PEI can't handle the pseudo-instructions. This can be removed when the
pseudo-instructions are replaced by normal predicated instructions.
Fixes PR13628.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162130 91177308-0d34-0410-b5e6-96231b3b80d8
make it more consistent with its intended semantics.
The `linker_private_weak_def_auto' linkage type was meant to automatically hide
globals which never had their addresses taken. It has nothing to do with the
`linker_private' linkage type, which outputs the symbols with a `l' (ell) prefix
among other things.
The intended semantic is more like the `linkonce_odr' linkage type.
Change the name of the linkage type to `linkonce_odr_auto_hide'. And therefore
changing the semantics so that it produces the correct output for the linker.
Note: The old linkage name `linker_private_weak_def_auto' will still parse but
is not a synonym for `linkonce_odr_auto_hide'. This should be removed in 4.0.
<rdar://problem/11754934>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162114 91177308-0d34-0410-b5e6-96231b3b80d8
It is not my plan to duplicate the entire ARM instruction set with
predicated versions. We need a way of representing predicated
instructions in SSA form without requiring a separate opcode.
Then the pseudo-instructions can go away.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162061 91177308-0d34-0410-b5e6-96231b3b80d8
Without fastcc support, the caller just falls through to CallingConv::C
for fastcc, but callee still uses fastcc, this inconsistency of calling
convention is a problem, and fastcc support can fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162013 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM select instructions are just predicated moves. If the select is
the only use of an operand, the instruction defining the operand can be
predicated instead, saving one instruction and decreasing register
pressure.
This implementation can turn AND/ORR/EOR instructions into their
corresponding ANDCC/ORRCC/EORCC variants. Ideally, we should be able to
predicate any instruction, but we don't yet support predicated
instructions in SSA form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161994 91177308-0d34-0410-b5e6-96231b3b80d8
When predicating this instruction:
Rd = ADD Rn, Rm
We need an extra operand to represent the value given to Rd when the
predicate is false:
Rd = ADDCC Rfalse, Rn, Rm, pred
The Rd and Rfalse operands are different registers while in SSA form.
Rfalse is tied to Rd to make sure they get the same register during
register allocation.
Previously, Rd and Rn were tied, but that is not required.
Compare to MOVCC:
Rd = MOVCC Rfalse, Rtrue, pred
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161955 91177308-0d34-0410-b5e6-96231b3b80d8
reversed. This leads to wrong codegen for float-to-half conversion
intrinsics which are used to support storage-only fp16 type.
NEON variants of same instructions are fine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161907 91177308-0d34-0410-b5e6-96231b3b80d8
- FP_EXTEND only support extending from vectors with matching elements.
This results in the scalarization of extending to v2f64 from v2f32,
which will be legalized to v4f32 not matching with v2f64.
- add X86-specific VFPEXT supproting extending from v4f32 to v2f64.
- add BUILD_VECTOR lowering helper to recover back the original
extending from v4f32 to v2f64.
- test case is enhanced to include different vector width.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161894 91177308-0d34-0410-b5e6-96231b3b80d8
Refactor the TableGen'erated fixed length disassemblmer to use a
table-driven state machine rather than a massive set of nested
switch() statements.
As a result, the ARM Disassembler (ARMDisassembler.cpp) builds much more
quickly and generates a smaller end result. For a Release+Asserts build on
a 16GB 3.4GHz i7 iMac w/ SSD:
Time to compile at -O2 (averaged w/ hot caches):
Previous: 35.5s
New: 8.9s
TEXT size:
Previous: 447,251
New: 297,661
Builds in 25% of the time previously required and generates code 66% of
the size.
Execution time of the disassembler is only slightly slower (7% disassembling
10 million ARM instructions, 19.6s vs 21.0s). The new implementation has
not yet been tuned, however, so the performance should almost certainly
be recoverable should it become a concern.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161888 91177308-0d34-0410-b5e6-96231b3b80d8
It never does anything when running 'make check', and it get's in the
way of updating live intervals in 2-addr.
The hook was originally added to help form IT blocks in Thumb2 code
before register allocation, but the pass ordering has changed since
then, and we run if-conversion after register allocation now.
When the MI scheduler is enabled, there will be no less than two
schedulers between 2-addr and Thumb2ITBlockPass, so this hook is
unlikely to help anything.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161794 91177308-0d34-0410-b5e6-96231b3b80d8
This was causing unnecessary spills/restores of callee saved registers.
Fixes PR13572.
Patch by Pranav Bhandarkar!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161778 91177308-0d34-0410-b5e6-96231b3b80d8
OpTbl1 to OpTbl2 since they have 3 operands and the last operand can be changed
to a memory operand.
PR13576
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161769 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, we used VLD1.32 in all cases, however there are both 16 and 64-bit
accesses being selected, so we need to use an appropriate width load in those
cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161748 91177308-0d34-0410-b5e6-96231b3b80d8
architecture
It broke MultiSource/Applications/JM/ldecod/ldecod on armv7 thumb O0 g and armv7
thumb O3.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161736 91177308-0d34-0410-b5e6-96231b3b80d8
- FCMOV only supports a subset of X86 conditions. Skip boolean
simplification if X86 condition is not valid for FCMOV.
- add a minimal test case for PR13577.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161732 91177308-0d34-0410-b5e6-96231b3b80d8
FeatureFastUAMem for Nehalem, Westmere and Sandy Bridge.
FeatureFastUAMem is already on if we pass in nehalem or westmere as a command
argument.
rdar: 7252306
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161717 91177308-0d34-0410-b5e6-96231b3b80d8
- if a boolean test (X86ISD::CMP or X86ISD:SUB) checks a boolean value
generated from X86ISD::SETCC, try to simplify the boolean value
generation and checking by reusing the original EFLAGS with proper
condition code
- add hooks to X86 specific SETCC/BRCOND/CMOV, the major 3 places
consuming EFLAGS
part of patches fixing PR12312
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161687 91177308-0d34-0410-b5e6-96231b3b80d8
the register info for getEncodingValue. This builds on the
small patch of yesterday to set HWEncoding in the register
file.
One (deprecated) use was turned into a hard number to avoid
needing register info in the old JIT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161628 91177308-0d34-0410-b5e6-96231b3b80d8
This new API will be used by clang to parse ms-style inline asms.
One goal of this project is to use this style of inline asm for targets other
then x86. Therefore, this API needs to be implemented for non-x86 targets at
some point in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161624 91177308-0d34-0410-b5e6-96231b3b80d8
This patch corrects the definition of umlal/smlal instructions and adds support
for matching them to the ARM dag combiner.
Bug 12213
Patch by Yin Ma!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161581 91177308-0d34-0410-b5e6-96231b3b80d8
This way of using getNextOperandForReg() was unlikely to work as
intended. We don't give any guarantees about the order of operands in
the use-def chains, so looking only at operands following a given
operand in the chain doesn't make sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161542 91177308-0d34-0410-b5e6-96231b3b80d8
This replaces an existing subtarget hook on ARM and allows standard
CodeGen passes to potentially use the property.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161471 91177308-0d34-0410-b5e6-96231b3b80d8
We perform the following:
1> Use SUB instead of CMP for i8,i16,i32 and i64 in ISel lowering.
2> Modify MachineCSE to correctly handle implicit defs.
3> Convert SUB back to CMP if possible at peephole.
Removed pattern matching of (a>b) ? (a-b):0 and like, since they are handled
by peephole now.
rdar://11873276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161462 91177308-0d34-0410-b5e6-96231b3b80d8
We can't rematerialize a PIC base after register allocation anyway, and
scanning physreg use-def chains is very expensive in a function with
many calls.
<rdar://problem/12047515>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161461 91177308-0d34-0410-b5e6-96231b3b80d8
initialize fields of the class that it used.
The result was nonsense code.
Before:
0000000000000000 <foo>:
0: 00441100 0x441100
4: 03e00008 jr ra
8: 00000000 nop
After:
0000000000000000 <foo>:
0: 00041000 sll v0,a0,0x0
4: 03e00008 jr ra
8: 00000000 nop
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161377 91177308-0d34-0410-b5e6-96231b3b80d8
This allows codegen passes to query properties like
InstrItins->SchedModel->IssueWidth. It also ensure's that
computeOperandLatency returns the X86 defaults for loads and "high
latency ops". This should have no significant impact on existing
schedulers because X86 defaults happen to be the same as global
defaults.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161370 91177308-0d34-0410-b5e6-96231b3b80d8
I hit this in a very large program (spirit.cpp), but
have not figured out how to make a small make check
test for it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161366 91177308-0d34-0410-b5e6-96231b3b80d8
were using a class defined for 32 bit instructions and
thus the instruction was for addiu instead of daddiu.
This was corrected by adding the instruction opcode as a
field in the base class to be filled in by the defs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161359 91177308-0d34-0410-b5e6-96231b3b80d8
These 2 relocations gain access to the
highest and the second highest 16 bits
of a 64 bit object.
R_MIPS_HIGHER %higher(A+S)
The %higher(x) function is [ (((long long) x + 0x80008000LL) >> 32) & 0xffff ].
R_MIPS_HIGHEST %highest(A+S)
The %highest(x) function is [ (((long long) x + 0x800080008000LL) >> 48) & 0xffff ].
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161348 91177308-0d34-0410-b5e6-96231b3b80d8
The MFTB instruction itself is being phased out, and its functionality
is provided by MFSPR. According to the ISA docs, using MFSPR works on all known
chips except for the 601 (which did not have a timebase register anyway)
and the POWER3.
Thanks to Adhemerval Zanella for pointing this out!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161346 91177308-0d34-0410-b5e6-96231b3b80d8
On PPC64, this can be done with a simple TableGen pattern.
To enable this, I've added the (otherwise missing) readcyclecounter
SDNode definition to TargetSelectionDAG.td.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161302 91177308-0d34-0410-b5e6-96231b3b80d8
(this corresponds by spilling/reloading regs in DTriple / DQuad reg classes).
No testcase, found by inspection.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161300 91177308-0d34-0410-b5e6-96231b3b80d8
this makes this hack a bit more bearable
for poor souls who need to pass custom
preprocessor flags to the build process
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161240 91177308-0d34-0410-b5e6-96231b3b80d8
Fast isel doesn't currently have support for translating builtin function
calls to target instructions. For embedded environments where the library
functions are not available, this is a matter of correctness and not
just optimization. Most of this patch is just arranging to make the
TargetLibraryInfo available in fast isel. <rdar://problem/12008746>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161232 91177308-0d34-0410-b5e6-96231b3b80d8
This just provides a way to look up a LibFunc::Func enum value for a
function name. Alphabetize the enums and function names so we can use a
binary search.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161231 91177308-0d34-0410-b5e6-96231b3b80d8
Now that TableGen supports references to NAME w/o it being explicitly
referenced in the definition's own name, use that to simplify
assembly InstAlias definitions in multiclasses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161218 91177308-0d34-0410-b5e6-96231b3b80d8
Add more comments and use early returns to reduce nesting in isLoadFoldable.
Also disable folding for V_SET0 to avoid introducing a const pool entry and
a const pool load.
rdar://10554090 and rdar://11873276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161207 91177308-0d34-0410-b5e6-96231b3b80d8