This is based on the following equivalences:
select(C0 & C1, X, Y) <=> select(C0, select(C1, X, Y), Y)
select(C0 | C1, X, Y) <=> select(C0, X, select(C1, X, Y))
Many target cannot perform and/or on the CPU flags and therefore the
right side should be choosen to avoid materializign the i1 flags in an
integer register. If the target can perform this operation efficiently
we normalize to the left form.
Differential Revision: http://reviews.llvm.org/D7622
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231507 91177308-0d34-0410-b5e6-96231b3b80d8
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230794 91177308-0d34-0410-b5e6-96231b3b80d8
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
The expansion code does the same thing. Since
the operands were not defined with the correct
types, this has the side effect of fixing operand
folding since the expanded pseudo would never use
SGPRs or inline immediates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230072 91177308-0d34-0410-b5e6-96231b3b80d8
This enables a few useful combines that used to only
use fma.
Also since v_mad_f32 apparently does not support denormals,
disable the existing cases that are custom handled if they are
requested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230071 91177308-0d34-0410-b5e6-96231b3b80d8
We were trying to fold into implicit uses, which led to out of bounds
access of the MCInstrDesc::OpInfo arrray.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229533 91177308-0d34-0410-b5e6-96231b3b80d8
This should allow finally fixing the f64 fdiv implementation.
Test is disabled for VI since there seems to be a problem with one
of the buffer load instructions on it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229236 91177308-0d34-0410-b5e6-96231b3b80d8
llc would hang trying to write output to a full pipe that FileCheck
wasn't reading. FileCheck wasn't reading from stdin because it needs a
file as a positional argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229157 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyCFG now knows how to speculate calls to intrinsic cttz/ctlz that are
'cheap' for the target. Therefore, some of the logic in CodeGenPrepare
that was originally added at revision 224899 can now be removed.
This patch is basically a no functional change. It removes the duplicated
logic in CodeGenPrepare and converts all the existing target specific tests
for cttz/ctlz into SimplifyCFG tests.
Differential Revision: http://reviews.llvm.org/D7608
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229105 91177308-0d34-0410-b5e6-96231b3b80d8
This is a union of these commits:
* R600/SI: Enable more tests for VI which need no changes
* R600/SI: Enable V_BCNT tests for VI
Differences:
- v_bcnt_..._e32 -> _e64
- s_load_dword* inline offset is in bytes instead of dwords
* R600/SI: Enable all tests for VI which use S_LOAD_DWORD
The inline offset is changed from dwords to bytes.
* R600/SI: Enable LDS tests for VI
Differences:
- the s_load_dword inline offset changed from dwords to bytes
- the tests checked very little on CI, so they have been fixed to check all
instructions that "SI" checked
* R600/SI: Enable lshr tests for VI
* R600/SI: Fix divrem64 tests
- "v_lshl_64" was missing "b" before "64"
- added VI-NOT checks
* R600/SI: Enable the SI.tid test for VI
* R600/SI: Enable the frem test for VI
Also, the frem_f64 checking is added for CI-VI.
* R600/SI: Add VI tests for rsq.clamped
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228830 91177308-0d34-0410-b5e6-96231b3b80d8
Doesn't seem necessary anymore. I think this was mostly compensating for
not enabling WQM for texture sampling instructions.
v2: Add test coverage
Reviewed-by: Tom Stellard <tom@stellard.net>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228373 91177308-0d34-0410-b5e6-96231b3b80d8
If whole quad mode isn't enabled for these, the level of detail is
calculated incorrectly for pixels along diagonal triangle edges, causing
artifacts.
v2: Use a TSFlag instead of lots of switch cases
v3: Add test coverage
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=88642
Reviewed-by: Tom Stellard <tom@stellard.net>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228372 91177308-0d34-0410-b5e6-96231b3b80d8
We should be setting UnrollingPreferences::MaxCount to MAX_UINT instead
of UnrollingPreferences::Count.
Count is a 'forced unrolling factor', while MaxCount sets an upper
limit to the unrolling factor.
Setting Count to MAX_UINT was causing the loop in the testcase to be
unrolled 15 times, when it only had a maximum of 4 iterations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228303 91177308-0d34-0410-b5e6-96231b3b80d8
The llvm.SI.end.cf intrinsic is used to mark the end of if-then blocks,
if-then-else blocks, and loops. It is responsible for updating the
exec mask to re-enable threads that had been masked during the preceding
control flow block. For example:
s_mov_b64 exec, 0x3 ; Initial exec mask
s_mov_b64 s[0:1], exec ; Saved exec mask
v_cmpx_gt_u32 exec, s[2:3], v0, 0 ; llvm.SI.if
do_stuff()
s_or_b64 exec, exec, s[0:1] ; llvm.SI.end.cf
The bug fixed by this patch was one where the llvm.SI.end.cf intrinsic
was being inserted into the header of loops. This would happen when
an if block terminated in a loop header and we would end up with
code like this:
s_mov_b64 exec, 0x3 ; Initial exec mask
s_mov_b64 s[0:1], exec ; Saved exec mask
v_cmpx_gt_u32 exec, s[2:3], v0, 0 ; llvm.SI.if
do_stuff()
LOOP: ; Start of loop header
s_or_b64 exec, exec, s[0:1] ; llvm.SI.end.cf <-BUG: The exec mask has the
same value at the beginning of each loop
iteration.
do_stuff();
s_cbranch_execnz LOOP
The fix is to create a new basic block before the loop and insert the
llvm.SI.end.cf there. This way the exec mask is restored before the
start of the loop instead of at the beginning of each iteration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228302 91177308-0d34-0410-b5e6-96231b3b80d8
v2i32, i32, trunc i32 to i16, and truc i32 to i8 stores are legal for
all address spaces. We had marked them as custom in order to lower
them for the private address space, but this is no longer necessary.
This enables lowering of misaligned stores of these types in the
DAGLegalizer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228189 91177308-0d34-0410-b5e6-96231b3b80d8
We take care of this during instruction selection now. This
fixes a potential infinite loop when lowering misaligned stores.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228188 91177308-0d34-0410-b5e6-96231b3b80d8
SI only has standard versions. VI only has REV versions.
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228037 91177308-0d34-0410-b5e6-96231b3b80d8
This can happen when a REV instruction is commuted.
The trick is not to define the _vi versions of instructions, which has these
consequences:
- code generation will always fail if a pseudo cannot be lowered
(very useful to catch bugs where an unsupported instruction somehow makes
it to the printer)
- ability to query if a pseudo can be lowered, which is done in commuteOpcode
to prevent REV from commuting to non-REV on VI
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227990 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a hang when using an empty geometry shader.
v2: - don't add s_nop when followed by s_waitcnt
- comestic changes
Tested-by: Michel Dänzer <michel.daenzer@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227986 91177308-0d34-0410-b5e6-96231b3b80d8
This is true for SI only. CI+ supports unaligned memory accesses,
but this requires driver support, so for now we disallow unaligned
accesses for all GCN targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227822 91177308-0d34-0410-b5e6-96231b3b80d8
Add tests for the various combines. This should
always be at least cycle neutral on all subtargets for f64,
and faster on some. For f32 we should prefer selecting
v_mad_f32 over v_fma_f32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227484 91177308-0d34-0410-b5e6-96231b3b80d8
We used to do this promotion during DAG legalization, but this
caused an infinite loop in ExpandUnalignedLoad() because it assumed
that i64 loads were legal if i64 was a legal type.
It also seems better to report i64 loads as legal, since they actually
are and we were just promoting them to simplify our tablegen files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226945 91177308-0d34-0410-b5e6-96231b3b80d8
v2: add and enable tests for SI
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Matt Arsenault <Matthew.Arsenault@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226881 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes it for SI. It also removes the pattern
used previously for Evergreen for f32. I'm not sure
if the the new R600 output is better or not, but it uses
1 fewer instructions if BFI is available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226682 91177308-0d34-0410-b5e6-96231b3b80d8
We don't have a good way of legalizing this if the frame index offset
is more than the 12-bits, which is size of MUBUF's offset field, so
now we store the frame index in the vaddr field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226584 91177308-0d34-0410-b5e6-96231b3b80d8
Instructions with 1 operand can still use source modifiers,
so make sure we don't print an extra comma afterwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226226 91177308-0d34-0410-b5e6-96231b3b80d8
Don't do the v4i8 -> v4f32 combine if the load will need to
be expanded due to alignment. This stops adding instructions
to repack into a single register that the v_cvt_ubyteN_f32
instructions read.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225926 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the source and destination types can be specified,
allow doing an expansion that doesn't use an EXTLOAD of the
result type. Try to do a legal extload to an intermediate type
and extend that if possible.
This generalizes the special case custom lowering of extloads
R600 has been using to work around this problem.
This also happens to fix a bug that would incorrectly use more
aligned loads than should be used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225925 91177308-0d34-0410-b5e6-96231b3b80d8
Only do for f32 since I'm unclear on both what this is expecting
for the refinement steps in terms of accuracy, and what
f64 instruction actually provides.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225827 91177308-0d34-0410-b5e6-96231b3b80d8
Speculating things is generally good. SI+ has instructions for these
for 32-bit values. This is still probably better even with the expansion
for 64-bit values, although it is odd that this callback doesn't have
the size as a parameter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225822 91177308-0d34-0410-b5e6-96231b3b80d8
There are some operands which can take either immediates or registers
and we were previously using different register class to distinguish
between operands that could take immediates and those that could not.
This patch switches to using RegisterOperands which should simplify the
backend by reducing the number of register classes and also make it
easier to implement the assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225662 91177308-0d34-0410-b5e6-96231b3b80d8
Its functionality has been replaced by calling
SIInstrInfo::legalizeOperands() from
SIISelLowering::AdjstInstrPostInstrSelection() and running the
SIFoldOperands and SIShrinkInstructions passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225445 91177308-0d34-0410-b5e6-96231b3b80d8
I got confused and assumed SrcIdx/DstIdx of the CoalescerPair is a
subregister index in SrcReg/DstReg, but they are actually subregister
indices of the coalesced register that get you back to SrcReg/DstReg
when applied.
Fixed the bug, improved comments and simplified code accordingly.
Testcase by Tom Stellard!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225415 91177308-0d34-0410-b5e6-96231b3b80d8
Folding the same immediate into multiple instruction will increase
program size, which can hurt performance.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225405 91177308-0d34-0410-b5e6-96231b3b80d8
This is equivalent to the AMDGPUTargetMachine now, but it is the
starting point for separating R600 and GCN functionality into separate
targets.
It is recommened that users start using the gcn triple for GCN-based
GPUs, because using the r600 triple for these GPUs will be deprecated in
the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225277 91177308-0d34-0410-b5e6-96231b3b80d8
Extend the existing code which handles this for zext. This makes this
more useful for targets with ZeroOrNegativeOne BooleanContent and
obsoletes a custom combine SI uses for i1 setcc (sext(i1), 0, setne)
since the constant will now be shrunk to i1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224691 91177308-0d34-0410-b5e6-96231b3b80d8
mubuf instructions now define the soffset field using the SCSrc_32
register class which indicates that only SGPRs and inline constants
are allowed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224622 91177308-0d34-0410-b5e6-96231b3b80d8
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
The returned operand needs to be permuted for the unordered
compares. Also fix incorrectly producing fmin_legacy / fmax_legacy
for f64, which don't exist.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224094 91177308-0d34-0410-b5e6-96231b3b80d8
This is nice for the instruction patterns, but it complicates
min / max matching. The select doesn't have the correct type and would
require looking through the bitcasts for the real float operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224092 91177308-0d34-0410-b5e6-96231b3b80d8
Add an option to disable optimization to shrink truncated larger type
loads to smaller type loads. On SI this prevents using scalar load
instructions in some cases, since there are no scalar extloads.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224084 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes an issue with ScheduleDAGInstrs::buildSchedGraph
where stores without an underlying object would not be added
as a predecessor to the current BarrierChain.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223717 91177308-0d34-0410-b5e6-96231b3b80d8
Select i1 logical ops directly to 64-bit SALU instructions.
Vector i1 values are always really in SGPRs, with each
bit for each item in the wave. This saves about 4 instructions
when and/or/xoring any condition, and also helps write conditions
that need to be passed in vcc.
This should work correctly now that the SGPR live range
fixing pass works. More work is needed to eliminate the VReg_1
pseudo regclass and possibly the entire SILowerI1Copies pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223206 91177308-0d34-0410-b5e6-96231b3b80d8
We just needed to remove the assertion in
AMDGPURegisterInfo::getFrameRegister(), which is called when
initializing the parser for inline assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223197 91177308-0d34-0410-b5e6-96231b3b80d8