Optimize selects of i1 in the presence of 'true' and 'false' operands to simple
logic operations.
This fixes rdar://problem/18960150.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221848 91177308-0d34-0410-b5e6-96231b3b80d8
This folds the compare emission into the select emission when possible, so we
can directly use the flags and don't have to emit a separate compare.
Related to rdar://problem/18960150.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221847 91177308-0d34-0410-b5e6-96231b3b80d8
In the case we optimize an integer extend away and replace it directly with the
source register, we also have to clear all kill flags at all its uses.
This is necessary, because the orignal IR instruction might be trivially dead,
but we replaced it with a nop at MI level.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221628 91177308-0d34-0410-b5e6-96231b3b80d8
Reversing a CB* instruction used to drop the flags on the condition. On the
included testcase, this lead to a read from an undefined vreg.
Using addOperand keeps the flags, here <undef>.
Differential Revision: http://reviews.llvm.org/D6159
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221507 91177308-0d34-0410-b5e6-96231b3b80d8
While fixing up the register classes in the machine combiner in a previous
commit I missed one.
This fixes the last one and adds a test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221308 91177308-0d34-0410-b5e6-96231b3b80d8
Registers are not all equal. Some are not allocatable (infinite cost),
some have to be preserved but can be used, and some others are just free
to use.
Ensure there is a cost hierarchy reflecting this fact, so that the
allocator will favor scratch registers over callee-saved registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221293 91177308-0d34-0410-b5e6-96231b3b80d8
Some literals in the AArch64 backend had 15 'f's rather than 16, causing
comparisons with a constant 0xffffffffffffffff to be miscompiled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221157 91177308-0d34-0410-b5e6-96231b3b80d8
r212242 introduced a legalizer hook, originally to let AArch64 widen
v1i{32,16,8} rather than scalarize, because the legalizer expected, when
scalarizing the result of a conversion operation, to already have
scalarized the operands. On AArch64, v1i64 is legal, so that commit
ensured operations such as v1i32 = trunc v1i64 wouldn't assert.
It did that by choosing to widen v1 types whenever possible. However,
v1i1 types, for which there's no legal widened type, would still trigger
the assert.
This commit fixes that, by only scalarizing a trunc's result when the
operand has already been scalarized, and introducing an extract_elt
otherwise.
This is similar to r205625.
Fixes PR20777.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220937 91177308-0d34-0410-b5e6-96231b3b80d8
Earlier this summer I fixed an issue where we were incorrectly combining
multiple loads that had different constraints such alignment, invariance,
temporality, etc. Apparently in one case I made copt paste error and swapped
alignment and invariance.
Tests included.
rdar://18816719
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220933 91177308-0d34-0410-b5e6-96231b3b80d8
Benchmarks have shown that it's harmless to the performance there, and having a
unified set of passes between the two cores where possible helps big.LITTLE
deployment.
Patch by Z. Zheng.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220744 91177308-0d34-0410-b5e6-96231b3b80d8
This is a minor change to use the immediate version when the operand is a null
value. This should get rid of an unnecessary 'mov' instruction in debug
builds and align the code more with the one generated by SelectionDAG.
This fixes rdar://problem/18785125.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220713 91177308-0d34-0410-b5e6-96231b3b80d8
Minor enhancement to use 'tbz' for i1 compare-and-branch to get rid of an 'and'
instruction.
This fixes rdar://problem/18784953.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220712 91177308-0d34-0410-b5e6-96231b3b80d8
The pattern matching for a 'ConstantInt' value was too restrictive. Checking for
a 'Constant' with a bull value is sufficient for using an 'cbz/cbnz' instruction.
This fixes rdar://problem/18784732.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220709 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a bug where the input register was not defined for the 'tbz/tbnz'
instruction. This happened, because we folded the 'and' instruction from a
different basic block.
This fixes rdar://problem/18784013.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220704 91177308-0d34-0410-b5e6-96231b3b80d8
At higher optimization levels the LLVM IR may contain more complex patterns for
loads/stores from/to frame indices. The 'computeAddress' function wasn't able to
handle this and triggered an assertion.
This fix extends the possible addressing modes for frame indices.
This fixes rdar://problem/18783298.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220700 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a miscompilation in the AArch64 fast-isel which was
triggered when a branch is based on an icmp with condition eq or ne,
and type i1, i8 or i16. The cbz instruction compares the whole 32-bit
register, so values with the bottom 1, 8 or 16 bits clear would cause
the wrong branch to be taken.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220553 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for legalization of instructions of the form:
[fp_conv] <1 x i1> %op to <1 x double>
where fp_conv is one of fpto[us]i, [us]itofp. This used to assert
because they were simply missing from the vector operand scalarizer.
A similar problem arose in r190830, with trunc instead.
Fixes PR20778.
Differential Revision: http://reviews.llvm.org/D5810
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220533 91177308-0d34-0410-b5e6-96231b3b80d8
This enables targets to adapt their pass pipeline to the register
allocator in use. For example, with the AArch64 backend, using PBQP
with the cortex-a57, the FPLoadBalancing pass is no longer necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220321 91177308-0d34-0410-b5e6-96231b3b80d8
Every target we support has support for assembly that looks like
a = b - c
.long a
What is special about MachO is that the above combination suppresses the
production of a relocation.
With this change we avoid producing the intermediary labels when they don't
add any value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220256 91177308-0d34-0410-b5e6-96231b3b80d8
We should be talking about the number of source elements, not the number of destination elements, given we know at this point that the source and dest element numbers are not the same.
While we're at it, avoid writing to std::vector::end()...
Bug found with random testing and a lot of coffee.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220051 91177308-0d34-0410-b5e6-96231b3b80d8
When the constant divisor was larger than 32bits, then the optimized code
generated for the AArch64 backend would emit the wrong code, because the shift
was defined as a shift of a 32bit constant '(1<<Lg2(divisor))' and we would
loose the upper 32bits.
This fixes rdar://problem/18678801.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219934 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly a copy of the existing FastISel GEP code, but we have to
duplicate it for AArch64, because otherwise we would bail out even for simple
cases. This is because the standard fastEmit functions don't cover MUL at all
and ADD is lowered very inefficientily.
The original commit had a bug in the add emit logic, which has been fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219831 91177308-0d34-0410-b5e6-96231b3b80d8
Peephole optimization that generates a single conditional branch
for csinc-branch sequences like in the examples below. This is
possible when the csinc sets or clears a register based on a condition
code and the branch checks that register. Also the condition
code may not be modified between the csinc and the original branch.
Examples:
1. Convert csinc w9, wzr, wzr, <CC>;tbnz w9, #0, 0x44
to b.<invCC>
2. Convert csinc w9, wzr, wzr, <CC>; tbz w9, #0, 0x44
to b.<CC>
rdar://problem/18506500
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219742 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly a copy of the existing FastISel GEP code, but on AArch64 we bail
out even for simple cases, because the standard fastEmit functions don't cover
MUL and ADD is lowered inefficientily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219726 91177308-0d34-0410-b5e6-96231b3b80d8
Sign-/zero-extend folding depended on the load and the integer extend to be
both selected by FastISel. This cannot always be garantueed and SelectionDAG
might interfer. This commit adds additonal checks to load and integer extend
lowering to catch this.
Related to rdar://problem/18495928.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219716 91177308-0d34-0410-b5e6-96231b3b80d8
e.g Currently we'll generate following instructions if the immediate is too wide:
MOV X0, WideImmediate
ADD X1, BaseReg, X0
LDR X2, [X1, 0]
Using [Base+XReg] addressing mode can save one ADD as following:
MOV X0, WideImmediate
LDR X2, [BaseReg, X0]
Differential Revision: http://reviews.llvm.org/D5477
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219665 91177308-0d34-0410-b5e6-96231b3b80d8
Some early revisions of the Cortex-A53 have an erratum (835769) whereby it is
possible for a 64-bit multiply-accumulate instruction in AArch64 state to
generate an incorrect result. The details are quite complex and hard to
determine statically, since branches in the code may exist in some
circumstances, but all cases end with a memory (load, store, or prefetch)
instruction followed immediately by the multiply-accumulate operation.
The safest work-around for this issue is to make the compiler avoid emitting
multiply-accumulate instructions immediately after memory instructions and the
simplest way to do this is to insert a NOP.
This patch implements such work-around in the backend, enabled via the option
-aarch64-fix-cortex-a53-835769.
The work-around code generation is not enabled by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219603 91177308-0d34-0410-b5e6-96231b3b80d8
The code already folds sign-/zero-extends, but only if they are arguments to
mul and shift instructions. This extends the code to also fold them when they
are direct inputs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219187 91177308-0d34-0410-b5e6-96231b3b80d8
Tiny enhancement to the address computation code to also fold sub instructions
if the rhs is constant and can be folded into the offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219186 91177308-0d34-0410-b5e6-96231b3b80d8
This commit fixes an issue with sign-/zero-extending loads that was discovered
by Richard Barton.
We use now the correct load instructions for sign-extending loads to 64bit. Also
updated and added more unit tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219185 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219010 91177308-0d34-0410-b5e6-96231b3b80d8
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218914 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: The natual vector cast node (similar to bitcast) AArch64ISD::NVCAST
was introduced in r217159 and r217138. This patch adds a missing cast from
v2f32 to v1i64 which is causing some compilation failures. Also added test
cases to cover various modimm types and BUILD_VECTORs with i64 elements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218751 91177308-0d34-0410-b5e6-96231b3b80d8
Note: This version fixed an issue with the TBZ/TBNZ instructions that were
generated in FastISel. The issue was that the 64bit version of TBZ (TBZX)
automagically sets the upper bit of the immediate field that is used to specify
the bit we want to test. To test for any of the lower 32bits we have to first
extract the subregister and use the 32bit version of the TBZ instruction (TBZW).
Original commit message:
Teach selectBranch to fold bit test and branch into a single instruction (TBZ or
TBNZ).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218693 91177308-0d34-0410-b5e6-96231b3b80d8
The sign-/zero-extension of the loaded value can be performed by the memory
instruction for free. If the result of the load has only one use and the use is
a sign-/zero-extend, then we emit the proper load instruction. The extend is
only a register copy and will be optimized away later on.
Other instructions that consume the sign-/zero-extended value are also made
aware of this fact, so they don't fold the extend too.
This fixes rdar://problem/18495928.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218653 91177308-0d34-0410-b5e6-96231b3b80d8
If there is a store followed by a store with the same value to the same location, then the store is dead/noop. It can be removed.
This problem is found in spec2006-197.parser.
For example,
stur w10, [x11, #-4]
stur w10, [x11, #-4]
Then one of the two stur instructions can be removed.
Patch by David Xu!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218569 91177308-0d34-0410-b5e6-96231b3b80d8
Shift-left immediate with sign-/zero-extensions also works for boolean values.
Update the assert and the test cases to reflect that fact.
This should fix a bug found by Chad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218275 91177308-0d34-0410-b5e6-96231b3b80d8
When looking through sign/zero-extensions the code would always assume there is
such an extension instruction and use the wrong operand for the address.
There was also a minor issue in the handling of 'AND' instructions. I
accidentially used a 'cast' instead of a 'dyn_cast'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218161 91177308-0d34-0410-b5e6-96231b3b80d8
With this optimization, we will not always insert zext for values crossing
basic blocks, but insert sext if the users of a value crossing basic block
has preference of sign predicate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218101 91177308-0d34-0410-b5e6-96231b3b80d8
When folding the intrinsic flag into the branch or select we also have to
consider the fact if the intrinsic got simplified, because it changes the
flag we have to check for.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218034 91177308-0d34-0410-b5e6-96231b3b80d8
Small optimization in 'simplifyAddress'. When the offset cannot be encoded in
the load/store instruction, then we need to materialize the address manually.
The add instruction can encode a wider range of immediates than the load/store
instructions. This change tries to fold the offset into the add instruction
first before materializing the offset in a register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218031 91177308-0d34-0410-b5e6-96231b3b80d8
The 'AND' instruction could be used to mask out the lower 32 bits of a register.
If this is done inside an address computation we might be able to fold the
instruction into the memory instruction itself.
and x1, x1, #0xffffffff ---> ldrb x0, [x0, w1, uxtw]
ldrb x0, [x0, x1]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218030 91177308-0d34-0410-b5e6-96231b3b80d8
Emit an optimized instruction sequence for sdiv by power-of-2 depending on the
exact flag.
This fixes rdar://problem/18224511.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217986 91177308-0d34-0410-b5e6-96231b3b80d8
Try to fold the multiply into the add/sub or logical operations (when
possible).
This is related to rdar://problem/18369687.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217978 91177308-0d34-0410-b5e6-96231b3b80d8
Teach 'computeAddress' to also fold multiplies into the address computation
(when possible).
This fixes rdar://problem/18369443.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217977 91177308-0d34-0410-b5e6-96231b3b80d8
This takes advanatage of the CBZ and CBNZ instruction to further optimize the
common null check pattern into a single instruction.
This is related to rdar://problem/18358882.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217972 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the last two missing floating-point condition codes (FCMP_UEQ and
FCMP_ONE) also to the branch selection. In these two cases an additonal branch
instruction is required.
This also adds unit tests to checks all the different condition codes.
This is related o rdar://problem/18358882.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217966 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the missing test case for the previous commit:
Allow handling of vectors during return lowering for little endian machines.
Sorry for the noise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217847 91177308-0d34-0410-b5e6-96231b3b80d8
This lowers frem to a runtime libcall inside fast-isel.
The test case also checks the CallLoweringInfo bug that was exposed by this
change.
This fixes rdar://problem/18342783.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217833 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for the last two missing fcmp condition codes: UEQ and ONE.
This fixes rdar://problem/18341575.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217823 91177308-0d34-0410-b5e6-96231b3b80d8
Extend the logical ops selection to also support non-native types such as i1,
i8, and i16.
Fixes rdar://problem/18330589.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217732 91177308-0d34-0410-b5e6-96231b3b80d8
Do
(shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
This is already done for multiplies, but since multiplies
by powers of two are turned into shifts, we also need
to handle it here.
This might want checks for isLegalAddImmediate to avoid
transforming an add of a legal immediate with one that isn't.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217610 91177308-0d34-0410-b5e6-96231b3b80d8
David Blaikie's commits r217563 & r217564, which added shared_ptr to the
CostPool have fixed some memory leak issues exposed by the PBQP with
coalescing constraints.
The sanitizer bot was failing because of those leaks. Now that the leaks
are gone, we can reenable the aarch64/pbqp test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217580 91177308-0d34-0410-b5e6-96231b3b80d8
This adds target specific support for using the PBQP register allocator on the
AArch64, for the A57 cpu.
By default, the PBQP allocator is not used, unless explicitely required
on the command line with "-aarch64-pbqp".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217504 91177308-0d34-0410-b5e6-96231b3b80d8
using static relocation model and small code model.
Summary: currently we generate GOT based relocations for weak symbol
references regardless of the underlying relocation model. This should
be change so that in static relocation model we use a constant pool
load instead.
Patch from: Keith Walker
Reviewers: Renato Golin, Tim Northover
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217503 91177308-0d34-0410-b5e6-96231b3b80d8
Patched by Sergey Dmitrouk.
This pass tries to make consecutive compares of values use same operands to
allow CSE pass to remove duplicated instructions. For this it analyzes
branches and adjusts comparisons with immediate values by converting:
GE -> GT
GT -> GE
LT -> LE
LE -> LT
and adjusting immediate values appropriately. It basically corrects two
immediate values towards each other to make them equal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217220 91177308-0d34-0410-b5e6-96231b3b80d8
Follow up to r217138, extending the logic to other NEON-immediate instructions.
As before, the instruction already performs the correct operation and we're
just using a different type for convenience, so we want a true nop-cast.
Patch by Asiri Rathnayake.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217159 91177308-0d34-0410-b5e6-96231b3b80d8
We were materialising big-endian constants using DAG nodes with types different
from what was requested, followed by a bitcast. This is fine on little-endian
machines where bitcasting is a nop, but we need a slightly different
representation for big-endian. This adds a new set of NVCAST (natural-vector
cast) operations which are always nops.
Patch by Asiri Rathnayake.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217138 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r216803, because it might have broken the buildbot.
The issue is tracked in PR20842.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217120 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds support for immediate and shift-left folding into logical
operations.
This fixes rdar://problem/18223183.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217118 91177308-0d34-0410-b5e6-96231b3b80d8
This reapplies r216805 with a fix to a copy-past error, which resulted in an
incorrect register class.
Original commit message:
Select the correct register class for the various instructions that are
generated when combining instructions and constrain the registers to the
appropriate register class.
This fixes rdar://problem/18183707.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217019 91177308-0d34-0410-b5e6-96231b3b80d8
There is already target-dependent instruction selection support for Adds/Subs to
support compares and the intrinsics with overflow check. This takes advantage of
the existing infrastructure to also support Add/Sub, which allows the folding of
immediates, sign-/zero-extends, and shifts.
This fixes rdar://problem/18207316.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217007 91177308-0d34-0410-b5e6-96231b3b80d8
This uses the target-dependent selection code for shifts first, which allows us
to create better code for shifts with immediates and sign-/zero-extend folding.
Vector type are not handled yet and the code falls back to target-independent
instruction selection for these cases.
This fixes rdar://problem/17907920.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216985 91177308-0d34-0410-b5e6-96231b3b80d8
We have been using .init-array for most systems for quiet some time,
but tools like llc are still defaulting to .ctors because the old
option was never changed.
This patch makes llc default to .init-array and changes the option to
be -use-ctors.
Clang is not affected by this. It has its own fancier logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216905 91177308-0d34-0410-b5e6-96231b3b80d8
I reverted r208640 in r209747 because r208640 broke self-hosting on PPC64. The
underlying cause of the failure is that pre-inc loads with increments
represented by ISD::TargetConstants were being transformed into ISD:::ADDs with
ISD::TargetConstant operands. PPC doesn't have a pattern for those, and so they
were selected as invalid r+r adds.
This recommits r208640, rebased and with an exclusion for ISD::TargetConstant
increments. This behavior seems correct, although in the future we might want
to ask the target to split out the indexing that uses ISD::TargetConstants.
Unfortunately, I don't yet have small test case where the relevant invalid
'add' instruction is not itself dead (and thus eliminated by
DeadMachineInstructionElim -- sometimes bugpoint is too good at removing things)
Original commit message (by Adam Nemet):
Right now the load may not get DCE'd because of the side-effect of updating
the base pointer.
This can happen if we lower a read-modify-write of an illegal larger type
(e.g. i48) such that the modification only affects one of the subparts (the
lower i32 part but not the higher i16 part). See the testcase.
In order to spot the dead load we need to revisit it when SimplifyDemandedBits
decided that the value of the load is masked off. This is the
CommitTargetLoweringOpt piece.
I checked compile time with ARM64 by sending SPEC bitcode files through llc.
No measurable change.
Fixes <rdar://problem/16031651>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216898 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Fixes a FIXME in MachineSinking. Instead of using the simple heuristics
in isPostDominatedBy, use the real MachinePostDominatorTree. The old
heuristics caused instructions to sink unnecessarily, and might create
register pressure.
Test Plan:
Added a NVPTX codegen test to verify that our change is in effect. It also
shows the unnecessary register pressure caused by over-sinking. Updated
affected tests in AArch64 and X86.
Reviewers: eliben, meheff, Jiangning
Reviewed By: Jiangning
Subscribers: jholewinski, aemerson, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D4814
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216862 91177308-0d34-0410-b5e6-96231b3b80d8