Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241775 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Avoid using the TargetMachine owned DataLayout and use the Module owned
one instead. This requires passing the DataLayout up the stack to
ComputeValueVTs().
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11019
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241773 91177308-0d34-0410-b5e6-96231b3b80d8
The summary is that it moves the mangling earlier and replaces a few
calls to .addExternalSymbol with addSym.
I originally wanted to replace all the uses of addExternalSymbol with
addSym, but noticed it was a lot of work and doesn't need to be done
all at once.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240395 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM targeting aarch64 doesn't correctly produce aligned accesses for non-aligned
data at -O0/fast-isel (-mno-unaligned-access).
The root cause seems to be in fast-isel not producing unaligned access correctly
for -mno-unaligned-access.
The patch just aborts fast-isel for loads and stores when -mno-unaligned-access is
present.
The regression test is updated to check this new test case (-mno-unaligned-access
together with fast-isel).
Differential Revision: http://reviews.llvm.org/D10360
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239732 91177308-0d34-0410-b5e6-96231b3b80d8
Now that Intrinsic::ID is a typed enum, we can forward declare it and so return it from this method.
This updates all users which were either using an unsigned to store it, or had a now unnecessary cast.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237810 91177308-0d34-0410-b5e6-96231b3b80d8
We were accidentally folding a sign/zero extend in to address arithmetic in a different BB when the extend wasn't available there.
Cross BB fast-isel isn't safe, so restrict this to only when the extend is in the same BB as the use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236764 91177308-0d34-0410-b5e6-96231b3b80d8
A big-endian vector return needs a byte-swap which we aren't doing right now.
For now just bail on these cases to get correctness back.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235133 91177308-0d34-0410-b5e6-96231b3b80d8
The integer extend optimization tries to fold the extend into the load
instruction. This requires us to identify if the extend has already been
emitted or not and act accordingly on it.
The check that was originally performed for this was not sufficient. Besides
checking the ValueMap for a mapped register we also need to check if the
virtual register has already an associated machine instruction that defines it.
This fixes rdar://problem/20470788.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234529 91177308-0d34-0410-b5e6-96231b3b80d8
In the large code model we have to first get the address of the GOT entry, load
the address of the constant, and then load the constant itself.
To avoid these loads and the GOT entry alltogether this commit changes the way
how FP constants are materialized in the large code model. The constats are now
materialized in a GPR and then bitconverted/moved into the FPR.
Reviewed by Tim Northover
Fixes rdar://problem/16572564.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223941 91177308-0d34-0410-b5e6-96231b3b80d8
The load/store value type is currently not available when lowering the memcpy
intrinsic. Add the missing nullptr check to support this in 'computeAddress'.
Fixes rdar://problem/19178947.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223818 91177308-0d34-0410-b5e6-96231b3b80d8
The AAPCS treats small structs and homogeneous floating (or vector) aggregates
specially, and guarantees they either get passed as a contiguous block of
registers, or prevent any future use of those registers and get passed on the
stack.
This concept can fit quite neatly into LLVM's own type system, mapping an HFA
to [N x float] and so on, and small structs to [N x i64]. Doing so allows
front-ends to emit AAPCS compliant code without having to duplicate the
register counting logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222903 91177308-0d34-0410-b5e6-96231b3b80d8
The pattern matching failed to recognize all instances of "-1", because when
comparing against "-1" we didn't use an APInt of the same bitwidth.
This commit fixes this and also adds inverse versions of the conditon to catch
more cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222722 91177308-0d34-0410-b5e6-96231b3b80d8
shift-right for booleans (i1).
Arithmetic shift-right immediate with sign-/zero-extensions also works for
boolean values. Update the assert and the test cases to reflect that fact.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222272 91177308-0d34-0410-b5e6-96231b3b80d8
shift-right for booleans (i1).
Logical shift-right immediate with sign-/zero-extensions also works for boolean
values. Update the assert and the test cases to reflect that fact.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222270 91177308-0d34-0410-b5e6-96231b3b80d8
Shifts also perform sign-/zero-extends to larger types, which requires us to emit
an integer extend instead of a simple COPY.
Related to PR21594.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222257 91177308-0d34-0410-b5e6-96231b3b80d8
This change emits a COPY for a shift-immediate with a "zero" shift value.
This fixes PR21594 where we emitted a shift instruction with an incorrect
immediate operand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222247 91177308-0d34-0410-b5e6-96231b3b80d8
The generic FastISel code would bail, because it can't emit a sign-extend for
AArch64. This copies the code over and uses AArch64 specific emit functions.
This is not ideal and 'computeAddress' should handles this, so it can fold the
address computation into the memory operation.
I plan to clean up 'computeAddress' anyways, so I will add that in a future
commit.
Related to rdar://problem/18962471.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221923 91177308-0d34-0410-b5e6-96231b3b80d8
Optimize selects of i1 in the presence of 'true' and 'false' operands to simple
logic operations.
This fixes rdar://problem/18960150.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221848 91177308-0d34-0410-b5e6-96231b3b80d8
This folds the compare emission into the select emission when possible, so we
can directly use the flags and don't have to emit a separate compare.
Related to rdar://problem/18960150.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221847 91177308-0d34-0410-b5e6-96231b3b80d8
In the case we optimize an integer extend away and replace it directly with the
source register, we also have to clear all kill flags at all its uses.
This is necessary, because the orignal IR instruction might be trivially dead,
but we replaced it with a nop at MI level.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221628 91177308-0d34-0410-b5e6-96231b3b80d8
This is a minor change to use the immediate version when the operand is a null
value. This should get rid of an unnecessary 'mov' instruction in debug
builds and align the code more with the one generated by SelectionDAG.
This fixes rdar://problem/18785125.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220713 91177308-0d34-0410-b5e6-96231b3b80d8
Minor enhancement to use 'tbz' for i1 compare-and-branch to get rid of an 'and'
instruction.
This fixes rdar://problem/18784953.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220712 91177308-0d34-0410-b5e6-96231b3b80d8
The pattern matching for a 'ConstantInt' value was too restrictive. Checking for
a 'Constant' with a bull value is sufficient for using an 'cbz/cbnz' instruction.
This fixes rdar://problem/18784732.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220709 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a bug where the input register was not defined for the 'tbz/tbnz'
instruction. This happened, because we folded the 'and' instruction from a
different basic block.
This fixes rdar://problem/18784013.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220704 91177308-0d34-0410-b5e6-96231b3b80d8
At higher optimization levels the LLVM IR may contain more complex patterns for
loads/stores from/to frame indices. The 'computeAddress' function wasn't able to
handle this and triggered an assertion.
This fix extends the possible addressing modes for frame indices.
This fixes rdar://problem/18783298.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220700 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a miscompilation in the AArch64 fast-isel which was
triggered when a branch is based on an icmp with condition eq or ne,
and type i1, i8 or i16. The cbz instruction compares the whole 32-bit
register, so values with the bottom 1, 8 or 16 bits clear would cause
the wrong branch to be taken.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220553 91177308-0d34-0410-b5e6-96231b3b80d8
When the constant divisor was larger than 32bits, then the optimized code
generated for the AArch64 backend would emit the wrong code, because the shift
was defined as a shift of a 32bit constant '(1<<Lg2(divisor))' and we would
loose the upper 32bits.
This fixes rdar://problem/18678801.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219934 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly a copy of the existing FastISel GEP code, but we have to
duplicate it for AArch64, because otherwise we would bail out even for simple
cases. This is because the standard fastEmit functions don't cover MUL at all
and ADD is lowered very inefficientily.
The original commit had a bug in the add emit logic, which has been fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219831 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly a copy of the existing FastISel GEP code, but on AArch64 we bail
out even for simple cases, because the standard fastEmit functions don't cover
MUL and ADD is lowered inefficientily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219726 91177308-0d34-0410-b5e6-96231b3b80d8
Sign-/zero-extend folding depended on the load and the integer extend to be
both selected by FastISel. This cannot always be garantueed and SelectionDAG
might interfer. This commit adds additonal checks to load and integer extend
lowering to catch this.
Related to rdar://problem/18495928.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219716 91177308-0d34-0410-b5e6-96231b3b80d8
The code already folds sign-/zero-extends, but only if they are arguments to
mul and shift instructions. This extends the code to also fold them when they
are direct inputs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219187 91177308-0d34-0410-b5e6-96231b3b80d8
Tiny enhancement to the address computation code to also fold sub instructions
if the rhs is constant and can be folded into the offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219186 91177308-0d34-0410-b5e6-96231b3b80d8
This commit fixes an issue with sign-/zero-extending loads that was discovered
by Richard Barton.
We use now the correct load instructions for sign-extending loads to 64bit. Also
updated and added more unit tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219185 91177308-0d34-0410-b5e6-96231b3b80d8
Note: This version fixed an issue with the TBZ/TBNZ instructions that were
generated in FastISel. The issue was that the 64bit version of TBZ (TBZX)
automagically sets the upper bit of the immediate field that is used to specify
the bit we want to test. To test for any of the lower 32bits we have to first
extract the subregister and use the 32bit version of the TBZ instruction (TBZW).
Original commit message:
Teach selectBranch to fold bit test and branch into a single instruction (TBZ or
TBNZ).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218693 91177308-0d34-0410-b5e6-96231b3b80d8
The sign-/zero-extension of the loaded value can be performed by the memory
instruction for free. If the result of the load has only one use and the use is
a sign-/zero-extend, then we emit the proper load instruction. The extend is
only a register copy and will be optimized away later on.
Other instructions that consume the sign-/zero-extended value are also made
aware of this fact, so they don't fold the extend too.
This fixes rdar://problem/18495928.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218653 91177308-0d34-0410-b5e6-96231b3b80d8
Factor out the code that determines the implicit scale factor of memory
operations for a given value type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218652 91177308-0d34-0410-b5e6-96231b3b80d8