- This fixed a number of bugs in if-converter, tail merging, and post-allocation
scheduler. If-converter now runs branch folding / tail merging first to
maximize if-conversion opportunities.
- Also changed the t2IT instruction slightly. It now defines the ITSTATE
register which is read by instructions in the IT block.
- Added Thumb2 specific hazard recognizer to ensure the scheduler doesn't
change the instruction ordering in the IT block (since IT mask has been
finalized). It also ensures no other instructions can be scheduled between
instructions in the IT block.
This is not yet enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106344 91177308-0d34-0410-b5e6-96231b3b80d8
instructions, but it doesn't really understand live ranges, so the first
INSERT_SUBREG uses an implicitly defined register.
Fix it in LiveVariableAnalysis by adding the <undef> flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106333 91177308-0d34-0410-b5e6-96231b3b80d8
entries used by llvm-gcc. *_[U]MIN and such can be added later if needed.
This enables the front ends to simplify handling of the atomic intrinsics by
removing the target-specific decision about which targets can handle the
intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106321 91177308-0d34-0410-b5e6-96231b3b80d8
so when IfConverter::CopyAndPredicateBlock checks to see if it should ignore
an instruction because it is a branch, it should not check if the branch is
predicated.
This case (when IgnoreBr is true) is only relevant from IfConvertTriangle,
where new branches are inserted after the block has been copied and predicated.
If the original branch is not removed, we end up with multiple conditional
branches (possibly conflicting) at the end of the block. Aside from any
immediate errors resulting from that, this confuses the AnalyzeBranch functions
so that the branches are not analyzable. That in turn causes the IfConverter to
think that the "Simple" pattern can be applied, and things go downhill fast
because the "Simple" pattern does _not_ apply if the block can fall through.
This is pretty fragile. If there are other degenerate cases where AnalyzeBranch
fails, but where the block may still fall through, the IfConverter should not
perform its "Simple" if-conversion. But, I don't know how to do that with the
current AnalyzeBranch interface, so for now, the best thing seems to be to
avoid creating branches that AnalyzeBranch cannot handle.
Evan, please review!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106291 91177308-0d34-0410-b5e6-96231b3b80d8
switch from this:
if (TimePassesIsEnabled) {
NamedRegionTimer T(Name, GroupName);
do_something();
} else {
do_something(); // duplicate the code, this time without a timer!
}
to this:
{
NamedRegionTimer T(Name, GroupName, TimePassesIsEnabled);
do_something();
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106285 91177308-0d34-0410-b5e6-96231b3b80d8
addresses a longstanding deficiency noted in many FIXMEs scattered
across all the targets.
This effectively moves the problem up one level, replacing eleven
FIXMEs in the targets with eight FIXMEs in CodeGen, plus one path
through FastISel where we actually supply a DebugLoc, fixing Radar
7421831.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106243 91177308-0d34-0410-b5e6-96231b3b80d8
for the moment. The implementation of the libcall will follow.
Currently, the llvm-gcc knows when the intrinsics can be correctly handled by
the back end and only generates them in those cases, issuing libcalls directly
otherwise. That's too much coupling. The intrinsics should always be
generated and the back end decide how to handle them, be it with a libcall,
inline code, or whatever. This patch is a step in that direction.
rdar://8097623
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106227 91177308-0d34-0410-b5e6-96231b3b80d8
LiveVariableAnalysis was a bit picky about a register only being redefined once,
but that really isn't necessary.
Here is an example of chained INSERT_SUBREGs that we can handle now:
68 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1028<kill>, 14
register: %reg1040 +[70,134:0)
76 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1029<kill>, 13
register: %reg1040 replace range with [70,78:1) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,134:0) 0@78-(134) 1@70-(78)
84 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1030<kill>, 12
register: %reg1040 replace range with [78,86:2) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,86:2)[86,134:0) 0@86-(134) 1@70-(78) 2@78-(86)
92 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1031<kill>, 11
register: %reg1040 replace range with [86,94:3) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,86:2)[86,94:3)[94,134:0) 0@94-(134) 1@70-(78) 2@78-(86) 3@86-(94)
rdar://problem/8096390
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106152 91177308-0d34-0410-b5e6-96231b3b80d8
will conflict with another live range. The place which creates this scenerio is
the code in X86 that lowers a select instruction by splitting the MBBs. This
eliminates the need to check from the bottom up in an MBB for live pregs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106066 91177308-0d34-0410-b5e6-96231b3b80d8
SimpleRegisterCoalescing::JoinIntervals() uses CoalescerPair to determine if a
copy is coalescable, and in very rare cases it can return true where LHS is not
live - the coalescable copy can come from an alias of the physreg in LHS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106021 91177308-0d34-0410-b5e6-96231b3b80d8
combined to an insert_subreg, i.e., where the destination register is larger
than the source. We need to check that the subregs can be composed for that
case in a symmetrical way to the case when the destination is smaller.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106004 91177308-0d34-0410-b5e6-96231b3b80d8
Early clobbers defining a virtual register were first alocated to a physreg and
then processed as a physreg EC, spilling the virtreg.
This fixes PR7382.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105998 91177308-0d34-0410-b5e6-96231b3b80d8
Given a copy instruction, CoalescerPair can determine which registers to
coalesce in order to eliminate the copy. It deals with all the subreg fun to
determine a tuple (DstReg, SrcReg, SubIdx) such that:
- SrcReg is a virtual register that will disappear after coalescing.
- DstReg is a virtual or physical register whose live range will be extended.
- SubIdx is 0 when DstReg is a physical register.
- SrcReg can be joined with DstReg:SubIdx.
CoalescerPair::isCoalescable() determines if another copy instruction is
compatible with the same tuple. This fixes some NEON miscompilations where
shuffles are getting coalesced as if they were copies.
The CoalescerPair class will replace a lot of the spaghetti logic in JoinCopy
later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105997 91177308-0d34-0410-b5e6-96231b3b80d8
replacing the overly conservative checks that I had introduced recently to
deal with correctness issues. This makes a pretty noticable difference
in our testcases where reg_sequences are used. I've updated one test to
check that we no longer emit the unnecessary subreg moves.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105991 91177308-0d34-0410-b5e6-96231b3b80d8
- Rename ExactHazardRecognizer to PostRAHazardRecognizer and move its header to include to allow targets to extend it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105959 91177308-0d34-0410-b5e6-96231b3b80d8
clean-up to a catch-all after inlining, take into account that there could be
filter IDs as well. The presence of filters don't mean that the selector catches
anything. It's just metadata information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105872 91177308-0d34-0410-b5e6-96231b3b80d8
This is a bit of a hack to make inline asm look more like call instructions.
It would be better to produce correct dead flags during isel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105749 91177308-0d34-0410-b5e6-96231b3b80d8
%reg1025 = <sext> %reg1024
...
%reg1026 = SUBREG_TO_REG 0, %reg1024, 4
into this:
%reg1025 = <sext> %reg1024
...
%reg1027 = EXTRACT_SUBREG %reg1025, 4
%reg1026 = SUBREG_TO_REG 0, %reg1027, 4
The problem here is that SUBREG_TO_REG is there to assert that an implicit zext
occurs. It doesn't insert a zext instruction. If we allow the EXTRACT_SUBREG
here, it will give us the value after the <sext>, not the original value of
%reg1024 before <sext>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105741 91177308-0d34-0410-b5e6-96231b3b80d8
register allocation.
Process all of the clobber lists at the end of the function, marking the
registers as used in MachineRegisterInfo.
This is necessary in case the calls clobber callee-saved registers (sic).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105473 91177308-0d34-0410-b5e6-96231b3b80d8
replace an OpA with a widened OpB, it is possible to get new uses of OpA due to CSE
when recursively updating nodes. Since OpA has been processed, the new uses are
not examined again. The patch checks if this occurred and it it did, updates the
new uses of OpA to use OpB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105453 91177308-0d34-0410-b5e6-96231b3b80d8
Check that all the instructions are in the same basic block, that the
EXTRACT_SUBREGs write to the same subregs that are being extracted, and that
the source and destination registers are in the same regclass. Some of
these constraints can be relaxed with a bit more work. Jakob suggested
that the loop that checks for subregs when NewSubIdx != 0 should use the
"nodbg" iterator, so I made that change here, too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105437 91177308-0d34-0410-b5e6-96231b3b80d8
registers it defines then interfere with an existing preg live range.
For instance, if we had something like these machine instructions:
BB#0
... = imul ... EFLAGS<imp-def,dead>
test ..., EFLAGS<imp-def>
jcc BB#2 EFLAGS<imp-use>
BB#1
... ; fallthrough to BB#2
BB#2
... ; No code that defines EFLAGS
jcc ... EFLAGS<imp-use>
Machine sink will come along, see that imul implicitly defines EFLAGS, but
because it's "dead", it assumes that it can move imul into BB#2. But when it
does, imul's "dead" imp-def of EFLAGS is raised from the dead (a zombie) and
messes up the condition code for the jump (and pretty much anything else which
relies upon it being correct).
The solution is to know which pregs are live going into a basic block. However,
that information isn't calculated at this point. Nor does the LiveVariables pass
take into account non-allocatable physical registers. In lieu of this, we do a
*very* conservative pass through the basic block to determine if a preg is live
coming out of it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105387 91177308-0d34-0410-b5e6-96231b3b80d8
expansion is the same as that used by LegalizeDAG.
The resulting code sucks in terms of performance/codesize on x86-32 for a
64-bit operation; I haven't looked into whether different expansions might be
better in general.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105378 91177308-0d34-0410-b5e6-96231b3b80d8
spills and reloads.
This means that a partial define of a register causes a reload so the other
parts of the register are preserved.
The reload can be prevented by adding an <imp-def> operand for the full
register. This is already done by the coalescer and live interval analysis where
relevant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105369 91177308-0d34-0410-b5e6-96231b3b80d8
register updates.
These operands tell the spiller that the other parts of the partially defined
register are don't-care, and a reload is not necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105361 91177308-0d34-0410-b5e6-96231b3b80d8
instruction defines subregisters.
Any existing subreg indices on the original instruction are preserved or
composed with the new subreg index.
Also substitute multiple operands mentioning the original register by using the
new MachineInstr::substituteRegister() function. This is necessary because there
will soon be <imp-def> operands added to non read-modify-write partial
definitions. This instruction:
%reg1234:foo = FLAP %reg1234<imp-def>
will reMaterialize(%reg3333, bar) like this:
%reg3333:bar-foo = FLAP %reg333:bar<imp-def>
Finally, replace the TargetRegisterInfo pointer argument with a reference to
indicate that it cannot be NULL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105358 91177308-0d34-0410-b5e6-96231b3b80d8
backends and removes the virtual declaration. With that out of the way
I should be able to cleanup one backend at a time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105321 91177308-0d34-0410-b5e6-96231b3b80d8
The comment about ordering of subreg indices is no longer true.
This exposed a bug in the new substVirtReg method that is also fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105294 91177308-0d34-0410-b5e6-96231b3b80d8
handle structs passed by value via an extract/insert pair, as a bitcast
won't work on a struct. rdar://7742824
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105280 91177308-0d34-0410-b5e6-96231b3b80d8
that are too large. This causes the freebsd bootloader to be too
large apparently.
It's unclear if this should be an -Os or -Oz thing. Thoughts welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105228 91177308-0d34-0410-b5e6-96231b3b80d8
shouldn't have a TargetLoweringInfo member. And FunctionLoweringInfo::set
doesn't needs its EnableFastISel argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105101 91177308-0d34-0410-b5e6-96231b3b80d8
implementation that is correct for most targets. Tablegen will override where
needed.
Add MachineOperand::subst{Virt,Phys}Reg methods that correctly handle existing
subreg indices when sustituting registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104985 91177308-0d34-0410-b5e6-96231b3b80d8
optimization level.
This only really affects llc for now because both the llvm-gcc and clang front
ends override the default register allocator. I intend to remove that code later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104904 91177308-0d34-0410-b5e6-96231b3b80d8
implementing pop with a linear search for a "best" element. The priority
queue was a neat idea, but in practice the comparison functions depend
on dynamic information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104718 91177308-0d34-0410-b5e6-96231b3b80d8
If you have a setjmp/longjmp situation, it's possible for stack slot coloring to
reuse a stack slot before it's really dead. For instance, if we have something
like this:
1: y = g;
x = sigsetjmp(env, 0);
switch (x) {
case 1:
/* ... */
goto run;
case 0:
run:
do_run(); /* marked as "no return" */
break;
case 3:
if (...) {
/* ... */
goto run;
}
/* ... */
break;
}
2: g = y;
"y" may be put onto the stack, so the expression "g = y" is relying upon the
fact that the stack slot containing "y" isn't modified between (1) and (2). But
it can be, because of the "no return" calls in there. A longjmp might come back
with 3, modify the stack slot, and then go to case 0. And it's perfectly
acceptable to reuse the stack slot there because there's no CFG flow from case 3
to (2).
The fix is to disable certain optimizations in these situations. Ideally, we'd
disable them for all "returns twice" functions. But we don't support that
attribute. Check for "setjmp" and "sigsetjmp" instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104640 91177308-0d34-0410-b5e6-96231b3b80d8
Mon Ping provided; unfortunately bugpoint failed to
reduce it, but I think it's important to have a test for
this in the suite. 8023512.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104624 91177308-0d34-0410-b5e6-96231b3b80d8
so that it will continue to test what it was meant to test when I commit a
separate change for better support of BUILD_VECTOR and VECTOR_SHUFFLE for Neon.
Fix a DAG combiner crash exposed by this test change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104380 91177308-0d34-0410-b5e6-96231b3b80d8
that are aliases of the specified register.
- Rename modifiesRegister to definesRegister since it's looking a def of the
specific register or one of its super-registers. It's not looking for def of a
sub-register or alias that could change the specified register.
- Added modifiesRegister to look for defs of aliases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104377 91177308-0d34-0410-b5e6-96231b3b80d8
reads or writes a register.
This takes partial redefines and undef uses into account.
Don't actually use it yet. That caused miscompiles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104372 91177308-0d34-0410-b5e6-96231b3b80d8
definitions of the virtual register.
This happens when spilling the registers produced by REG_SEQUENCE:
%reg1047:5<def>, %reg1047:6<def>, %reg1047:7<def> = VLD3d8 %reg1033, 0, pred:14, pred:%reg0
The rewriter would spill the register multiple times, dead store elimination
tried to keep up, but ended up cutting the branch it was sitting on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104321 91177308-0d34-0410-b5e6-96231b3b80d8
<imp-def> operand for the full register. This ensures that the full physical
register is marked live after register allocation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104320 91177308-0d34-0410-b5e6-96231b3b80d8
pipeline stall. It's useful for targets like ARM cortex-a8. NEON has a lot
of long latency instructions so a strict register pressure reduction
scheduler does not work well.
Early experiments show this speeds up some NEON loops by over 30%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104216 91177308-0d34-0410-b5e6-96231b3b80d8
test/Codegen/ARM/reg_sequence.ll but it doesn't affect the generated code
because the coalescer cleans it up. Radar 7998853.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104185 91177308-0d34-0410-b5e6-96231b3b80d8
A partial redef now triggers a reload if required. Also don't add
<imp-def,dead> operands for physical superregisters.
Kill flags are still treated as full register kills, and <imp-use,kill> operands
are added for physical superregisters as before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104167 91177308-0d34-0410-b5e6-96231b3b80d8
partial redefines.
We are going to treat a partial redefine of a virtual register as a
read-modify-write:
%reg1024:6 = OP
Unless the register is fully clobbered:
%reg1024:6 = OP, %reg1024<imp-def>
MachineInstr::readsVirtualRegister() knows the difference. The first case is a
read, the second isn't.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104149 91177308-0d34-0410-b5e6-96231b3b80d8
lowering REG_SEQUENCE instructions.
Insert copies for REG_SEQUENCE sources not killed to avoid breaking later passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104146 91177308-0d34-0410-b5e6-96231b3b80d8
need to be promoted. The BUILD_VECTOR and EXTRACT_VECTOR_ELT nodes generated
here already allow the promoted type to be used without further changes, so
just do the promotion. This fixes part of pr7167.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104141 91177308-0d34-0410-b5e6-96231b3b80d8
The trouble arises when the result of a vector cmp + sext is then and'ed with all ones. Instcombine will turn it into a vector cmp + zext, dag combiner will miss turning it into a vsetcc and hell breaks loose after that.
Teach dag combine to turn a vector cpm + zest into a vsetcc + and 1. This fixes rdar://7923010.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104094 91177308-0d34-0410-b5e6-96231b3b80d8