positive.
In this particular case, R6 was being spilled by the register scavenger when it
was in fact dead. The isUsed function reported R6 as used because the R6_R7
alias was reserved (due to the fact that we've reserved R7 as the FP). The
solution is to only check if the original register (i.e., R6) isReserved and
not the aliases. The aliases are only checked to make sure they're available.
The test case is derived from one of the nightly tester benchmarks and is rather
intractable and difficult to reproduce, so I haven't included it.
rdar://12592448
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168054 91177308-0d34-0410-b5e6-96231b3b80d8
Similarly to several recent fixes throughout the code replace std::map use with the MapVector.
Add find() method to the MapVector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168051 91177308-0d34-0410-b5e6-96231b3b80d8
Jakub Staszak spotted this in review. I don't notice these things
until I manually rerun benchmarks. But reducing unit tests is a very
high priority.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168021 91177308-0d34-0410-b5e6-96231b3b80d8
eh table and handler data if there are no landing pads in the function.
Patch by Logan Chien with some cleanups from me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167945 91177308-0d34-0410-b5e6-96231b3b80d8
temporarily as it is breaking the gdb bots.
This reverts commit r167806/e7ff4c14b157746b3e0228d2dce9f70712d1c126.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167886 91177308-0d34-0410-b5e6-96231b3b80d8
This option will eventually either be enabled unconditionally or
replaced by a more general live range splitting optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167879 91177308-0d34-0410-b5e6-96231b3b80d8
physical register as candidate for common subexpression elimination
in MachineCSE.
This fixes a bug on PowerPC in MultiSource/Applications/oggenc/oggenc
caused by MachineCSE invalidly merging two separate DYNALLOC insns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167855 91177308-0d34-0410-b5e6-96231b3b80d8
This allows me to begin enabling (or backing out) misched by default
for one subtarget at a time. To run misched we typically want to:
- Disable SelectionDAG scheduling (use the source order scheduler)
- Enable more aggressive coalescing (until we decide to always run the coalescer this way)
- Enable MachineScheduler pass itself.
Disabling PostRA sched may follow for some subtargets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167826 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the -join-globalcopies option which can be enabled by
default once misched is also enabled.
Ideally, the register coalescer would be able to split local live
ranges in a way that produces copies that can be easily resolved by
the scheduler. Until then, this heuristic should be good enough to at
least allow the scheduler to run after coalescing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167825 91177308-0d34-0410-b5e6-96231b3b80d8
For now be more conservative in case other out-of-tree schedulers rely
on the old behavior of artificial edges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167808 91177308-0d34-0410-b5e6-96231b3b80d8
If we have a type 'int a[1]' and a type 'int b[0]', the generated DWARF is the
same for both of them because we use the 'upper_bound' attribute. Instead use
the 'count' attrbute, which gives the correct number of elements in the array.
<rdar://problem/12566646>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167806 91177308-0d34-0410-b5e6-96231b3b80d8
This teaches the register coalescer to be less prone to split critical
edges. I am currently benchmarking this with the new (post-coalescer)
scheduler. I plan to enable this by default and remove the option as
soon as misched is enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167758 91177308-0d34-0410-b5e6-96231b3b80d8
Uses the infrastructure from r167742 to support clustering instructure
that the target processor can "fuse". e.g. cmp+jmp.
Next step: target hook implementations with test cases, and enable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167744 91177308-0d34-0410-b5e6-96231b3b80d8
This infrastructure is generally useful for any target that wants to
strongly prefer two instructions to be adjacent after scheduling.
A following checkin will add target-specific hooks with unit
tests. Then this feature will be enabled by default with misched.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167742 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for weak DAG edges to the general scheduling
infrastructure in preparation for MachineScheduler support for
heuristics based on weak edges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167738 91177308-0d34-0410-b5e6-96231b3b80d8
The RegMaskSlots contains 'r' slots while NewIdx and OldIdx are 'B'
slots. This broke the checks in the assertions.
This fixes PR14302.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167625 91177308-0d34-0410-b5e6-96231b3b80d8
misched is disabled by default. With -enable-misched, these heuristics
balance the schedule to simultaneously avoid saturating processor
resources, expose ILP, and minimize register pressure. I've been
analyzing the performance of these heuristics on everything in the
llvm test suite in addition to a few other benchmarks. I would like
each heuristic check to be verified by a unit test, but I'm still
trying to figure out the best way to do that. The heuristics are still
in considerable flux, but as they are refined we should be rigorous
about unit testing the improvements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167527 91177308-0d34-0410-b5e6-96231b3b80d8
updating an abstract DIE or not. If we are, then we use that. Its children will
be added on later, as well as the object pointer attribute. Otherwise, this
function may be called with a concrete DIE twice and adding the children and
object pointer attribute to it twice.
<rdar://problem/12401423&12600340>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167524 91177308-0d34-0410-b5e6-96231b3b80d8
register masks. This is an obvious and necessary fix for a soon to be committed
patch. No test case possible at this time. Reviewed by Jakob.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167498 91177308-0d34-0410-b5e6-96231b3b80d8
Expose the processor resources defined by the machine model to the
scheduler and other clients through the TargetSchedule interface.
Normalize each resource count with respect to other kinds of
resources. This allows scheduling heuristics to balance resources
against other kinds of resources and latency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167444 91177308-0d34-0410-b5e6-96231b3b80d8
InputArg in r165616.
This will enable us to get the actual type for both InputArg and OutputArg.
rdar://9932559
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167265 91177308-0d34-0410-b5e6-96231b3b80d8
r165941: Resubmit the changes to llvm core to update the functions to
support different pointer sizes on a per address space basis.
Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.
However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.
In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.
In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.
This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
the MachineInstr MayLoad/MayLoad flags are based on the tablegen implementation.
For inline assembly, however, we need to compute these based on the constraints.
Revert r166929 as this is no longer needed, but leave the test case in place.
rdar://12033048 and PR13504
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167040 91177308-0d34-0410-b5e6-96231b3b80d8
checks to avoid performing compile-time arithmetic on PPCDoubleDouble.
Now that APFloat supports arithmetic on PPCDoubleDouble, those checks
are no longer needed, and we can treat the type like any other.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166958 91177308-0d34-0410-b5e6-96231b3b80d8
Partial copies can show up even when CoalescerPair.isPartial() returns
false. For example:
%vreg24:dsub_0<def> = COPY %vreg31:dsub_0; QPR:%vreg24,%vreg31
Such a partial-partial copy is not good enough for the transformation
adjustCopiesBackFrom() needs to do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166944 91177308-0d34-0410-b5e6-96231b3b80d8
wrapper returns a vector of integers when passed a vector of pointers) by having
getIntPtrType itself return a vector of integers in this case. Outside of this
wrapper, I didn't find anywhere in the codebase that was relying on the old
behaviour for vectors of pointers, so give this a whirl through the buildbots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166939 91177308-0d34-0410-b5e6-96231b3b80d8
incorrect instruction sequence due to it not being aware that an
inline assembly instruction may reference memory.
This patch fixes the problem by causing the scheduler to always assume that any
inline assembly code instruction could access memory. This is necessary because
the internal representation of the inline instruction does not include
any information about memory accesses.
This should fix PR13504.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166929 91177308-0d34-0410-b5e6-96231b3b80d8
- If more than 1 elemennts are defined and target supports the vectorized
conversion, use the vectorized one instead to reduce the strength on
conversion operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166546 91177308-0d34-0410-b5e6-96231b3b80d8
every TU where it's implicitly instantiated, even if there's an implicit
instantiation for the same types available in another TU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166470 91177308-0d34-0410-b5e6-96231b3b80d8
(The change at Clang side was committed in r166345)
2. Cosmetic change in order to conform to coding standards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166350 91177308-0d34-0410-b5e6-96231b3b80d8
which is supposed to consistently raise SIGTRAP across all systems. In contrast,
__builtin_trap() behave differently on different systems. e.g. it raises SIGTRAP on ARM, and
SIGILL on X86. The purpose of __builtin_debugtrap() is to consistently provide "trap"
functionality, in the mean time preserve the compatibility with on gcc on __builtin_trap().
The X86 backend is already able to handle debugtrap(). This patch is to:
1) make front-end recognize "__builtin_debugtrap()" (emboddied in the one-line change to Clang).
2) In DAG legalization phase, by default, "debugtrap" will be replaced with "trap", which
make the __builtin_debugtrap() "available" to all existing ports without the hassle of
changing their code.
3) If trap-function is specified (via -trap-func=xyz to llc), both __builtin_debugtrap() and
__builtin_trap() will be expanded into the function call of the specified trap function.
This behavior may need change in the future.
The provided testing-case is to make sure 2) and 3) are working for ARM port, and we
already have a testing case for x86.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166300 91177308-0d34-0410-b5e6-96231b3b80d8
When merging stack slots, if StackColoring::remapInstructions gets a
value back from GetUnderlyingObject that it does not know about or is
not itself a stack slot, clear the memory operand in case it aliases
the merged slot. This prevents the introduction of incorrect aliasing
information.
Author: Matthew Curtis <mcurtis@codeaurora.org>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166216 91177308-0d34-0410-b5e6-96231b3b80d8
This more accurately reflects what is actually being stored in the
field.
No functionality change intended.
Author: Matthew Curtis <mcurtis@codeaurora.org>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166215 91177308-0d34-0410-b5e6-96231b3b80d8
The TargetTransform changes are breaking LTO bootstraps of clang. I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.
This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166168 91177308-0d34-0410-b5e6-96231b3b80d8
- Folding (trunc (concat ... X )) to (concat ... (trunc X) ...) is valid
when '...' are all 'undef's.
- r166125 relies on this transformation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166155 91177308-0d34-0410-b5e6-96231b3b80d8
- If the extracted vector has the same type of all vectored being concatenated
together, it should be simplified directly into v_i, where i is the index of
the element being extracted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166125 91177308-0d34-0410-b5e6-96231b3b80d8
This is a more compact, less redundant representation, and it avoids
scanning long lists of aliases for ARM D-registers, for example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166124 91177308-0d34-0410-b5e6-96231b3b80d8
any scheduling heuristics nor does it build up any scheduling data structure
that other heuristics use. It essentially linearize by doing a DFA walk but
it does handle glues correctly.
IMPORTANT: it probably can't handle all the physical register dependencies so
it's not suitable for x86. It also doesn't deal with dbg_value nodes right now
so it's definitely is still WIP.
rdar://12474515
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166122 91177308-0d34-0410-b5e6-96231b3b80d8
All callers of these functions really want the isPhysRegOrOverlapUsed()
functionality which also checks aliases. For historical reasons, targets
without register aliases were calling isPhysRegUsed() instead.
Change isPhysRegUsed() to also check aliases, and switch all
isPhysRegOrOverlapUsed() callers to isPhysRegUsed().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166117 91177308-0d34-0410-b5e6-96231b3b80d8
This is just as fast, and it makes it possible to avoid leaking the
UsedPhysRegs BitVector implementation through
MachineRegisterInfo::addPhysRegsUsed().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166083 91177308-0d34-0410-b5e6-96231b3b80d8
PR14098 contains an example where we would rematerialize a MOV8ri
immediately after the original instruction:
%vreg7:sub_8bit<def> = MOV8ri 9; GR32_ABCD:%vreg7
%vreg22:sub_8bit<def> = MOV8ri 9; GR32_ABCD:%vreg7
Besides being pointless, it is also wrong since the original instruction
only redefines part of the register, and the value read by the new
instruction is wrong.
The problem was the LiveRangeEdit::allUsesAvailableAt() didn't
special-case OrigIdx == UseIdx and found the wrong SSA value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166068 91177308-0d34-0410-b5e6-96231b3b80d8
Stack is formed improperly for long structures passed as byval arguments for
EABI mode.
If we took AAPCS reference, we can found the next statements:
A: "If the argument requires double-word alignment (8-byte), the NCRN (Next
Core Register Number) is rounded up to the next even register number." (5.5
Parameter Passing, Stage C, C.3).
B: "The alignment of an aggregate shall be the alignment of its most-aligned
component." (4.3 Composite Types, 4.3.1 Aggregates).
So if we have structure with doubles (9 double fields) and 3 Core unused
registers (r1, r2, r3): caller should use r2 and r3 registers only.
Currently r1,r2,r3 set is used, but it is invalid.
Callee VA routine should also use r2 and r3 regs only. All is ok here. This
behaviour is guessed by rounding up SP address with ADD+BFC operations.
Fix:
Main fix is in ARMTargetLowering::HandleByVal. If we detected AAPCS mode and
8 byte alignment, we waste odd registers then.
P.S.:
I also improved LDRB_POST_IMM regression test. Since ldrb instruction will
not generated by current regression test after this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166018 91177308-0d34-0410-b5e6-96231b3b80d8
This is a medium term workaround until we have a more robust solution
in the form of a register liveness utility for postRA passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166001 91177308-0d34-0410-b5e6-96231b3b80d8
Using the cached bit vector in MRI avoids comstantly allocating and
recomputing the reserved register bit vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165983 91177308-0d34-0410-b5e6-96231b3b80d8
Also provide an MRI::getReservedRegs() function to access the frozen
register set, and isReserved() and isAllocatable() methods to test
individual registers.
The various implementations of TRI::getReservedRegs() are quite
complicated, and many passes need to look at the reserved register set.
This patch makes it possible for these passes to use the cached copy in
MRI, avoiding a lot of malloc traffic and repeated calculations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165982 91177308-0d34-0410-b5e6-96231b3b80d8
The new coalescer can merge a dead def into an unused lane of an
otherwise live vector register.
Clear the <dead> flag when that happens since the flag refers to the
full virtual register which is still live after the partial dead def.
This fixes PR14079.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165877 91177308-0d34-0410-b5e6-96231b3b80d8
It is possible that the live range of the value being pruned loops back
into the kill MBB where the search started. When that happens, make sure
that the beginning of KillMBB is also pruned.
Instead of starting a DFS at KillMBB and skipping the root of the
search, start a DFS at each KillMBB successor, and allow the search to
loop back to KillMBB.
This fixes PR14078.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165872 91177308-0d34-0410-b5e6-96231b3b80d8
Completely update one interval at a time instead of collecting live
range fragments to be updated. This avoids building data structures,
except for a single SmallPtrSet of updated intervals.
Also share code between handleMove() and handleMoveIntoBundle().
Add support for moving dead defs across other live values in the
interval. The MI scheduler can do that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165824 91177308-0d34-0410-b5e6-96231b3b80d8
PHIElimination inserts IMPLICIT_DEF instructions to guarantee that all
PHI predecessors have a live-out value. These IMPLICIT_DEF values are
not considered to be real interference when coalescing virtual
registers:
%vreg1 = IMPLICIT_DEF
%vreg2 = MOV32r0
When joining %vreg1 and %vreg2, the IMPLICIT_DEF instruction and its
value number should simply be erased since the %vreg2 value number now
provides a live-out value for the PHI predecesor block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165813 91177308-0d34-0410-b5e6-96231b3b80d8
On PowerPC, a bitcast of <16 x i8> to i128 may run through a code
path in ExpandRes_BITCAST that attempts to do an intermediate
bitcast to a <4 x i32> vector, and then construct the Hi and Lo parts
of the resulting i128 by pairing up two of those i32 vector elements
each. The code already recognizes that on a big-endian system, the
first two vector elements form the Hi part, and the final two vector
elements form the Lo part (vice-versa from the little-endian situation).
However, we also need to take endianness into account when forming each
of those separate pairs: on a big-endian system, vector element 0 is
the *high* part of the pair making up the Hi part of the result, and
vector element 1 is the low part of the pair. The code currently always
uses vector element 0 as the low part and vector element 1 as the high
part, as is appropriate for little-endian platforms only.
This patch fixes this by swapping the vector elements as they are
paired up as appropriate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165802 91177308-0d34-0410-b5e6-96231b3b80d8
not legal. However, it should use a div instruction + mul + sub if divide is
legal. The rem legalization code was missing a check and incorrectly uses a
divrem libcall even when div is legal.
rdar://12481395
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165778 91177308-0d34-0410-b5e6-96231b3b80d8
isa<> et al. automatically infer when the cast is an upcast (including a
self-cast), so these are no longer necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165767 91177308-0d34-0410-b5e6-96231b3b80d8
Not all instructions define a virtual register in their first operand.
Specifically, INLINEASM has a different format.
<rdar://problem/12472811>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165721 91177308-0d34-0410-b5e6-96231b3b80d8
The minimum set of required instructions is ISD::AND, ISD::OR, ISD::SETO(or ISD::SETOEQ) and ISD::SETUO(or ISD::SETUNE). Everything is expanded into one of two patterns:
Pattern 1: (LHS CC1 RHS) Opc (LHS CC2 RHS)
Pattern 2: (LHS CC1 LHS) Opc (RHS CC2 RHS)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165655 91177308-0d34-0410-b5e6-96231b3b80d8
- Due to the current matching vector elements constraints in ISD::FP_EXTEND,
rounding from v2f32 to v2f64 is scalarized. Add a customized v2f32 widening
to convert it into a target-specific X86ISD::VFPEXT to work around this
constraints. This patch also reverts a previous attempt to fix this issue by
recovering the scalarized ISD::FP_EXTEND pattern and thus significantly
reduces the overhead of supporting non-power-2 vector FP extend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165625 91177308-0d34-0410-b5e6-96231b3b80d8
SchedulerDAGInstrs::buildSchedGraph ignores dependencies between FixedStack
objects and byval parameters. So loading byval parameters from stack may be
inserted *before* it will be stored, since these operations are treated as
independent.
Fix:
Currently ARMTargetLowering::LowerFormalArguments saves byval registers with
FixedStack MachinePointerInfo. To fix the problem we need to store byval
registers with MachinePointerInfo referenced to first the "byval" parameter.
Also commit adds two new fields to the InputArg structure: Function's argument
index and InputArg's part offset in bytes relative to the start position of
Function's argument. E.g.: If function's argument is 128 bit width and it was
splitted onto 32 bit regs, then we got 4 InputArg structs with same arg index,
but different offset values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165616 91177308-0d34-0410-b5e6-96231b3b80d8
checkRegMaskInterference only initializes the bitmask on the first interference.
This fixes PR14027 and (re)fixes PR13945.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165608 91177308-0d34-0410-b5e6-96231b3b80d8
Allows the new machine model to be used for NumMicroOps and OutputLatency.
Allows the HazardRecognizer to be disabled along with itineraries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165603 91177308-0d34-0410-b5e6-96231b3b80d8
This wasn't contributing anything significant to postRA heuristics except compile time (by my measurements) and will be replaced by a more general heuristic for cross-region dependencies within the scheduler itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165563 91177308-0d34-0410-b5e6-96231b3b80d8
The next step is to update the optimizers to allow them to optimize the different address spaces with this information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165505 91177308-0d34-0410-b5e6-96231b3b80d8
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165488 91177308-0d34-0410-b5e6-96231b3b80d8
This class is used by LSR and a number of places in the codegen.
This is the first step in de-coupling LSR from TLI, and creating
a new interface in between them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165455 91177308-0d34-0410-b5e6-96231b3b80d8
When the CFG contains a loop with multiple entry blocks, the traces
computed by MachineTraceMetrics don't always have the same nice
properties. Loop back-edges are normally excluded from traces, but
MachineLoopInfo doesn't recognize loops with multiple entry blocks, so
those back-edges may be included.
Avoid asserting when that happens by adding an isEarlierInSameTrace()
function that accurately determines if a dominating block is part of the
same trace AND is above the currrent block in the trace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165434 91177308-0d34-0410-b5e6-96231b3b80d8