When LLVM sees something like (v1iN (vselect v1i1, v1iN, v1iN)) it can
decide that the result is OK (v1i64 is legal on AArch64, for example)
but it still need scalarising because of that v1i1. There was no code
to do this though.
AArch64 and ARM64 have DAG combines to produce efficient code and
prevent that occuring in *most* such situations, but there are edge
cases that they miss. This adds a legalization to cope with that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205626 91177308-0d34-0410-b5e6-96231b3b80d8
There were several overlapping problems here, and this solution is
closely inspired by the one adopted in AArch64 in r201381.
Firstly, scalarisation of v1i1 setcc operations simply fails if the
input types are legal. This is fixed in LegalizeVectorTypes.cpp this
time, and allows AArch64 code to be simplified slightly.
Second, vselect with such a setcc feeding into it ends up in
ScalarizeVectorOperand, where it's not handled. I experimented with an
implementation, but found that whatever DAG came out was rather
horrific. I think Hao's DAG combine approach is a good one for
quality, though there are edge cases it won't catch (to be fixed
separately).
Should fix PR19335.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205625 91177308-0d34-0410-b5e6-96231b3b80d8
Removed "GNU Assembler extension (compatibility)" definitions from ARMInstrInfo.td
Fixed ARMAsmParser::ParseInstruction GNU compatability branch, so it also works for thumb mode from now.
Added new tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205622 91177308-0d34-0410-b5e6-96231b3b80d8
Sorry for the breakage.
For now, it will fail in two ways:
1. To fail for targeting x86_64-mingw32.
<stdin>:131:8: note: possible intended match here
0x30830a0100000002 3 0 1 0 0 is_stmt
2. To fail not to find the target x86.
llc: : error: unable to get target for 'x86_64-unknown-unknown',
see --version and --triple.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205621 91177308-0d34-0410-b5e6-96231b3b80d8
The previous patterns directly inserted FMOV or INS instructions into
the DAG for scalar_to_vector & bitconvert patterns. This is horribly
inefficient and can generated lots more GPR <-> FPR register traffic
than necessary.
It's much better to emit instructions the register allocator
understands so it can coalesce the copies when appropriate.
It led to at least one ISelLowering hack to avoid the problems, which
was incorrect for v1i64 (FPR64 has no dsub). It can now be removed
entirely.
This should also fix PR19331.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205616 91177308-0d34-0410-b5e6-96231b3b80d8
Without this change, the llvm_unreachable kicked in. The code pattern
being spotted is rather non-canonical for 128-bit MLAs, but it can
happen and there's no point in generating sub-optimal code for it just
because it looks odd.
Should fix PR19332.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205615 91177308-0d34-0410-b5e6-96231b3b80d8
recoloring cut-offs are encountered and register allocation failed.
This is related to PR18747
Patch by MAYUR PANDEY <mayur.p@samsung.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205601 91177308-0d34-0410-b5e6-96231b3b80d8
Removes unnecessary casts from non-generic address spaces to the generic address
space for certain code patterns.
Patch by Jingyue Wu.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205571 91177308-0d34-0410-b5e6-96231b3b80d8
When rematerializing through truncates, the coalescer may produce instructions
with dead defs, but live implicit-defs of subregs:
E.g.
%X1<def,dead> = MOVi64imm 2, %W1<imp-def>; %X1:GPR64, %W1:GPR32
These instructions are live, and their definitions should not be rewritten.
Fixes <rdar://problem/16492408>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205565 91177308-0d34-0410-b5e6-96231b3b80d8
Acording to AMD documentation, the correct opcode for
BFE_INT is 0x5, not 0x4
Fixes Arithm/Absdiff.Mat/3 OpenCV test
Patch by: Bruno Jiménez
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205562 91177308-0d34-0410-b5e6-96231b3b80d8
these is very much off and is more than just the branch
from this bug incorrect:
Address Line Column File ISA Discriminator Flags
------------------ ------ ------ ------ --- ------------- -------------
0x30830a0100000002 3 0 1 0 0 is_stmt
0x30830a0100000008 3 0 1 0 0 is_stmt end_sequence
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205551 91177308-0d34-0410-b5e6-96231b3b80d8
More updating of tests to be explicit about the target triple rather than
relying on the default target triple supporting ARM mode.
Indicate to lit that object emission is not yet available for Windows on ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205545 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the tests that were targeting ARM EABI to explicitly specify the
environment rather than relying on the default. This breaks with the new
Windows on ARM support when running the tests on Windows where the default
environment is no longer EABI.
Take the opportunity to avoid a pointless redirect (helps when trying to debug
with providing a command line invocation which can be copy and pasted) and
removing a few greps in favour of FileCheck.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205541 91177308-0d34-0410-b5e6-96231b3b80d8
Implementing this via ComputeMaskedBits has two advantages:
+ It actually works. DAGISel doesn't deal with the chains properly
in the previous pattern-based solution, so they never trigger.
+ The information can be used in other DAG combines, as well as the
trivial "get rid of truncs". For example if the trunc is in a
different basic block.
rdar://problem/16227836
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205540 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
test/MC/Mips/<isa1>/invalid-<isa2>.s
Test that <isa1> does not support <isa2>'s instructions.
test/MC/Mips/<isa1>/invalid-<isa2>-xfail.s
Things that should be invalid but currently aren't. Will XPASS if any
become invalid.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3262
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205538 91177308-0d34-0410-b5e6-96231b3b80d8
The terminal barrier of a cmpxchg expansion will be either Acquire or
SequentiallyConsistent. In either case it can be skipped if the
operation has Monotonic requirements on failure.
rdar://problem/15996804
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205535 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Adds the 'mips4' processor and a simple test of the ELF e_flags.
Patch by David Chisnall
His work was sponsored by: DARPA, AFRL
I made one small change to the testcase so that it uses
mips64-unknown-linux instead of mips4-unknown-linux.
This patch indirectly adds FeatureCondMov to FeatureMips64. This is ok
because it's supposed to be there anyway and it turns out that
FeatureCondMov is not a predicate of any instructions at the moment
(this is a bug that hasn't been noticed because there are no targets
without the conditional move instructions yet).
CC: theraven
Differential Revision: http://llvm-reviews.chandlerc.com/D3244
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205530 91177308-0d34-0410-b5e6-96231b3b80d8
llc doesn't generate nodes for unconditional fall-through branches for targets
without FastISel implementation (X86 has it, but can be disabled by
"-fast-isel=false") in SelectionDAGBuilder::visitBr().
So for line 4 in the following testcase
1: void foo(int i){
2: switch(i){
3: default:
4: break;
5: }
6: return;
7: }
there is no corresponding line in .debug_line section, and a debugger
cannot set a breakpoint at line 4.
Fix this by always emitting a branch when we're not optimizing and add a
testcase to ensure that there's code on every line we'd want to break.
Patch by Daniil Fukalov.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205529 91177308-0d34-0410-b5e6-96231b3b80d8
The previous situation where ATOMIC_LOAD_WHATEVER nodes were expanded
at MachineInstr emission time had grown to be extremely large and
involved, to account for the subtly different code needed for the
various flavours (8/16/32/64 bit, cmpxchg/add/minmax).
Moving this transformation into the IR clears up the code
substantially, and makes future optimisations much easier:
1. an atomicrmw followed by using the *new* value can be more
efficient. As an IR pass, simple CSE could handle this
efficiently.
2. Making use of cmpxchg success/failure orderings only has to be done
in one (simpler) place.
3. The common "cmpxchg; did we store?" idiom can be exposed to
optimisation.
I intend to gradually improve this situation within the ARM backend
and make sure there are no hidden issues before moving the code out
into CodeGen to be shared with (at least ARM64/AArch64, though I think
PPC & Mips could benefit too).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205525 91177308-0d34-0410-b5e6-96231b3b80d8
The trouble as in ARMAsmParser, in ParseInstruction method. It assumes that ARM::R12 + 1 == ARM::SP.
It is wrong, since ARM::<Register> codes are generated by tablegen and actually could be any random numbers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205524 91177308-0d34-0410-b5e6-96231b3b80d8
add operation since extract_vector_elt can perform an extend operation. Get the input lane
type from the vector on which we're performing the vpaddl operation on and extend or
truncate it to the output type of the original add node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205523 91177308-0d34-0410-b5e6-96231b3b80d8
%highest(sym1 - sym2 + const) relocations. Remove "ABS_" from VK_Mips_HI
and VK_Mips_LO enums in MipsMCExpr, to be consistent with VK_Mips_HIGHER
and VK_Mips_HIGHEST.
This change also deletes test file test/MC/Mips/higher_highest.ll and moves
its CHECK's to the new test file test/MC/Mips/higher-highest-addressing.s.
The deleted file tests that R_MIPS_HIGHER and R_MIPS_HIGHEST relocations are
emitted in the .o file. Since it uses -force-mips-long-branch option, it was
created when MipsLongBranch's implementation was emitting R_MIPS_HIGHER and
R_MIPS_HIGHEST relocations in the .o file. It was disabled when MipsLongBranch
started to directly calculate offsets.
Differential Revision: http://llvm-reviews.chandlerc.com/D3230
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205522 91177308-0d34-0410-b5e6-96231b3b80d8
While we were encoding 64 bit values (data8) in the subrange itself,
using a 32 bit type for the subrange was still confusing the gdb. Oh,
and make it unsigned too.
As the comment points out, this could be pushed into the frontend so
that it would be 32 or 64 bit as appropriate, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205512 91177308-0d34-0410-b5e6-96231b3b80d8
When a vector type legalizes to a larger vector type, and the target does not
support the associated extending load (or truncating store), then legalization
will scalarize the load (or store) resulting in an associated scalarization
cost. BasicTTI::getMemoryOpCost needs to account for this.
Between this, and r205487, PowerPC on the P7 with VSX enabled shows:
MultiSource/Benchmarks/PAQ8p/paq8p: 43% speedup
SingleSource/Benchmarks/BenchmarkGame/puzzle: 51% speedup
SingleSource/UnitTests/Vectorizer/gcc-loops 28% speedup
(some of these are new; some of these, such as PAQ8p, just reverse regressions
that VSX support would trigger)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205495 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r205479.
It turns out that nm does use addresses, it is just that every reasonable
relocatable ELF object has sections with address 0. I have no idea if those
exist in reality, but it at least it shows that llvm-nm should use the name
address.
The added test was includes an unusual .o file with non 0 section addresses. I
created it by hacking ELFObjectWriter.cpp.
Really sorry for the churn.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205493 91177308-0d34-0410-b5e6-96231b3b80d8
For an cast (extension, etc.), the currently logic predicts a low cost if the
associated operation (keyed on the destination type) is legal (or promoted).
This is not true when the number of values required to legalize the type is
changing. For example, <8 x i16> being sign extended by <8 x i32> is not
generically cheap on PPC with VSX, even though sign extension to v4i32 is
legal, because two output v4i32 values are required compared to the single
v8i16 input value, and without custom logic in the target, this conversion will
scalarize.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205487 91177308-0d34-0410-b5e6-96231b3b80d8
opportunities in the current basic block, rather than just the last one seen.
<rdar://problem/16478629>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205481 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the tests that were targeting ARM EABI to explicitly specify the
environment rather than relying on the default. This breaks with the new
Windows on ARM support when running the tests on Windows where the default
environment is no longer EABI.
Take the opportunity to avoid a pointless redirect (helps when trying to debug
with providing a command line invocation which can be copy and pasted) and
removing a few greps in favour of FileCheck.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205465 91177308-0d34-0410-b5e6-96231b3b80d8
Update the subtarget information for Windows on ARM. This enables using the MC
layer to target Windows on ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205459 91177308-0d34-0410-b5e6-96231b3b80d8
Unlike other v6+ processors, cortex-m0 never supports unaligned accesses.
From the v6m ARM ARM:
"A3.2 Alignment support: ARMv6-M always generates a fault when an unaligned
access occurs."
rdar://16491560
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205452 91177308-0d34-0410-b5e6-96231b3b80d8
Adds the instructions ext/ext32/cins/cins32.
It also changes pop/dpop to accept the two operand version and
adds a simple pattern to generate baddu.
Tests for the two operand versions (including baddu/dmul/dpop/pop)
and the code generation pattern for baddu are included.
Reviewed by: Daniel.Sanders@imgtec.com
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205449 91177308-0d34-0410-b5e6-96231b3b80d8
Weak symbols cannot use the small code model's usual ADRP sequences since the
instruction simply may not be able to encode a value of 0.
This redirects them to use the GOT, which hopefully linkers are able to cope
with even in the static relocation model.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205426 91177308-0d34-0410-b5e6-96231b3b80d8
We were creating libcall nodes that returned an MVT::f128, when these
particular operations actually return an int of some stripe.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205425 91177308-0d34-0410-b5e6-96231b3b80d8
Some Intrinsics are overloaded to the extent that return type equality (all
that's been checked up to now) does not guarantee that the arguments are the
same. In these cases SLP vectorizer should not recurse into the operands, which
can be achieved by comparing them as "Function *" rather than simply the ID.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205424 91177308-0d34-0410-b5e6-96231b3b80d8
Again, coalescing and other optimisations swiftly made the MachineInstrs
consistent again, but when compiled at -O0 a bad INSERT_SUBREGISTER was
produced.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205423 91177308-0d34-0410-b5e6-96231b3b80d8
The previous attempt was fine with optimisations, but was actually rather
cavalier with its types. When compiled at -O0, it produced invalid COPY
MachineInstrs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205422 91177308-0d34-0410-b5e6-96231b3b80d8
ARM specific optimiztion, finding places in ARM machine code where 2 dmbs
follow one another, and eliminating one of them.
Patch by Reinoud Elhorst.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205409 91177308-0d34-0410-b5e6-96231b3b80d8
For the purpose of calculating the cost of the loop at various vectorization
factors, we need to count dependencies of consecutive pointers as uniforms
(which means that the VF = 1 cost is used for all overall VF values).
For example, the TSVC benchmark function s173 has:
...
%3 = add nsw i64 %indvars.iv, 16000
%arrayidx8 = getelementptr inbounds %struct.GlobalData* @global_data, i64 0, i32 0, i64 %3
...
and we must realize that the add will be a scalar in order to correctly deduce
it to be profitable to vectorize this on PowerPC with VSX enabled. In fact, all
dependencies of a consecutive pointer must be a scalar (uniform), and so we
simply need to add all consecutive pointers to the worklist that currently
detects collects uniforms.
Fixes PR19296.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205387 91177308-0d34-0410-b5e6-96231b3b80d8
Seems we didn't have any test coverage for merging... awesome. So I
added some - but hit an llvm-objdump bug while I was there. I'm choosing
not to shave that yak right now.
Code review feedback/bug catch by Adrian Prantl in r205360.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205373 91177308-0d34-0410-b5e6-96231b3b80d8
This provides an initial implementation of getUnrollingPreferences for x86.
getUnrollingPreferences is used by the generic (concatenation) unroller, which
is distinct from the unrolling done by the loop vectorizer. Many modern x86
cores have some kind of uop cache and loop-stream detector (LSD) used to
efficiently dispatch small loops, and taking full advantage of this requires
unrolling small loops (small here means 10s of uops).
These caches also have limits on the number of taken branches in the loop, and
so we also cap the loop unrolling factor based on the maximum "depth" of the
loop. This is currently calculated with a partial DFS traversal (partial
because it will stop early if the path length grows too much). This is still an
approximation, and one that is both conservative (because it does not account
for branches eliminated via block placement) and optimistic (because it is only
recording the maximum depth over minimum paths). Nevertheless, because the
loops that fit in these uop caches are so small, it is not clear how much the
details matter.
The original set of patches posted for review produced the following test-suite
performance results (from the TSVC benchmark) at that time:
ControlLoops-dbl - 13% speedup
ControlLoops-flt - 15% speedup
Reductions-dbl - 7.5% speedup
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205348 91177308-0d34-0410-b5e6-96231b3b80d8
Identical to Win32 method except the GS segment register is used for TLS
instead of FS and pvArbitrary is at TEB offset 0x28 instead of 0x14.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205342 91177308-0d34-0410-b5e6-96231b3b80d8
The Cyclone CPU is similar to swift for most LLVM purposes, but does have two
preferred instructions for zeroing a VFP register. This teaches LLVM about
them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205309 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This should fix the issues the D3222 caused in lld. Testcase is based on
the one that failed in the buildbot.
Depends on D3233
Reviewers: matheusalmeida, vmedic
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3234
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205298 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Highlights:
- Registers are resolved much later (by the render method).
Prior to that point, GPR32's/GPR64's are GPR's regardless of register
size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register
size or FR mode. Numeric registers can be anything.
- All registers are parsed the same way everywhere (even when handling
symbol aliasing)
- One consequence is that all registers can be specified numerically
almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing
but that can be easily resolved.
- Removes the need for the hasConsumedDollar hack
- Parenthesis and Bracket suffixes are handled generically
- Micromips instructions are parsed directly instead of going through the
standard encodings first.
- rdhwr accepts all 32 registers, and the following instructions that previously
xfailed now work:
ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d,
c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1
- Diagnostics involving registers point at the correct character (the $)
- There's only one kind of immediate in MipsOperand. LSA immediates are handled
by the predicate and renderer.
Lowlights:
- Hardcoded '$zero' in the div patterns is handled with a hack.
MipsOperand::isReg() will return true for a k_RegisterIndex token
with Index == 0 and getReg() will return ZERO for this case. Note that it
doesn't return ZERO_64 on isGP64() targets.
- I haven't cleaned up all of the now-unused functions.
Some more of the generic parser could be removed too (integers and relocs
for example).
- insve.df needed a custom decoder to handle the implicit fourth operand that
was needed to make it parse correctly. The difficulty was that the matcher
expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this.
Reviewers: matheusalmeida, vmedic
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3222
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205292 91177308-0d34-0410-b5e6-96231b3b80d8
This moves one case of raw text checking down into the MCStreamer
interfaces in the form of a virtual function, even if we ultimately end
up consolidating on the one-or-many line tables issue one day, this is
nicer in the interim. This just generally streamlines a bunch of use
cases into a common code path.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205287 91177308-0d34-0410-b5e6-96231b3b80d8
I don't think this is reachable by any frontend (why would you transform
asm to asm+debug info?) but it helps tidy up some of this code, avoid
the weird special case of "emit the first CU, store the label, then emit
the rest" in MCDwarfLineTable::Emit by instead having the
DWARF-for-assembly case use the same codepath as DwarfDebug.cpp, by
registering the label of the debug_line section, thus causing it to be
emitted. (with a special case in asm output to just emit the label since
asm output uses the .loc directives, etc, rather than the debug_loc
directly)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205286 91177308-0d34-0410-b5e6-96231b3b80d8
The generic (concatenation) loop unroller is currently placed early in the
standard optimization pipeline. This is a good place to perform full unrolling,
but not the right place to perform partial/runtime unrolling. However, most
targets don't enable partial/runtime unrolling, so this never mattered.
However, even some x86 cores benefit from partial/runtime unrolling of very
small loops, and follow-up commits will enable this. First, we need to move
partial/runtime unrolling late in the optimization pipeline (importantly, this
is after SLP and loop vectorization, as vectorization can drastically change
the size of a loop), while keeping the full unrolling where it is now. This
change does just that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205264 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r205018.
Conflicts:
lib/Transforms/Vectorize/SLPVectorizer.cpp
test/Transforms/SLPVectorizer/X86/insert-element-build-vector.ll
This is breaking libclc build.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205260 91177308-0d34-0410-b5e6-96231b3b80d8
This commit updates the stackmap format to version 1 to indicate the
reorganizaion of several fields. This was done in order to align stackmap
entries to their natural alignment and to minimize padding.
Fixes <rdar://problem/16005902>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205254 91177308-0d34-0410-b5e6-96231b3b80d8
Pretty obvious follow-on to r205159 to also handle conversion from double
besides float.
Fixes <rdar://problem/16373208>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205253 91177308-0d34-0410-b5e6-96231b3b80d8
If we have two unique values for a v2i64 build vector, this will always result
in two vector loads if we expand using shuffles. Only one is necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205231 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Highlights:
- Registers are resolved much later (by the render method).
Prior to that point, GPR32's/GPR64's are GPR's regardless of register
size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register
size or FR mode. Numeric registers can be anything.
- All registers are parsed the same way everywhere (even when handling
symbol aliasing)
- One consequence is that all registers can be specified numerically
almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing
but that can be easily resolved.
- Removes the need for the hasConsumedDollar hack
- Parenthesis and Bracket suffixes are handled generically
- Micromips instructions are parsed directly instead of going through the
standard encodings first.
- rdhwr accepts all 32 registers, and the following instructions that previously
xfailed now work:
ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d,
c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1
- Diagnostics involving registers point at the correct character (the $)
- There's only one kind of immediate in MipsOperand. LSA immediates are handled
by the predicate and renderer.
Lowlights:
- Hardcoded '$zero' in the div patterns is handled with a hack.
MipsOperand::isReg() will return true for a k_RegisterIndex token
with Index == 0 and getReg() will return ZERO for this case. Note that it
doesn't return ZERO_64 on isGP64() targets.
- I haven't cleaned up all of the now-unused functions.
Some more of the generic parser could be removed too (integers and relocs
for example).
- insve.df needed a custom decoder to handle the implicit fourth operand that
was needed to make it parse correctly. The difficulty was that the matcher
expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this.
Reviewers: matheusalmeida, vmedic
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3222
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205229 91177308-0d34-0410-b5e6-96231b3b80d8
part of an asm .symver directive as being used. This prevents referenced
functions from being internalized and deleted.
Without the patch to LTOModule.cpp, the test case will produce the error:
LLVM ERROR: A @@ version cannot be undefined.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205221 91177308-0d34-0410-b5e6-96231b3b80d8
This is a more thorough fix for the issue than r203483. An IR pass will run
before NVPTX codegen to make sure there are no invalid symbol names that can't
be consumed by the ptxas assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205212 91177308-0d34-0410-b5e6-96231b3b80d8
%got_hi, %got_lo, %call_hi, %call_lo, %higher, and %highest are now recognised
by MipsAsmParser::getVariantKind().
To prevent future issues with missing entries in this StringSwitch, I've added
an assertion to the default case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205200 91177308-0d34-0410-b5e6-96231b3b80d8
Unlike my previous commit, don't try to remove the corresponding VK_Mips_GOT yet
even though it shares the same assembly text since that is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205196 91177308-0d34-0410-b5e6-96231b3b80d8
This allows allows us to replace ISD::EXTRACT_ELEMENT, which is lowered
using shifts, with ISD::EXTRACT_VECTOR_ELT, which is a no-op.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205187 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Where those ISA's are not currently supported, the test is run with the smallest
superset of that ISA.
Some instructions are valid but don't pass yet. These have been placed in the
valid-xfail.s's which will XPASS if _any_ instruction starts working.
The valid.s's do not verify the encoding yet. There are also no tests checking that instructions from neighbouring ISA's are not accepted.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3214
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205180 91177308-0d34-0410-b5e6-96231b3b80d8
When the loop vectorizer vectorizes code that uses the loop induction variable,
we often end up with IR like this:
%b1 = insertelement <2 x i32> undef, i32 %v, i32 0
%b2 = shufflevector <2 x i32> %b1, <2 x i32> undef, <2 x i32> zeroinitializer
%i = add <2 x i32> %b2, <i32 2, i32 3>
If the add in this example is not legal (as is the case on PPC with VSX), it
will be scalarized, and we'll end up with a number of extract_vector_elt nodes
with the vector shuffle as the input operand, and that vector shuffle is fed by
one or more build_vector nodes. By the time that vector operations are
expanded, visitEXTRACT_VECTOR_ELT will not create new extract_vector_elt by
looking through the vector shuffle (to make sure that no illegal operations are
created), and so the extract_vector_elt -> vector shuffle -> build_vector is
never simplified to an operand of the build vector.
By looking at build_vectors through a shuffle we fix this particular situation,
preventing a vector from being built, only to be deconstructed again (for the
scalarized add) -- an expensive proposition when this all needs to be done via
the stack. We probably want a more comprehensive fix here where we look back
recursively through any shuffles to any build_vectors or scalar_to_vectors,
etc. but that can come later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205179 91177308-0d34-0410-b5e6-96231b3b80d8
While reviewing r204163, I noticed that the MIPS16 test only checked for a .ent
directive and didn't actually check the code emitted. Fixed this and added a
check for llvm.bswap.i32 on MIPS64 at the same time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205177 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The FileHeader mapping now accepts an optional Flags sequence that accepts
the EF_<arch>_<flag> constants. When not given, Flags defaults to zero.
Reviewers: atanasyan
Reviewed By: atanasyan
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3213
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205173 91177308-0d34-0410-b5e6-96231b3b80d8
is not a pattern to lower this with clever instructions that zero the
register, so restrict the zero immediate legality special case to f64
and f32 (the only two sizes which fmov seems to directly support). Fixes
backend errors when building code such as libxml.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205161 91177308-0d34-0410-b5e6-96231b3b80d8
There is no direct AVX instruction to convert to unsigned. I have some ideas
how we may be able to do this with three vector instructions but the current
backend just bails on this to get it scalarized.
See the comment why we need to adjust the cost returned by BasicTTI.
The test is a bit roundabout (and checks assembly rather than bit code) because
I'd like it to work even if at some point we could vectorize this conversion.
Fixes <rdar://problem/16371920>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205159 91177308-0d34-0410-b5e6-96231b3b80d8
When expanding EXTRACT_VECTOR_ELT and EXTRACT_SUBVECTOR using
SelectionDAGLegalize::ExpandExtractFromVectorThroughStack, we store the entire
vector and then load the piece we want. This is fine in isolation, but
generating a new store (and corresponding stack slot) for each extraction ends
up producing code of poor quality. When we scalarize a vector operation (using
SelectionDAG::UnrollVectorOp for example) we generate one EXTRACT_VECTOR_ELT
for each element in the vector. This used to generate one stored copy of the
vector for each element in the vector. Now we search the uses of the vector for
a suitable store before generating a new one, which results in much more
efficient scalarization code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205153 91177308-0d34-0410-b5e6-96231b3b80d8
sitofp from v2i32 to v2f64 ends up generating a SIGN_EXTEND_INREG v2i64 node
(and similarly for v2i16 and v2i8). Even though there are no sign-extension (or
algebraic shifts) for v2i64 types, we can handle v2i32 sign extensions by
converting two and from v2i64. The small trick necessary here is to shift the
i32 elements into the right lanes before the i32 -> f64 step. This is because
of the big Endian nature of the system, we need the i32 portion in the high
word of the i64 elements.
For v2i16 and v2i8 we can do the same, but we first use the default Altivec
shift-based expansion from v2i16 or v2i8 to v2i32 (by casting to v4i32) and
then apply the above procedure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205146 91177308-0d34-0410-b5e6-96231b3b80d8
v2i64 is a legal type under VSX, however we don't have native vector
comparisons. We can handle eq/ne by casting it to an Altivec type, but
everything else must be expanded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205106 91177308-0d34-0410-b5e6-96231b3b80d8
When LLVM is not built with zlib, nocompression.s will test
for the error message. But this test case will cause breakage
because the exit code is non-zero. This commit fix this issue
by adding "not" to the command.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205102 91177308-0d34-0410-b5e6-96231b3b80d8
Issue subject: Crash using integrated assembler with immediate arithmetic
Fix description:
Expressions like 'cmp r0, #(l1 - l2) >> 3' could not be evaluated on asm parsing stage,
since it is impossible to resolve labels on this stage. In the end of stage we still have
expression (MCExpr).
Then, when we want to encode it, we expect it to be an immediate, but it still an expression.
Patch introduces a Fixup (MCFixup instance), that is processed after main encoding stage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205094 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.
Everything will be easier with the target in-tree though, hence this
commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205090 91177308-0d34-0410-b5e6-96231b3b80d8
I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205076 91177308-0d34-0410-b5e6-96231b3b80d8
We had stored both f64 values and v2f64, etc. values in the VSX registers. This
worked, but was suboptimal because we would always spill 16-byte values even
through we almost always had scalar 8-byte values. This resulted in an
increase in stack-size use, extra memory bandwidth, etc. To fix this, I've
added 64-bit subregisters of the Altivec registers, and combined those with the
existing scalar floating-point registers to form a class of VSX scalar
floating-point registers. The ABI code has also been enhanced to use this
register class and some other necessary improvements have been made.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205075 91177308-0d34-0410-b5e6-96231b3b80d8
Emit 32-bit register names instead of 64-bit register names if the target does
not have 64-bit general purpose registers.
<rdar://problem/14653996>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205067 91177308-0d34-0410-b5e6-96231b3b80d8
Turns out debug_frame does use multiple fragments, so it doesn't
compress correctly with the current approach. Disable compressing it for
now while I figure out what's the best solution for it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205059 91177308-0d34-0410-b5e6-96231b3b80d8
WinCOFF cannot form PC relative relocations to support absolute
MCValues. We should reenable this once WinCOFF supports emission of
IMAGE_REL_I386_REL32 relocations.
This fixes PR19272.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205058 91177308-0d34-0410-b5e6-96231b3b80d8
This is a bit of a stab in the dark, since I have zlib on my machine.
Just going to bounce it off the bots & see if it sticks.
Do we have some convention for negative REQUIRES: checks? Or do I just
need to add a feature like I've done here?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205050 91177308-0d34-0410-b5e6-96231b3b80d8
Not only did I invert the indices when I wrote the code, but I also did the
same thing when I wrote the regression test. Oops.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205046 91177308-0d34-0410-b5e6-96231b3b80d8
v2[fi]64 values need to be explicitly passed in VSX registers. This is because
the code in TRI that finds the minimal register class given a register and a
value type will assert if given an Altivec register and a non-Altivec type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205041 91177308-0d34-0410-b5e6-96231b3b80d8
It was using "lc -filetype=obj" just to pass the result to
"llvm-objdupm -disassemble" and then filecheck assembly.
The CHECK-NOT would never match anyway since it was missing $.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205036 91177308-0d34-0410-b5e6-96231b3b80d8
Extract element instructions that will be removed when vectorzing lower the
cost.
Patch by Arch D. Robison!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205020 91177308-0d34-0410-b5e6-96231b3b80d8