We don't need to reject all inline asm as using the counter register (most does
not). Only those that explicitly clobber the counter register need to prevent
the transformation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182191 91177308-0d34-0410-b5e6-96231b3b80d8
The peephole tries to reorder MOV32r0 instructions such that they are
before the instruction that modifies EFLAGS.
The problem is that the peephole does not consider the case where the
instruction that modifies EFLAGS also depends on the previous state of
EFLAGS.
Instead, walk backwards until we find an instruction that has a def for
EFLAGS but does not have a use.
If we find such an instruction, insert the MOV32r0 before it.
If it cannot find such an instruction, skip the optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182184 91177308-0d34-0410-b5e6-96231b3b80d8
This patch matches GCC behavior: the code used to only allow unaligned
load/store on ARM for v6+ Darwin, it will now allow unaligned load/store
for v6+ Darwin as well as for v7+ on Linux and NaCl.
The distinction is made because v6 doesn't guarantee support (but LLVM
assumes that Apple controls hardware+kernel and therefore have
conformant v6 CPUs), whereas v7 does provide this guarantee (and
Linux/NaCl behave sanely).
The patch keeps the -arm-strict-align command line option, and adds
-arm-no-strict-align. They behave similarly to GCC's -mstrict-align and
-mnostrict-align.
I originally encountered this discrepancy in FastIsel tests which expect
unaligned load/store generation. Overall this should slightly improve
performance in most cases because of reduced I$ pressure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182175 91177308-0d34-0410-b5e6-96231b3b80d8
It should increase PV substitution opportunities and lower gpr
usage (pending computations path are "flushed" sooner)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182128 91177308-0d34-0410-b5e6-96231b3b80d8
Dot4 now uses 8 scalar operands instead of 2 vectors one which allows register
coalescer to remove some unneeded COPY.
This patch also defines some structures/functions that can be used to handle
every vector instructions (CUBE, Cayman special instructions...) in a similar
fashion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182126 91177308-0d34-0410-b5e6-96231b3b80d8
Almost all instructions that takes a 128 bits reg as input (fetch, export...)
have the abilities to swizzle their argument and output. Instead of printing
default swizzle for each 128 bits reg, rename T*.XYZW to T* and let instructions
print potentially optimized swizzles themselves.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182124 91177308-0d34-0410-b5e6-96231b3b80d8
Shuffles that only move an element into position 0 of the vector are common in
the output of the loop vectorizer and often generate suboptimal code when SSSE3
is not available. Lower them to vector shifts if possible.
We still prefer palignr over psrldq because it has higher throughput on
sandybridge.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182102 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, three instructions were needed:
trunc.w.s $f0, $f2
mfc1 $4, $f0
sw $4, 0($2)
Now we need only two:
trunc.w.s $f0, $f2
swc1 $f0, 0($2)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182053 91177308-0d34-0410-b5e6-96231b3b80d8
Some IR-level instructions (such as FP <-> i64 conversions) are not chained
w.r.t. the mtctr intrinsic and yet may become function calls that clobber the
counter register. At the selection-DAG level, these might be reordered with the
mtctr intrinsic causing miscompiles. To avoid this situation, if an existing
preheader has instructions that might use the counter register, create a new
preheader for the mtctr intrinsic. This extra block will be remerged with the
old preheader at the MI level, but will prevent unwanted reordering at the
selection-DAG level.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182045 91177308-0d34-0410-b5e6-96231b3b80d8
This is the second part of the change to always return "true"
offset values from getPreIndexedAddressParts, tackling the
case of "memrix" type operands.
This is about instructions like LD/STD that only have a 14-bit
field to encode immediate offsets, which are implicitly extended
by two zero bits by the machine, so that in effect we can access
16-bit offsets as long as they are a multiple of 4.
The PowerPC back end currently handles such instructions by
carrying the 14-bit value (as it will get encoded into the
actual machine instructions) in the machine operand fields
for such instructions. This means that those values are
in fact not the true offset, but rather the offset divided
by 4 (and then truncated to an unsigned 14-bit value).
Like in the case fixed in r182012, this makes common code
operations on such offset values not work as expected.
Furthermore, there doesn't really appear to be any strong
reason why we should encode machine operands this way.
This patch therefore changes the encoding of "memrix" type
machine operands to simply contain the "true" offset value
as a signed immediate value, while enforcing the rules that
it must fit in a 16-bit signed value and must also be a
multiple of 4.
This change must be made simultaneously in all places that
access machine operands of this type. However, just about
all those changes make the code simpler; in many cases we
can now just share the same code for memri and memrix
operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182032 91177308-0d34-0410-b5e6-96231b3b80d8
On PPC32, i64 FP conversions are implemented using runtime calls (which clobber
the counter register). These must be excluded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182023 91177308-0d34-0410-b5e6-96231b3b80d8
While testing some experimental code to add vector-scalar registers to
PowerPC, I noticed that a couple of independent instructions were
flipped by the scheduler. The new CHECK-DAG support is perfect for
avoiding this problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182020 91177308-0d34-0410-b5e6-96231b3b80d8
DAGCombiner::CombineToPreIndexedLoadStore calls a target routine to
decompose a memory address into a base/offset pair. It expects the
offset (if constant) to be the true displacement value in order to
perform optional additional optimizations; in particular, to convert
other uses of the original pointer into uses of the new base pointer
after pre-increment.
The PowerPC implementation of getPreIndexedAddressParts, however,
simply calls SelectAddressRegImm, which returns a TargetConstant.
This value is appropriate for encoding into the instruction, but
it is not always usable as true displacement value:
- Its type is always MVT::i32, even on 64-bit, where addresses
ought to be i64 ... this causes the optimization to simply
always fail on 64-bit due to this line in DAGCombiner:
// FIXME: In some cases, we can be smarter about this.
if (Op1.getValueType() != Offset.getValueType()) {
- Its value is truncated to an unsigned 16-bit value if negative.
This causes the above opimization to generate wrong code.
This patch fixes both problems by simply returning the true
displacement value (in its original type). This doesn't
affect any other user of the displacement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182012 91177308-0d34-0410-b5e6-96231b3b80d8
Without this change nothing was covering this addFrameMove:
// For 64-bit SVR4 when we have spilled CRs, the spill location
// is SP+8, not a frame-relative slot.
if (Subtarget.isSVR4ABI()
&& Subtarget.isPPC64()
&& (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
MachineLocation CSDst(PPC::X1, 8);
MachineLocation CSSrc(PPC::CR2);
MMI.addFrameMove(Label, CSDst, CSSrc);
continue;
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181976 91177308-0d34-0410-b5e6-96231b3b80d8
This creates stubs that help Mips32 functions call Mips16
functions which have floating point parameters that are normally passed
in floating point registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181972 91177308-0d34-0410-b5e6-96231b3b80d8
Increase the number of instructions LLVM recognizes as setting the ZF
flag. This allows us to remove test instructions that redundantly
recalculate the flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181937 91177308-0d34-0410-b5e6-96231b3b80d8
The old PPCCTRLoops pass, like the Hexagon pass version from which it was
derived, could only handle some simple loops in canonical form. We cannot
directly adapt the new Hexagon hardware loops pass, however, because the
Hexagon pass contains a fundamental assumption that non-constant-trip-count
loops will contain a guard, and this is not always true (the result being that
incorrect negative counts can be generated). With this commit, we replace the
pass with a late IR-level pass which makes use of SE to calculate the
backedge-taken counts and safely generate the loop-count expressions (including
any necessary max() parts). This IR level pass inserts custom intrinsics that
are lowered into the desired decrement-and-branch instructions.
The most fragile part of this new implementation is that interfering uses of
the counter register must be detected on the IR level (and, on PPC, this also
includes any indirect branches in addition to function calls). Also, to make
all of this work, we need a variant of the mtctr instruction that is marked
as having side effects. Without this, machine-code level CSE, DCE, etc.
illegally transform the resulting code. Hopefully, this can be improved
in the future.
This new pass is smaller than the original (and much smaller than the new
Hexagon hardware loops pass), and can handle many additional cases correctly.
In addition, the preheader-creation code has been copied from LoopSimplify, and
after we decide on where it belongs, this code will be refactored so that it
can be explicitly shared (making this implementation even smaller).
The new test-case files ctrloop-{le,lt,ne}.ll have been adapted from tests for
the new Hexagon pass. There are a few classes of loops that this pass does not
transform (noted by FIXMEs in the files), but these deficiencies can be
addressed within the SE infrastructure (thus helping many other passes as well).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181927 91177308-0d34-0410-b5e6-96231b3b80d8
IR optimisation passes can result in a basic block that contains:
llvm.lifetime.start(%buf)
...
llvm.lifetime.end(%buf)
...
llvm.lifetime.start(%buf)
Before this change, calculateLiveIntervals() was ignoring the second
lifetime.start() and was regarding %buf as being dead from the
lifetime.end() through to the end of the basic block. This can cause
StackColoring to incorrectly merge %buf with another stack slot.
Fix by removing the incorrect Starts[pos].isValid() and
Finishes[pos].isValid() checks.
Just doing:
Starts[pos] = Indexes->getMBBStartIdx(MBB);
Finishes[pos] = Indexes->getMBBEndIdx(MBB);
unconditionally would be enough to fix the bug, but it causes some
test failures due to stack slots not being merged when they were
before. So, in order to keep the existing tests passing, treat LiveIn
and LiveOut separately rather than approximating the live ranges by
merging LiveIn and LiveOut.
This fixes PR15707.
Patch by Mark Seaborn.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181922 91177308-0d34-0410-b5e6-96231b3b80d8
The transformation happening here is that we want to turn a
"mul(ext(X), ext(X))" into a "vmull(X, X)", stripping off the extension. We have
to make sure that X still has a valid vector type - possibly recreate an
extension to a smaller type. In case of a extload of a memory type smaller than
64 bit we used create a ext(load()). The problem with doing this - instead of
recreating an extload - is that an illegal type is exposed.
This patch fixes this by creating extloads instead of ext(load()) sequences.
Fixes PR15970.
radar://13871383
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181842 91177308-0d34-0410-b5e6-96231b3b80d8
ARM FastISel is currently only enabled for iOS non-Thumb1, and I'm working on
enabling it for other targets. As a first step I've fixed some of the tests.
Changes to ARM FastISel tests:
- Different triples don't generate the same relocations (especially
movw/movt versus constant pool loads). Use a regex to allow either.
- Mangling is different. Use a regex to allow either.
- The reserved registers are sometimes different, so registers get
allocated in a different order. Capture the names only where this
occurs.
- Add -verify-machineinstrs to some tests where it works. It doesn't
work everywhere it should yet.
- Add -fast-isel-abort to many tests that didn't have it before.
- Split out the VarArg test from fast-isel-call.ll into its own
test. This simplifies test setup because of --check-prefix.
Patch by JF Bastien
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181801 91177308-0d34-0410-b5e6-96231b3b80d8
The changes to CR spill handling missed a case for 32-bit PowerPC.
The code in PPCFrameLowering::processFunctionBeforeFrameFinalized()
checks whether CR spill has occurred using a flag in the function
info. This flag is only set by storeRegToStackSlot and
loadRegFromStackSlot. spillCalleeSavedRegisters does not call
storeRegToStackSlot, but instead produces MI directly. Thus we don't
see the CR is spilled when assigning frame offsets, and the CR spill
ends up colliding with some other location (generally the FP slot).
This patch sets the flag in spillCalleeSavedRegisters for PPC32 so
that the CR spill is properly detected and gets its own slot in the
stack frame.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181800 91177308-0d34-0410-b5e6-96231b3b80d8