We were trying to fold the stack adjustment into the wrong instruction in the
situation where the entire basic-block was epilogue code. Really, it can only
ever be valid to do the folding precisely where the "add sp, ..." would be
placed so there's no need for a separate iterator to track that.
Should fix PR18136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196493 91177308-0d34-0410-b5e6-96231b3b80d8
ARM symbol variants are written with parens instead of @ like this:
.word __GLOBAL_I_a(target1)
This commit adds support for parsing these symbol variants in
expressions. We introduce a new flag to MCAsmInfo that indicates the
parser should use parens to parse the symbol variant. The expression
parser is modified to look for symbol variants using parens instead
of @ when the corresponding MCAsmInfo flag is true.
The MCAsmInfo parens flag is enabled only for ARM on ELF.
By adding this flag to MCAsmInfo, we are able to get rid of
redundant ARM-specific symbol variants and use the generic variants
instead (e.g. VK_GOT instead of VK_ARM_GOT). We use the new
UseParensForSymbolVariant attribute in MCAsmInfo to correctly print
the symbol variants for arm.
To achive this we need to keep a handle to the MCAsmInfo in the
MCSymbolRefExpr class that we can check when printing the symbol
variant.
Updated Tests:
Changed case of symbol variant to match the generic kind.
test/CodeGen/ARM/tls-models.ll
test/CodeGen/ARM/tls1.ll
test/CodeGen/ARM/tls2.ll
test/CodeGen/Thumb2/tls1.ll
test/CodeGen/Thumb2/tls2.ll
PR18080
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196424 91177308-0d34-0410-b5e6-96231b3b80d8
These are used by MachO only at the moment, and (much like the existing
MOVW/MOVT set) work around the fact that the labels used in the actual
instructions often contain PC-dependent components, which means that repeatedly
materialising the same global can't be CSEed.
With small modifications, it could be adapted to how ELF finds the address of
_GLOBAL_OFFSET_TABLE_, which would give similar benefits in PIC mode there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196090 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, we clobbered callee-saved registers when folding an "add
sp, #N" into a "pop {rD, ...}" instruction. This change checks whether
a register we're going to add to the "pop" could actually be live
outside the function before doing so and should fix the issue.
This should fix PR18081.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196046 91177308-0d34-0410-b5e6-96231b3b80d8
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
Make tests more robust by removing hard-coded metadata numbers in CHECK lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195535 91177308-0d34-0410-b5e6-96231b3b80d8
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195504 91177308-0d34-0410-b5e6-96231b3b80d8
Stop folding constant adds into GEP when the type size doesn't match.
Otherwise, the adds' operands are effectively being promoted, changing the
conditions of an overflow. Results are different when:
sext(a) + sext(b) != sext(a + b)
Problem originally found on x86-64, but also fixed issues with ARM and PPC,
which used similar code.
<rdar://problem/15292280>
Patch by Duncan Exon Smith!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194840 91177308-0d34-0410-b5e6-96231b3b80d8
We used to perform an invalid operation on an MVT and crash, which wasn't much
fun.
Patch by Oliver Stannard.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194714 91177308-0d34-0410-b5e6-96231b3b80d8
In ELF and COFF an alias is just another offset in a section. There is no way
to represent an alias to something in another file.
In MachO, the spec has the N_INDR type which should allow for exactly that, but
is not currently implemented. Given that it is specified but not implemented,
we error in codegen to avoid miscompiling but don't reject aliases to
declarations in the verifier to leave the option open of implementing it.
In the past we have used alias to declarations as a way of implementing
weakref, which is why it exists in some old tests which this patch updates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194705 91177308-0d34-0410-b5e6-96231b3b80d8
By default, the behavior of IT block generation will be determinated
dynamically base on the arch (armv8 vs armv7). This patch adds backend
options: -arm-restrict-it and -arm-no-restrict-it. The former one
restricts the generation of IT blocks (the same behavior as thumbv8) for
both arches. The later one allows the generation of legacy IT block (the
same behavior as ARMv7 Thumb2) for both arches.
Clang will support -mrestrict-it and -mno-restrict-it, which is
compatible with GCC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194592 91177308-0d34-0410-b5e6-96231b3b80d8
isPhysRegUsed if the unwind information is required.
Indeed, the runtime may need a correct stack to be able to unwind the call.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194271 91177308-0d34-0410-b5e6-96231b3b80d8
ARM prologues usually look like:
push {r7, lr}
sub sp, sp, #4
If code size is extremely important, this can be optimised to the single
instruction:
push {r6, r7, lr}
where we don't actually care about the contents of r6, but pushing it subtracts
4 from sp as a side effect.
This should implement such a conversion, predicated on the "minsize" function
attribute (-Oz) since I've yet to find any code it actually makes faster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194264 91177308-0d34-0410-b5e6-96231b3b80d8
Add a Virtualization ARM subtarget feature along with adding proper build
attribute emission for Tag_Virtualization_use (encodes Virtualization and
TrustZone) and Tag_MPextension_use.
Also rework test/CodeGen/ARM/2010-10-19-mc-elf-objheader.ll testcase to
something that is more maintainable. This changes the focus of this
testcase away from testing CPU defaults (which is tested elsewhere), onto
specifically testing that attributes are encoded correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193859 91177308-0d34-0410-b5e6-96231b3b80d8
Fix Tag_ABI_HardFP_use build attribute to handle single precision FP,
replace deprecated Tag_ABI_HardFP_use value of 3 with 0 and also add
some tests for Tag_ABI_VFP_args.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193856 91177308-0d34-0410-b5e6-96231b3b80d8
This commit allows the ARM integrated assembler to parse
and assemble the code with .eabi_attribute, .cpu, and
.fpu directives.
To implement the feature, this commit moves the code from
AttrEmitter to ARMTargetStreamers, and several new test
cases related to cortex-m4, cortex-r5, and cortex-a15 are
added.
Besides, this commit also change the Subtarget->isFPOnlySP()
to Subtarget->hasD16() to match the usage of .fpu directive.
This commit changes the test cases:
* Several .eabi_attribute directives in
2010-09-29-mc-asm-header-test.ll are removed because the .fpu
directive already cover the functionality.
* In the Cortex-A15 test case, the value for
Tag_Advanced_SIMD_arch has be changed from 1 to 2,
which is more precise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193524 91177308-0d34-0410-b5e6-96231b3b80d8
There's a barrier instruction so that should still be used, but most actual
atomic operations are going to need a platform decision on the correct
behaviour (either nop if single-threaded or OS-support otherwise).
rdar://problem/15287210
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193399 91177308-0d34-0410-b5e6-96231b3b80d8
ARM processors without ldrex/strex need to be able to make libcalls for all
atomic operations, including the newer min/max versions.
The alternative would probably be expanding these operations in terms of
cmpxchg (as x86 does always), but in the configurations where this matters
code-size tends to be paramount so the libcall is more desirable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193398 91177308-0d34-0410-b5e6-96231b3b80d8
Only use them if the subtarget has ARM mode, as these routines are implemented
as ARM code.
rdar://15302004
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193381 91177308-0d34-0410-b5e6-96231b3b80d8
The compiler-rt functions __adddf3vfp and so on exist purely to allow Thumb1
code to make use of VFP instructions by switching back to ARM mode, they make
no sense for M-class processors which don't even have an ARM mode.
Given that justification, in practice this is a platform ABI decision so the
actual check is based on that rather than CPU features.
rdar://problem/15302004
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193327 91177308-0d34-0410-b5e6-96231b3b80d8
This commit implements the correct lowering of the
COPY_STRUCT_BYVAL_I32 pseudo-instruction for thumb1 targets.
Previously, the lowering of COPY_STRUCT_BYVAL_I32 generated the
post-increment forms of ldr/ldrh/ldrb instructions. Thumb1 does not
have the post-increment form of these instructions so the generated
assembly contained invalid instructions.
Passing the generated assembly to gcc caused it to complain with an
error like this:
Error: cannot honor width suffix -- `ldrb r3,[r0],#1'
and the integrated assembler would generate an object file with an
invalid instruction encoding.
This commit contains a small test case that demonstrates the problem
with thumb1 targets as well as an expanded test case that more
throughly tests the lowering of byval struct passing for arm,
thumb1, and thumb2 targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192916 91177308-0d34-0410-b5e6-96231b3b80d8
Per original comment, the intention of this loop
is to go ahead and break the critical edge
(in order to sink this instruction) if there's
reason to believe doing so might "unblock" the
sinking of additional instructions that define
registers used by this one. The idea is that if
we have a few instructions to sink "together"
breaking the edge might be worthwhile.
This commit makes a few small changes
to help better realize this goal:
First, modify the loop to ignore registers
defined by this instruction. We don't
sink definitions of physical registers,
and sinking an SSA definition isn't
going to unblock an upstream instruction.
Second, ignore uses of physical registers.
Instructions that define physical registers are
rejected for sinking, and so moving this one
won't enable moving any defining instructions.
As an added bonus, while virtual register
use-def chains are generally small due
to SSA goodness, iteration over the uses
and definitions (used by hasOneNonDBGUse)
for physical registers like EFLAGS
can be rather expensive in practice.
(This is the original reason for looking at this)
Finally, to keep things simple continue
to only consider this trick for registers that
have a single use (via hasOneNonDBGUse),
but to avoid spuriously breaking critical edges
only do so if the definition resides
in the same MBB and therefore this one directly
blocks it from being sunk as well.
If sinking them together is meant to be,
let the iterative nature of this pass
sink the definition into this block first.
Update tests to accomodate this change,
add new testcase where sinking avoids pipeline stalls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192608 91177308-0d34-0410-b5e6-96231b3b80d8
When if converting something like:
true:
... = R0<kill>
false:
... = R0<kill>
then the instructions of the true block must not have a <kill> flag
anymore, as the instruction of the false block follow and do still read
the R0 value.
Specifically this patch determines the set of register live-in in the
false block (possibly after simulating the liveness changes of the
duplicated instructions). Each of these live-in registers mustn't be
killed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192482 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r192454
Apparently FileCheck isn't as smart as I though and does not enforce a
topological order between variable defs+uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192472 91177308-0d34-0410-b5e6-96231b3b80d8
When we had a sequence like:
s1 = VLDRS [r0, 1], Q0<imp-def>
s3 = VLDRS [r0, 2], Q0<imp-use,kill>, Q0<imp-def>
s0 = VLDRS [r0, 0], Q0<imp-use,kill>, Q0<imp-def>
s2 = VLDRS [r0, 4], Q0<imp-use,kill>, Q0<imp-def>
we were gathering the {s0, s1} loads below the s3 load. This is fine,
but confused the verifier since now the s3 load had Q0<imp-use> with
no definition above it.
This should mark such uses <undef> as well. The liveness structure at
the beginning and end of the block is unaffected, and the true sN
definitions should prevent any dodgy reorderings being introduced
elsewhere.
rdar://problem/15124449
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192344 91177308-0d34-0410-b5e6-96231b3b80d8
from struct byval to registers.
We used to pass 0 which means the alignment of PtrVT. Even when the alignment
of the struct is smaller than 4, the LOADs would have alignment of 4, and
further optimizations could combine the LOADs into a ldm, which would
cause crash.
The fix is to pass the alignment of the struct byval.
rdar://problem/15144402
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192126 91177308-0d34-0410-b5e6-96231b3b80d8
Bitcasting everything to i8* won't work. Autoupgrade the old
intrinsic declarations to use the new mangling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192117 91177308-0d34-0410-b5e6-96231b3b80d8
optimizeSelect folds (predicated) copy instructions, it must not ignore
the original register class of the operand when replacing the register
with the copies dest register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191963 91177308-0d34-0410-b5e6-96231b3b80d8
The jump doesn't really kill the registers, the following call does but
we never get back anyway.
This avoids some verify-machineinstrs problems when TAILJUMPs are
if-converted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191962 91177308-0d34-0410-b5e6-96231b3b80d8
Copy over the whole register machine operand instead of creating a new one
with an incomplete set of flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191961 91177308-0d34-0410-b5e6-96231b3b80d8
This function-attribute modifies the callee-saved register list and function
epilogue (specifically the return instruction) so that a routine is suitable
for use as an interrupt-handler of the specified type without disrupting
user-mode applications.
rdar://problem/14207019
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191766 91177308-0d34-0410-b5e6-96231b3b80d8
Generally, it is desirable to distribute (a + b) * c to a*c + b*c for
ARM with VMLx forwarding, where a, b and c are vectors.
However, for (a + b)*(a + b), distribution will result in one extra
instruction.
With distribution:
x = a + b (add)
y = a * x (mul)
z = y + b * y (mla)
Without distribution:
x = a + b (add)
z = x * x (mul)
This patch checks if a mul is a square of add/sub. If yes, skip
distribution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191410 91177308-0d34-0410-b5e6-96231b3b80d8
PEI inserts a save/restore sequence for the link register, according to the
information it gets from the MachineRegisterInfo.
MachineRegisterInfo is populated by the VirtRegMap pass.
This pass was not aware of noreturn calls and was registering the definitions of
these calls the same way as regular operations.
Modify VirtRegPass so that it does not set the isPhysRegUsed information for
registers only defined by noreturn calls.
The rational is that a noreturn call is the "last instruction" of the program
(if it returns the behavior is undefined), so everything that is defined by it
cannot be used and will not interfere with anything else. Therefore, it is
pointless to account for then.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191349 91177308-0d34-0410-b5e6-96231b3b80d8
This is being disabled because it is no longer needed for
performance. It is only used by postRAscheduler which is also planned
for removal, and it is implemented with an out-dated view of register
liveness. It consideres aliases instead of register units, assumes
valid kill flags, and assumes implicit uses on partial register
defs. Kill flags and implicit operands are error prone and impossible
to verify. We should gradually eliminate dependence on them in the
postRA phases.
Targets that still benefit from this should move to the MI
scheduler. If that doesn't solve the problem, then we should add a
hook to regalloc to optimize reload placement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191348 91177308-0d34-0410-b5e6-96231b3b80d8
When a truncate node defines a legal vector type but uses an illegal
vector type, the legalization process was splitting the vector until
<1 x vector> type, but then it was failing to scalarize the node because
it did not know how to handle TRUNCATE.
<rdar://problem/14989896>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190830 91177308-0d34-0410-b5e6-96231b3b80d8
IT blocks can only be one instruction lonf, and can only contain a subset of
the 16 instructions.
Patch by Artyom Skrobov!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190309 91177308-0d34-0410-b5e6-96231b3b80d8
Field 2 of DIType (Context), field 9 of DIDerivedType (TypeDerivedFrom),
field 12 of DICompositeType (ContainingType), fields 2, 7, 12 of DISubprogram
(Context, Type, ContainingType).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190205 91177308-0d34-0410-b5e6-96231b3b80d8
field of DICompositeType.
This will help the follow-on patch of using DITypeRef for containing-type field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190187 91177308-0d34-0410-b5e6-96231b3b80d8
Solution is not sufficient to prevent 'mov pc, lr' being emitted for jump table code.
Test case doesn't trigger the added functionality.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190047 91177308-0d34-0410-b5e6-96231b3b80d8
This improves code generation for jump tables by avoiding the emission of "mov pc, lr" which could fool the processor into believing this is a return from a function causing mispredicts. The code generation logic for jump tables uses ADR to materialize the address of the jump target.
Patch by Daniel Stewart!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190043 91177308-0d34-0410-b5e6-96231b3b80d8
'Force' values in registers using the calling convention. Now, we only depend on
the calling convention and that the allocator performs copy coalescing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189985 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r189648.
Fixes for the previously failing clang-side arm_neon_intrinsics test
cases will be checked in separately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189841 91177308-0d34-0410-b5e6-96231b3b80d8
What we really want is to enable Swift by default for *v7s triples (and there already seems to be some logic which attempts to do that). In that case the iOS version doesn't matter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189763 91177308-0d34-0410-b5e6-96231b3b80d8
In addition to recognizing when the multiply's second argument is
coming from an explicit VDUPLANE, also look for a plain scalar
f32 reference and reference it via the corresponding vector
lane.
rdar://14870054
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189619 91177308-0d34-0410-b5e6-96231b3b80d8
Clang is now generating cleaner IR, so this removes the old variants which
should be completely unused.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189481 91177308-0d34-0410-b5e6-96231b3b80d8
The vqdmlal and vqdmlls instructions are really just a fused pair consisting of
a vqdmull.sN and a vqadd.sN. This adds patterns to LLVM so that we can switch
Clang's CodeGen over to generating these instead of the special vqdmlal
intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189480 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions aren't particularly complicated and it's well worth having
patterns for some reasonably useful LLVM IR that will match them. Soon we
should be able to switch Clang over to producing this natural version.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189335 91177308-0d34-0410-b5e6-96231b3b80d8
DICompositeType will have an identifier field at position 14. For now, the
field is set to null in DIBuilder.
For DICompositeTypes where the template argument field (the 13th field)
was optional, modify DIBuilder to make sure the template argument field is set.
Now DICompositeType has 15 fields.
Update DIBuilder to use NULL instead of "i32 0" for null value of a MDNode.
Update verifier to check that DICompositeType has 15 fields and the last
field is null or a MDString.
Update testing cases to include an extra field for DICompositeType.
The identifier field will be used by type uniquing so a front end can
genearte a DICompositeType with a unique identifer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189282 91177308-0d34-0410-b5e6-96231b3b80d8
Now that fast-isel is in better shape, we can enable the machine
verifier for these tests, too.
rdar://12594152
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189275 91177308-0d34-0410-b5e6-96231b3b80d8
Get the register class right for the TST instruction. This keeps the
machine verifier happy, enabling us to turn it on for another test.
rdar://12594152
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189274 91177308-0d34-0410-b5e6-96231b3b80d8
Constant pool and global value reference instructions need more
restricted register classes than plain GPR.
rdar://12594152
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189270 91177308-0d34-0410-b5e6-96231b3b80d8
A single metadata will not span multiple lines. This also helps me with
my script to automatic update the testing cases.
A debug info testing case should have a llvm.dbg.cu.
Do not use hard-coded id for debug nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189033 91177308-0d34-0410-b5e6-96231b3b80d8
This uses the ARMcmov pattern that Tim cleaned up in r188995.
Thanks to Simon Tatham for his floating point help!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189024 91177308-0d34-0410-b5e6-96231b3b80d8
The function call to external function should come with PLT relocation
type if the PIC relocation model is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189002 91177308-0d34-0410-b5e6-96231b3b80d8
Back in the mists of time (2008), it seems TableGen couldn't handle the
patterns necessary to match ARM's CMOV node that we convert select operations
to, so we wrote a lot of fairly hairy C++ to do it for us.
TableGen can deal with it now: there were a few minor differences to CodeGen
(see tests), but nothing obviously worse that I could see, so we should
probably address anything that *does* come up in a localised manner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188995 91177308-0d34-0410-b5e6-96231b3b80d8
The code for 'Q' and 'R' operand modifiers needs to look through tied
operands to discover the register class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188990 91177308-0d34-0410-b5e6-96231b3b80d8
Update testcase to be more careful about checking register
values. While regexes are general goodness for these sorts of
testcases, in this example, the registers are constrained by
the calling convention, so we can and should check their
explicit values.
rdar://14779513
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188819 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we used a const-pool load for virtually all 64-bit floating values.
Actually, we can get quite a few common values (including 0.0, 1.0) via "vmov"
instructions of one stripe or another.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188773 91177308-0d34-0410-b5e6-96231b3b80d8
When patching inlineasm nodes to use GPRPair for 64-bit values, we
were dropping the information that two operands were tied, which
effectively broke the live-interval of vregs affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188643 91177308-0d34-0410-b5e6-96231b3b80d8
Properly constrain the operand register class for instructions used
in [sz]ext expansion. Update more tests to use the verifier now that
we're getting the register classes correct.
rdar://12594152
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188594 91177308-0d34-0410-b5e6-96231b3b80d8
Teach the generic instruction selection helper functions to constrain
the register classes of their input operands. For non-physical register
references, the generic code needs to be careful not to mess that up
when replacing references to result registers. As the comment indicates
for MachineRegisterInfo::replaceRegWith(), it's important to call
constrainRegClass() first.
rdar://12594152
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188593 91177308-0d34-0410-b5e6-96231b3b80d8
Lots of machine verifier errors result from using a plain GPR regclass
for incoming argument copies. A more restrictive rGPR class is more
appropriate since it more accurately represents what's happening, plus
it lines up better with isel later on so the verifier is happier.
Reduces the number of ARM fast-isel tests not running with the verifier
enabled by over half.
rdar://12594152
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188592 91177308-0d34-0410-b5e6-96231b3b80d8
This unbreaks PIC with fast isel on ELF targets (PR16717). The output matches
what GCC and SDag do for PIC but may not cover all of the many flavors of PIC
that exist.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188551 91177308-0d34-0410-b5e6-96231b3b80d8
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188513 91177308-0d34-0410-b5e6-96231b3b80d8
When determining if two different loads are from the same base address,
this patch allows one load to use a t2LDRi8 address mode and another to
use a t2LDRi12 address mode. The current implementation is very
conservative and this allows the case of differing Thumb2 byte loads to
be considered. Allowing these differing modes instead of forcing the exact
same opcode is useful for situations where one opcodes loads from a base
address+1 and a second opcode loads for a base address-1.
Patch by Daniel Stewart.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188385 91177308-0d34-0410-b5e6-96231b3b80d8
A common idiom is to use zero and all-ones as sentinal values and to
check for both in a single conditional ("x != 0 && x != (unsigned)-1").
That generates code, for i32, like:
testl %edi, %edi
setne %al
cmpl $-1, %edi
setne %cl
andb %al, %cl
With this transform, we generate the simpler:
incl %edi
cmpl $1, %edi
seta %al
Similar improvements for other integer sizes and on other platforms. In
general, combining the two setcc instructions into one is better.
rdar://14689217
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188315 91177308-0d34-0410-b5e6-96231b3b80d8
Various tests had sprung up over the years which had --check-prefix=ABC on the
RUN line, but "CHECK-ABC:" later on. This happened to work before, but was
strictly incorrect. FileCheck is getting stricter soon though.
Patch by Ron Ofir.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188173 91177308-0d34-0410-b5e6-96231b3b80d8
the type exists.
Fix up cases where we weren't checking for optional types and add
an assert to addType to make sure we catch this in the future.
Fix up a testcase that was using the tag for DW_TAG_array_type
when it meant DW_TAG_enumeration_type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187963 91177308-0d34-0410-b5e6-96231b3b80d8
Also remove checking of llvm.dbg.sp since it is not used in generating dwarf.
Current state of Finder:
DebugInfoFinder tries to list all debug info MDNodes used in a module. To
list debug info MDNodes used by an instruction, DebugInfoFinder provides
processDeclare, processValue and processLocation to handle DbgDeclareInst,
DbgValueInst and DbgLoc attached to instructions. processModule will go
through all DICompileUnits in llvm.dbg.cu and list debug info MDNodes
used by the CUs.
TODO:
1> Finder has a list of CUs, SPs, Types, Scopes and global variables. We
need to add a list of variables that are used by DbgDeclareInst and
DbgValueInst.
2> MDString fields should be null or isa<MDString> and MDNode fields should be
null or isa<MDNode>. We currently use empty string or int 0 to represent null.
3> Go though Verify functions and make sure that they check field types.
4> Clean up existing testing cases to remove llvm.dbg.sp and make sure each
testing case has a llvm.dbg.cu.
Re-apply r187609 with fix to pass ocaml binding. vmcore.ml generates a debug
location with scope being metadata !{}, in verifier we treat this as a null
scope.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187812 91177308-0d34-0410-b5e6-96231b3b80d8
Function attributes are the future! So just query whether we want to realign the
stack directly from the function instead of through a random target options
structure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187618 91177308-0d34-0410-b5e6-96231b3b80d8
Also remove checking of llvm.dbg.sp since it is not used in generating dwarf.
Current state of Finder:
DebugInfoFinder tries to list all debug info MDNodes used in a module. To
list debug info MDNodes used by an instruction, DebugInfoFinder provides
processDeclare, processValue and processLocation to handle DbgDeclareInst,
DbgValueInst and DbgLoc attached to instructions. processModule will go
through all DICompileUnits in llvm.dbg.cu and list debug info MDNodes
used by the CUs.
TODO:
1> Finder has a list of CUs, SPs, Types, Scopes and global variables. We
need to add a list of variables that are used by DbgDeclareInst and
DbgValueInst.
2> MDString fields should be null or isa<MDString> and MDNode fields should be
null or isa<MDNode>. We currently use empty string or int 0 to represent null.
3> Go though Verify functions and make sure that they check field types.
4> Clean up existing testing cases to remove llvm.dbg.sp and make sure each
testing case has a llvm.dbg.cu.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187609 91177308-0d34-0410-b5e6-96231b3b80d8
When simplifying a (or (and B A) (and C ~A)) to a (VBSL A B C) ensure that the
bitwidth of the second operands to both ands match before comparing the negation
of the values.
Split the check of the value of the second operands to the ands. Move the cast
and variable declaration slightly higher to make it slightly easier to follow.
Bug-Id: 16700
Signed-off-by: Saleem Abdulrasool <compnerd@compnerd.org>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187404 91177308-0d34-0410-b5e6-96231b3b80d8
This patch prevents the following combine when the input vector is used more
than once.
insert_vector_elt (build_vector elt0, ..., eltN), NewEltIdx, idx
=>
build_vector elt0, ..., NewEltIdx, ..., eltN
The reasons are:
- Building a vector may be expensive, so try to reuse the existing part of a
vector instead of creating a new one (think big vectors).
- elt0 to eltN now have two users instead of one. This may prevent some other
optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187396 91177308-0d34-0410-b5e6-96231b3b80d8
Also always add DIType, DISubprogram and DIGlobalVariable to the list
in DebugInfoFinder without checking them, so we can verify them later
on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187285 91177308-0d34-0410-b5e6-96231b3b80d8
We used to call Verify before adding DICompileUnit to the list, and now we
remove the check and always add DICompileUnit to the list in DebugInfoFinder,
so we can verify them later on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187237 91177308-0d34-0410-b5e6-96231b3b80d8
The previous change to local live range allocation also suppressed
eviction of local ranges. In rare cases, this could result in more
expensive register choices. This commit actually revives a feature
that I added long ago: check if live ranges can be reassigned before
eviction. But now it only happens in rare cases of evicting a local
live range because another local live range wants a cheaper register.
The benefit is improved code size for some benchmarks on x86 and armv7.
I measured no significant compile time increase and performance
changes are noise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187140 91177308-0d34-0410-b5e6-96231b3b80d8
Also avoid locals evicting locals just because they want a cheaper register.
Problem: MI Sched knows exactly how many registers we have and assumes
they can be colored. In cases where we have large blocks, usually from
unrolled loops, greedy coloring fails. This is a source of
"regressions" from the MI Scheduler on x86. I noticed this issue on
x86 where we have long chains of two-address defs in the same live
range. It's easy to see this in matrix multiplication benchmarks like
IRSmk and even the unit test misched-matmul.ll.
A fundamental difference between the LLVM register allocator and
conventional graph coloring is that in our model a live range can't
discover its neighbors, it can only verify its neighbors. That's why
we initially went for greedy coloring and added eviction to deal with
the hard cases. However, for singly defined and two-address live
ranges, we can optimally color without visiting neighbors simply by
processing the live ranges in instruction order.
Other beneficial side effects:
It is much easier to understand and debug regalloc for large blocks
when the live ranges are allocated in order. Yes, global allocation is
still very confusing, but it's nice to be able to comprehend what
happened locally.
Heuristics could be added to bias register assignment based on
instruction locality (think late register pairing, banks...).
Intuituvely this will make some test cases that are on the threshold
of register pressure more stable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187139 91177308-0d34-0410-b5e6-96231b3b80d8
Make sure the context and type fields are MDNodes. We will generate
verification errors if those fields are non-empty strings.
Fix testing cases to make them pass the verifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187106 91177308-0d34-0410-b5e6-96231b3b80d8
Prior to this patch, IfConverter may widen the cases where a sequence of
instructions were executed because of the way it uses nested predicates. This
result in incorrect execution.
For instance, Let A be a basic block that flows conditionally into B and B be a
predicated block.
B can be predicated with A.BrToBPredicate into A iff B.Predicate is less
"permissive" than A.BrToBPredicate, i.e., iff A.BrToBPredicate subsumes
B.Predicate.
The IfConverter was checking the opposite: B.Predicate subsumes
A.BrToBPredicate.
<rdar://problem/14379453>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187071 91177308-0d34-0410-b5e6-96231b3b80d8
Improve the Finder to handle context of a DIVariable used by DbgValueInst.
Fix testing cases to make them pass the verifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187052 91177308-0d34-0410-b5e6-96231b3b80d8
Improve the Finder to handle context of a DIVariable.
If Scope is a DICompileUnit, add it to the list of CUs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187003 91177308-0d34-0410-b5e6-96231b3b80d8
When vectors are built from a single value, the ARM lowering issues a
scalar_to_vector node.
This node is then always morphed into a move from the general purpose unit to
the vector unit.
When the value comes from a load, this can be simplified into a vector load to
the right lane.
This patch changes the lowering of insert_vector_elt to expose a vector
friendly pattern in this situation.
This is a step toward fixing <rdar://problem/14170854>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186999 91177308-0d34-0410-b5e6-96231b3b80d8
MDNodes used by DbgDeclareInst and DbgValueInst.
Another 16 testing cases failed and they are disabled with
-disable-debug-info-verifier.
A total of 34 cases are disabled with -disable-debug-info-verifier and will be
corrected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186902 91177308-0d34-0410-b5e6-96231b3b80d8
instructions. With this patch:
1. ldr.n is recognized as mnemonic for the short encoding
2. ldr.w is recognized as menmonic for the long encoding
3. ldr will map to either short or long encodings depending on the size of the offset
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186831 91177308-0d34-0410-b5e6-96231b3b80d8
indirect branches correctly. Under some circumstances, this led to the deletion
of basic blocks that were the destination of indirect branches. In that case it
left indirect branches to nowhere in the code.
This patch replaces, and is more general than either of the previous fixes for
indirect-branch-analysis issues, r181161 and r186461.
For other branches (not indirect) this refactor should have *almost* identical
behavior to the previous version. There are some corner cases where this
refactor is able to analyze blocks that the previous version could not (e.g.
this necessitated the update to thumb2-ifcvt2.ll).
<rdar://problem/14464830>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186735 91177308-0d34-0410-b5e6-96231b3b80d8
All changes were made by the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
grep -q "^; *RUN: *llc.*debug" $NAME && continue
grep -q "^; *RUN:.*llvm-objdump" $NAME && continue
grep -q "^; *RUN: *opt.*" $NAME && continue
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\([A-Za-z0-9_-]*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC[:]* *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
done
This script catches a superset of the cases caught by the script associated with commit r186280. It initially found some false positives due to unusual constructs in a minority of tests; all such cases were disambiguated first in commit r186621.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186624 91177308-0d34-0410-b5e6-96231b3b80d8
Intrinsics already existed for the 64-bit variants, so these support operations
of size at most 32-bits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186392 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables calls to __aeabi_idivmod when in EABI mode,
by using the remainder value returned on registers (R1),
enabled by the ARM triple "none-eabi". Note that Darwin and
GNUEABI triples will continue lowering on GNU style, that is,
using the stack for the remainder.
Still need to add SREM/UREM support fix for 64-bit lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186390 91177308-0d34-0410-b5e6-96231b3b80d8
We can have a FrameSetup in one basic block and the matching FrameDestroy
in a different basic block when we have struct byval. In that case, SPAdj
is not zero at beginning of the basic block.
Modify PEI to correctly set SPAdj at beginning of each basic block using
DFS traversal. We used to assume SPAdj is 0 at beginning of each basic block.
PEI had an assert SPAdjCount || SPAdj == 0.
If we have a Destroy <n> followed by a Setup <m>, PEI will assert failure.
We can add an extra condition to make sure the pairs are matched:
The pairs start with a FrameSetup.
But since we are doing a much better job in the verifier, this patch removes
the check in PEI.
PR16393
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186364 91177308-0d34-0410-b5e6-96231b3b80d8
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186280 91177308-0d34-0410-b5e6-96231b3b80d8
This was done with the following sed invocation to catch label lines demarking function boundaries:
sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186258 91177308-0d34-0410-b5e6-96231b3b80d8
ARM paired GPR COPY was being lowered to two MOVr without CC. This
patch puts the CC back.
My test is a reduction of the case where I encountered the issue,
64-bit atomics use paired GPRs.
The issue only occurs with selectionDAG, FastISel doesn't encounter it
so I didn't bother calling it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186226 91177308-0d34-0410-b5e6-96231b3b80d8
This prevents the emission of DAG-generated vreg definitions after a
tail call be dropping them entirely (on the grounds that nothing could
use them anyway, and they interfere with O0 CodeGen).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185754 91177308-0d34-0410-b5e6-96231b3b80d8
A "pkhtb x, x, y asr #num" uses the lower 16 bits of "y asr #num" and packs them
in the bottom half of "x". An arithmetic and logic shift are only equivalent in
this context if the shift amount is 16. We would be shifting in ones into the
bottom 16bits instead of zeros if "y" is negative.
radar://14338767
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185712 91177308-0d34-0410-b5e6-96231b3b80d8
In the SelectionDAG immediate operands to inline asm are constructed as
two separate operands. The first is a constant of value InlineAsm::Kind_Imm
and the second is a constant with the value of the immediate.
In ARMDAGToDAGISel::SelectInlineAsm, if we reach an operand of Kind_Imm we
should skip over the next operand too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185688 91177308-0d34-0410-b5e6-96231b3b80d8
In the ARM back-end, build_vector nodes are lowered to a target specific
build_vector that uses floating point type.
This works well, unless the inserted bitcasts survive until instruction
selection. In that case, they incur moves between integer unit and floating
point unit that may result in inefficient code.
In other words, this conversion may introduce artificial dependencies when the
code leading to the build vector cannot be completed with a floating point type.
In particular, this happens when loads are not aligned.
Before this patch, in that case, the compiler generates general purpose loads
and creates the floating point vector from them, instead of directly using the
vector unit.
The patch uses a vector friendly sequence of code when the inserted bitcasts to
floating point survived DAGCombine.
This is done by a target specific DAGCombine that changes the target specific
build_vector into a sequence of insert_vector_elt that get rid of the bitcasts.
<rdar://problem/14170854>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185587 91177308-0d34-0410-b5e6-96231b3b80d8
Swift cores implement store barriers that are stronger than the ARM
specification but weaker than general barriers. They are, in fact, just about
enough to provide the ordering needed for atomic operations with release
semantics.
This patch makes use of that quirk.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185527 91177308-0d34-0410-b5e6-96231b3b80d8
Turns out I'd misread the architecture reference manual and thought
that was a load/store-store barrier, when it's not.
Thanks for pointing it out Eli!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185356 91177308-0d34-0410-b5e6-96231b3b80d8
I believe the full "dmb ish" barrier is not required to guarantee release
semantics for atomic operations. The weaker "dmb ishst" prevents previous
operations being reordered with a store executed afterwards, which is enough.
A key point to note (fortunately already correct) is that this barrier alone is
*insufficient* for sequential consistency, no matter how liberally placed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185339 91177308-0d34-0410-b5e6-96231b3b80d8
should expand ATOMIC_CMP_SWAP nodes the same way that it does for ATOMIC_SWAP.
Since ATOMIC_LOADs on some targets (e.g. older ARM variants) get legalized to
ATOMIC_CMP_SWAPs, the missing case had been causing i64 atomic loads to crash
during isel.
<rdar://problem/14074644>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185186 91177308-0d34-0410-b5e6-96231b3b80d8
This patch assigns paired GPRs for inline asm with
64-bit data on ARM. It's enabled for both ARM and Thumb to support modifiers
like %H, %Q, %R.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185169 91177308-0d34-0410-b5e6-96231b3b80d8
We were generating intrinsics for NEON fixed-point conversions that didn't
exist (e.g. float -> i16). There are two cases to consider:
+ iN is smaller than float. In this case we can do the conversion but need an
extend or truncate as well.
+ iN is larger than float. In this case using the NEON conversion would be
incorrect so we don't perform any combining.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185158 91177308-0d34-0410-b5e6-96231b3b80d8
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185135 91177308-0d34-0410-b5e6-96231b3b80d8
A FastISel optimization was causing us to emit no information for such
parameters & when they go missing we end up emitting a different
function type. By avoiding that shortcut we not only get types correct
(very important) but also location information (handy) - even if it's
only live at the start of a function & may be clobbered later.
Reviewed/discussion by Evan Cheng & Dan Gohman.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184604 91177308-0d34-0410-b5e6-96231b3b80d8
it at the moment.
This allows to form more paired loads even when stack coloring pass destroys the
memoryoperand's value.
<rdar://problem/13978317>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184492 91177308-0d34-0410-b5e6-96231b3b80d8
value is zero.
This allows optmizations to kick in more easily.
Fix some test cases so that they remain meaningful (i.e., not completely dead
coded) when optimizations apply.
<rdar://problem/14096009> superfluous multiply by high part of zero-extended
value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184222 91177308-0d34-0410-b5e6-96231b3b80d8
The main advantages here are way better heuristics, taking into account not
just loop depth but also __builtin_expect and other static heuristics and will
eventually learn how to use profile info. Most of the work in this patch is
pushing the MachineBlockFrequencyInfo analysis into the right places.
This is good for a 5% speedup on zlib's deflate (x86_64), there were some very
unfortunate spilling decisions in its hottest loop in longest_match(). Other
benchmarks I tried were mostly neutral.
This changes register allocation in subtle ways, update the tests for it.
2012-02-20-MachineCPBug.ll was deleted as it's very fragile and the instruction
it looked for was gone already (but the FileCheck pattern picked up unrelated
stuff).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184105 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than using the full power of target-specific addressing modes in
DBG_VALUEs with Frame Indicies, simply use Frame Index + Offset. This
reduces the complexity of debug info handling down to two
representations of values (reg+offset and frame index+offset) rather
than three or four.
Ideally we could ensure that frame indicies had been eliminated by the
time we reached an assembly or dwarf generation, but I haven't spent the
time to figure out where the FIs are leaking through into that & whether
there's a good place to convert them. Some FI+offset=>reg+offset
conversion is done (see PrologEpilogInserter, for example) which is
necessary for some SelectionDAG assumptions about registers, I believe,
but it might be possible to make this a more thorough conversion &
ensure there are no remaining FIs no matter how instruction selection
is performed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184066 91177308-0d34-0410-b5e6-96231b3b80d8
in functions which call __builtin_unwind_init()
__builtin_unwind_init() is an undocumented gcc intrinsic which has this effect,
and is used in libgcc_eh.
Goes part of the way toward fixing PR8541.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183984 91177308-0d34-0410-b5e6-96231b3b80d8
This is a resubmit of r182877, which was reverted because it broken
MCJIT tests on ARM. The patch leaves MCJIT on ARM as it was before: only
enabled for iOS. I've CC'ed people from the original review and revert.
FastISel was only enabled for iOS ARM and Thumb2, this patch enables it
for ARM (not Thumb2) on Linux and NaCl, but not MCJIT.
Thumb2 support needs a bit more work, mainly around register class
restrictions.
The patch punts to SelectionDAG when doing TLS relocation on non-Darwin
targets. I will fix this and other FastISel-to-SelectionDAG failures in
a separate patch.
The patch also forces FastISel to retain frame pointers: iOS always
keeps them for backtracking (so emitted code won't change because of
this), but Linux was getting much worse code that was incorrect when
using big frames (such as test-suite's lencod). I'll also fix this in a
later patch, it will probably require a peephole so that FastISel
doesn't rematerialize frame pointers back-to-back.
The test changes are straightforward, similar to:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20130513/174279.html
They also add a vararg test that got dropped in that change.
I ran all of lnt test-suite on A15 hardware with --optimize-option=-O0
and all the tests pass. All the tests also pass on x86 make check-all. I
also re-ran the check-all tests that failed on ARM, and they all seem to
pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183966 91177308-0d34-0410-b5e6-96231b3b80d8
Since we have ARM unwind directive parser and assembler, we
can check the correctness in two stages:
1. From LLVM assembly (.ll) to ARM assembly (.s)
2. From ARM assembly (.s) to ELF object file (.o)
We already have several "*.s to *.o" test cases. This CL adds
some "*.ll to *.s" test cases and removes the redundant "*.ll to *.o"
test cases.
New test cases to check "*.ll to *.s" code generator:
- ehabi.ll: Check the correctness of the generated unwind directives.
- section-name.ll: Check the section name of functions.
Removed test cases:
- ehabi-mc-cantunwind.ll
(Covered by ehabi-cantunwind.ll, and eh-directive-cantunwind.s)
- ehabi-mc-compact-pr0.ll
(Covered by ehabi.ll, eh-compact-pr0.s, eh-directive-save.s, and
eh-directive-setfp.s)
- ehabi-mc-compact-pr1.ll
(Covered by ehabi.ll, eh-compact-pr1.s, eh-directive-save.s, and
eh-directive-setfp.s)
- ehabi-mc.ll
(Covered by ehabi.ll, and eh-directive-integrated-test.s)
- ehabi-mc-section-group.ll
(Covered by section-name.ll, and eh-directive-section-comdat.s)
- ehabi-mc-section.ll
(Covered by section-name.ll, and eh-directive-section.s)
- ehabi-mc-sh_link.ll
(Covered by eh-directive-text-section.s, and eh-directive-section.s)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183628 91177308-0d34-0410-b5e6-96231b3b80d8
Changes to ARM unwind opcode assembler:
* Fix multiple .save or .vsave directives. Besides, the
order is preserved now.
* For the directives which will generate multiple opcodes,
such as ".save {r0-r11}", the order of the unwind opcode
is fixed now, i.e. the registers with less encoding value
are popped first.
* Fix the $sp offset calculation. Now, we can use the
.setfp, .pad, .save, and .vsave directives at any order.
Changes to test cases:
* Add test cases to check the order of multiple opcodes
for the .save directive.
* Fix the incorrect $sp offset in the test case. The
stack pointer offset specified in the test case was
incorrect. (Changed test cases: ehabi-mc-section.ll and
ehabi-mc.ll)
* The opcode to restore $sp are slightly reordered. The
behavior are not changed, and the new output is same
as the output of GNU as. (Changed test cases:
eh-directive-pad.s and eh-directive-setfp.s)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183627 91177308-0d34-0410-b5e6-96231b3b80d8
instantiation issue with non-standard type.
Add a backend option to warn on a given stack size limit.
Option: -mllvm -warn-stack-size=<limit>
Output (if limit is exceeded):
warning: Stack size limit exceeded (<actual size>) in <functionName>.
The longer term plan is to hook that to a clang warning.
PR:4072
<rdar://problem/13987214>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183595 91177308-0d34-0410-b5e6-96231b3b80d8
Option: -mllvm -warn-stack-size=<limit>
Output (if limit is exceeded):
warning: Stack size limit exceeded (<actual size>) in <functionName>.
The longer term plan is to hook that to a clang warning.
PR:4072
<rdar://problem/13987214>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183552 91177308-0d34-0410-b5e6-96231b3b80d8
My recent ARM FastISel patch exposed this bug:
http://llvm.org/bugs/show_bug.cgi?id=16178
The root cause is that it can't select integer sext/zext pre-ARMv6 and
asserts out.
The current integer sext/zext code doesn't handle other cases gracefully
either, so this patch makes it handle all sext and zext from i1/i8/i16
to i8/i16/i32, with and without ARMv6, both in Thumb and ARM mode. This
should fix the bug as well as make FastISel faster because it bails to
SelectionDAG less often. See fastisel-ext.patch for this.
fastisel-ext-tests.patch changes current tests to always use reg-imm AND
for 8-bit zext instead of UXTB. This simplifies code since it is
supported on ARMv4t and later, and at least on A15 both should perform
exactly the same (both have exec 1 uop 1, type I).
2013-05-31-char-shift-crash.ll is a bitcode version of the above bug
16178 repro.
fast-isel-ext.ll tests all sext/zext combinations that ARM FastISel
should now handle.
Note that my ARM FastISel enabling patch was reverted due to a separate
failure when dealing with MCJIT, I'll fix this second failure and then
turn FastISel on again for non-iOS ARM targets.
I've tested "make check-all" on my x86 box, and "lnt test-suite" on A15
hardware.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183551 91177308-0d34-0410-b5e6-96231b3b80d8
Fix an assertion when the compiler encounters big constants whose bit width is
not a multiple of 64-bits.
Although clang would never generate something like this, the backend should be
able to handle any legal IR.
<rdar://problem/13363576>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183544 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM backend did not expect LDRBi12 to hold a constant pool operand.
Allow for LLVM to deal with the instruction similar to how it deals with
LDRi12.
This fixes PR16215.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183238 91177308-0d34-0410-b5e6-96231b3b80d8
r182877 broke MCJIT tests on ARM and r182937 was working around another failure
by r182877.
This should make the ARM bots green.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182960 91177308-0d34-0410-b5e6-96231b3b80d8
For COFF and MachO, sections semantically have relocations that apply to them.
That is not the case on ELF.
In relocatable objects (.o), a section with relocations in ELF has offsets to
another section where the relocations should be applied.
In dynamic objects and executables, relocations don't have an offset, they have
a virtual address. The section sh_info may or may not point to another section,
but that is not actually used for resolving the relocations.
This patch exposes that in the ObjectFile API. It has the following advantages:
* Most (all?) clients can handle this more efficiently. They will normally walk
all relocations, so doing an effort to iterate in a particular order doesn't
save time.
* llvm-readobj now prints relocations in the same way the native readelf does.
* probably most important, relocations that don't point to any section are now
visible. This is the case of relocations in the rela.dyn section. See the
updated relocation-executable.test for example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182908 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR16146: gdb.base__call-ar-st.exp fails after
pre-RA-sched=source fixes.
Patch by Xiaoyi Guo!
This also fixes an unsupported dbg.value test case. Codegen was
previously incorrect but the test was passing by luck.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182885 91177308-0d34-0410-b5e6-96231b3b80d8
FastISel was only enabled for iOS ARM and Thumb2, this patch enables it
for ARM (not Thumb2) on Linux and NaCl.
Thumb2 support needs a bit more work, mainly around register class
restrictions.
The patch punts to SelectionDAG when doing TLS relocation on non-Darwin
targets. I will fix this and other FastISel-to-SelectionDAG failures in
a separate patch.
The patch also forces FastISel to retain frame pointers: iOS always
keeps them for backtracking (so emitted code won't change because of
this), but Linux was getting much worse code that was incorrect when
using big frames (such as test-suite's lencod). I'll also fix this in a
later patch, it will probably require a peephole so that FastISel
doesn't rematerialize frame pointers back-to-back.
The test changes are straightforward, similar to:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20130513/174279.html
They also add a vararg test that got dropped in that change.
I ran all of test-suite on A15 hardware with --optimize-option=-O0 and
all the tests pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182877 91177308-0d34-0410-b5e6-96231b3b80d8