTargetMachine.h U lib/Target/ARM/ARM.h U lib/Target/XCore/XCoreTargetMachine.cpp U lib/Target/XCore/XCoreTargetMachine.h U lib/Target/PIC16/PIC16TargetMachine.cpp U lib/Target/PIC16/PIC16TargetMachine.h U lib/Target/Alpha/AsmPrinter/AlphaAsmPrinter.cpp U lib/Target/Alpha/AlphaTargetMachine.cpp U lib/Target/Alpha/AlphaTargetMachine.h U lib/Target/X86/X86TargetMachine.h U lib/Target/X86/X86.h U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.h U lib/Target/X86/AsmPrinter/X86AsmPrinter.cpp U lib/Target/X86/AsmPrinter/X86IntelAsmPrinter.h U lib/Target/X86/X86TargetMachine.cpp U lib/Target/MSP430/MSP430TargetMachine.cpp U lib/Target/MSP430/MSP430TargetMachine.h U lib/Target/CppBackend/CPPTargetMachine.h U lib/Target/CppBackend/CPPBackend.cpp U lib/Target/CBackend/CTargetMachine.h U lib/Target/CBackend/CBackend.cpp U lib/Target/TargetMachine.cpp U lib/Target/IA64/IA64TargetMachine.cpp U lib/Target/IA64/AsmPrinter/IA64AsmPrinter.cpp U lib/Target/IA64/IA64TargetMachine.h U lib/Target/IA64/IA64.h U lib/Target/MSIL/MSILWriter.cpp U lib/Target/CellSPU/SPUTargetMachine.h U lib/Target/CellSPU/SPU.h U lib/Target/CellSPU/AsmPrinter/SPUAsmPrinter.cpp U lib/Target/CellSPU/SPUTargetMachine.cpp U lib/Target/Mips/AsmPrinter/MipsAsmPrinter.cpp U lib/Target/Mips/MipsTargetMachine.cpp U lib/Target/Mips/MipsTargetMachine.h U lib/Target/Mips/Mips.h U lib/Target/Sparc/AsmPrinter/SparcAsmPrinter.cpp U lib/Target/Sparc/SparcTargetMachine.cpp U lib/Target/Sparc/SparcTargetMachine.h U lib/ExecutionEngine/JIT/TargetSelect.cpp U lib/Support/TargetRegistry.cpp git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75820 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-15 20:24:03 +00:00
}