If getElementPtr uses a constant as base pointer, then make the constant opaque.
This prevents constant folding it with the offset. The offset can usually be
encoded in the load/store instruction itself and the base address doesn't have
to be rematerialized several times.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204739 91177308-0d34-0410-b5e6-96231b3b80d8
The cost for the first four stackmap operands was always TCC_Free.
This is only true for the first two operands. All other operands
are TCC_Free if they are within 64bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204738 91177308-0d34-0410-b5e6-96231b3b80d8
This used to resort to splitting the 256-bit operation into two 128-bit
shuffles and then recombining the results.
Fixes <rdar://problem/16167303>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204735 91177308-0d34-0410-b5e6-96231b3b80d8
I found three implementations of this. This splits it out into a new function
and uses it from the three places.
My plan is to add a fourth use when lowering a vector_shuffle:v16i16.
Compared the assembly output of test/CodeGen/X86 before and after.
The only change is due to how the first PSHUFB was generated in
LowerVECTOR_SHUFFLEv8i16. If the shuffle mask specified undef (i.e. -1), the
old implementation would write -1 * 2 and -1 * 2 + 1 (254 and 255) in the
control mask. Now we write 0x80. These are of course interchangeable since
bit 7 decides if a constant zero is written in the result byte. The other
instances of this code use 0x80 consistently.
Related to <rdar://problem/16167303>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204734 91177308-0d34-0410-b5e6-96231b3b80d8
Those patterns are used when the load cannot be folded into the related broadcast
during the select phase.
This happens when the load gets additional uses that were not anticipated during
the previous lowering phases (constant vector to constant load, then constant
load reused) or when selection DAG is not able to prove that folding the load
will not create a cycle in the DAG.
<rdar://problem/16074331>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204631 91177308-0d34-0410-b5e6-96231b3b80d8
This can be observed with the old testcase of CodeGen/X86/pr12312.ll:
47c47
< vorps %ymm0, %ymm1, %ymm0
---
> vorps %ymm1, %ymm0, %ymm0
97c97
< vorps %ymm1, %ymm0, %ymm0
---
> vorps %ymm0, %ymm1, %ymm0
The vector VecIns is populated with all the values from VecInMap. This is done
while iterating VecInMap. VecInMap uses a hash of pointer values so the
resulting order can vary depending on the memory layout.
The fix is to populate the vector VecIns earlier as VecInMap is populated.
This is done in DAG traversal order.
Fixes <rdar://problem/16398806>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204623 91177308-0d34-0410-b5e6-96231b3b80d8
Extend the target hook to take also the operand index into account when
calculating the cost of the constant materialization.
Related to <rdar://problem/16381500>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204435 91177308-0d34-0410-b5e6-96231b3b80d8
This commit extends the coverage of the constant hoisting pass, adds additonal
debug output and updates the function names according to the style guide.
Related to <rdar://problem/16381500>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204389 91177308-0d34-0410-b5e6-96231b3b80d8
Given
bar = foo + 4
.long bar
MC would eat the 4. GNU as includes it in the relocation. The rule seems to be
that a variable that defines a symbol is used in the relocation and one that
does not define a symbol is evaluated and the result included in the relocation.
Fixing this unfortunately required some other changes:
* Since the variable is now evaluated, it would prevent the ELF writer from
noticing the weakref marker the elf streamer uses. This patch then replaces
that with a VariantKind in MCSymbolRefExpr.
* Using VariantKind then requires us to look past other VariantKind to see
.weakref bar,foo
call bar@PLT
doing this also fixes
zed = foo +2
call zed@PLT
so that is a good thing.
* Looking past VariantKind means that the relocation selection has to use
the fixup instead of the target.
This is a reboot of the previous fixes for MC. I will watch the sanitizer
buildbot and wait for a build before adding back the previous fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204294 91177308-0d34-0410-b5e6-96231b3b80d8
For functions where esi is used as base pointer, we would previously fall back
from lowering memcpy with "rep movs" because that clobbers esi.
With this patch, we just store esi in another physical register, and restore
it afterwards. This adds a little bit of register preassure, but the more
efficient memcpy should be worth it.
Differential Revision: http://llvm-reviews.chandlerc.com/D2968
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204174 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
X86BaseInfo.h defines an enum for the offset of each operand in a memory operand
sequence. Some code uses it and some does not. This patch replaces (hopefully)
all remaining locations where an integer literal was used instead of this enum.
No functionality change intended.
Reviewers: nadav
CC: llvm-commits, t.p.northover
Differential Revision: http://llvm-reviews.chandlerc.com/D3108
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204158 91177308-0d34-0410-b5e6-96231b3b80d8
Rather than LegalizeAction::Expand, this needs LegalizeAction::Promote to get
promoted to fp_to_sint v8f32->v8i32. This is a legal operation on AVX.
For that to work properly, we also need to teach the legalizer about the
specific promotion required here. The default vector promotion uses
bitcasting to a vector type of the same total size. We want to promote the
vector element type, effectively widening the operation and then truncating
the result. This is analogous to the current logic of how int_to_fp is
promoted.
The change also factors out some code from the int_to_fp promotion code to
ValueType::widenIntegerVectorElementType. This is now shared between
int_to_fp and fp_to_int.
There is no longer need for the custom lowering of fp_to_sint f32->v8i16 in
X86. It can now go through the new target-independent fp_to_*int promotion
logic.
I also checked that no other target uses Promote for these ops yet, so there
shouldn't be any unexpected change in behavior.
Fixes <rdar://problem/16202247>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204058 91177308-0d34-0410-b5e6-96231b3b80d8
- Adds support for inserting vzerouppers before tail-calls.
This is enabled implicitly by having MachineInstr::copyImplicitOps preserve
regmask operands, which allows VZeroUpperInserter to see where tail-calls use
vector registers.
- Fixes a bug that caused the previous version of this optimization to miss some
vzeroupper insertion points in loops. (Loops-with-vector-code that followed
loops-without-vector-code were mistakenly overlooked by the previous version).
- New algorithm never revisits instructions.
Fixes <rdar://problem/16228798>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204021 91177308-0d34-0410-b5e6-96231b3b80d8
Utilize the previous move of MVT to a separate header for all trivial
cases (that don't need any further restructuring).
Reviewed By: Tim Northover
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204003 91177308-0d34-0410-b5e6-96231b3b80d8
This change brings getCallPreservedMask()'s logic in line with
getCalleeSavedRegs().
While this changes the control flow slightly, the change is not
currently observable. is64Bit must be false to get to the accidental
fallthrough, but the case that we fall into (coldcc) does nothing unless
is64Bit is true.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203943 91177308-0d34-0410-b5e6-96231b3b80d8
Changing order of checks in getCallPreservedMask() to match
getCalleeSavedRegs() so that the logic is easier to compare.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203939 91177308-0d34-0410-b5e6-96231b3b80d8
The current logic assumes that MF is not 0. Assert that it isn't, and
remove the default of 0 from the header.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203934 91177308-0d34-0410-b5e6-96231b3b80d8
operator* on the by-operand iterators to return a MachineOperand& rather than
a MachineInstr&. At this point they almost behave like normal iterators!
Again, this requires making some existing loops more verbose, but should pave
the way for the big range-based for-loop cleanups in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203865 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the implementation of local directional labels to use a dedicated
map. With that it can then just use CreateTempSymbol, which is what the rest
of MC uses.
CreateTempSymbol doesn't do a great job at making sure the names are unique
(or being efficient when the names are not needed), but that should probably
be fixed in a followup patch.
This fixes pr18928.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203826 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This helps the instruction selector to lower an i64 * i64 -> i128
multiplication into a single instruction on targets which support it.
This is an update of D2973 which was reverted because of a bug reported
as PR19084.
Reviewers: t.p.northover, chapuni
Reviewed By: t.p.northover
CC: llvm-commits, alex, chapuni
Differential Revision: http://llvm-reviews.chandlerc.com/D3021
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203797 91177308-0d34-0410-b5e6-96231b3b80d8
Extend what's currently done for shift because the HW performs this masking
implicitly:
(rotl:i32 x, (and y, 31)) -> (rotl:i32 x, y)
I use the newly factored out multiclass that was only supporting shifts so
far.
For testing I extended my testcase for the new rotation idiom.
<rdar://problem/15295856>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203718 91177308-0d34-0410-b5e6-96231b3b80d8
The peephole (shift x, (and y, 31)) -> (shift x, y) is repeated for each
integer type and each shift variant.
To improve this a new multiclass is added that covers all integer types. The
shift patterns are now instantiated from this. I am planning to add new
instances for rotates as well.
No functional change intended:
* test/CodeGen/X86/shift-and.ll provides coverage
* Compared the expanded tablegen output and matched up the defs for these
Pat<>s before and after
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203685 91177308-0d34-0410-b5e6-96231b3b80d8
The function hasReliableSymbolDifference had exactly one use in the MachO
writer. It is also only true for X86_64. In fact, the comments refers to
"Darwin x86_64" and everything else, so this makes the code match the
comment.
If this is to be abstracted again, it should be a property of
TargetObjectWriter, like useAggressiveSymbolFolding.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203605 91177308-0d34-0410-b5e6-96231b3b80d8
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203559 91177308-0d34-0410-b5e6-96231b3b80d8
When the MOVBE instructions are available, use them for 16-bit endian
swapping as well as for 32 and 64 bit.
The patterns were already present on the instructions, but weren't being
matched because the operation was unconditionally marked to 'Expand.'
Change that to be conditional on whether the MOVBE instructions are
available. Use 'rolw' to implement the in-register version (32 and 64
bit have the dedicated 'bswap' instruction for that).
Patch by Louis Gerbarg <lgg@apple.com>.
rdar://15479984
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203524 91177308-0d34-0410-b5e6-96231b3b80d8
the stack of the analysis group because they are all immutable passes.
This is made clear by Craig's recent work to use override
systematically -- we weren't overriding anything for 'finalizePass'
because there is no such thing.
This is kind of a lame restriction on the API -- we can no longer push
and pop things, we just set up the stack and run. However, I'm not
invested in building some better solution on top of the existing
(terrifying) immutable pass and legacy pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203437 91177308-0d34-0410-b5e6-96231b3b80d8
This helps the instruction selector to lower an i64 * i64 -> i128
multiplication into a single instruction on targets which support it.
Patch by Manuel Jacob.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203230 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
llvm/MC/MCSectionMachO.h and llvm/Support/MachO.h both had the same
definitions for the section flags. Instead, grab the definitions out of
support.
No functionality change.
Reviewers: grosbach, Bigcheese, rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2998
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203211 91177308-0d34-0410-b5e6-96231b3b80d8
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203204 91177308-0d34-0410-b5e6-96231b3b80d8
This is a preliminary setup change to support a renaming of Windows target
triples. Split the object file format information out of the environment into a
separate entity. Unfortunately, file format was previously treated as an
environment with an unknown OS. This is most obvious in the ARM subtarget where
the handling for macho on an arbitrary platform switches to AAPCS rather than
APCS (as per Apple's needs).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203160 91177308-0d34-0410-b5e6-96231b3b80d8
This is required to include MSVC's <atomic> header, which we do now in
LLVM.
Tests forthcoming in Clang, since that's where we test semantic inline
asm changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202865 91177308-0d34-0410-b5e6-96231b3b80d8
name might indicate, it is an iterator over the types in an instruction
in the IR.... You see where this is going.
Another step of modularizing the support library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202815 91177308-0d34-0410-b5e6-96231b3b80d8
We were dropping the displacement on the floor if we also had some
immediate offset.
Should fix PR19033.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202774 91177308-0d34-0410-b5e6-96231b3b80d8
X86Operand is extracted into individual header, because it allows to create an
arbitrary memory operand and append it to MCInst. It'll be reused in X86 inline
assembly instrumentation.
Patch by Yuri Gorshenin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202496 91177308-0d34-0410-b5e6-96231b3b80d8
The current approach to lower a vsetult is to flip the sign bit of the
operands, swap the operands and then use a (signed) pcmpgt. psubus (unsigned
saturating subtract) can be used to emulate a vsetult more efficiently:
+ case ISD::SETULT: {
+ // If the comparison is against a constant we can turn this into a
+ // setule. With psubus, setule does not require a swap. This is
+ // beneficial because the constant in the register is no longer
+ // destructed as the destination so it can be hoisted out of a loop.
I also enable lowering via psubus in a few other cases where it's clearly
beneficial: setule and setuge if minu/maxu cannot be used.
rdar://problem/14338765
Patch by Adam Nemet <anemet@apple.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202301 91177308-0d34-0410-b5e6-96231b3b80d8
The patch defines new or refines existing generic scheduling classes to match
the behavior of the SSE instructions.
It also maps those scheduling classes on the related SSE instructions.
<rdar://problem/15607571>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202065 91177308-0d34-0410-b5e6-96231b3b80d8
The lowering of the frame index for stackmaps and patchpoints requires some
target-specific magic and should therefore be handled in the target-specific
eliminateFrameIndex method.
This is related to <rdar://problem/16106219>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201904 91177308-0d34-0410-b5e6-96231b3b80d8
TargetLoweringBase is implemented in CodeGen, so before this patch we had
a dependency fom Target to CodeGen. This would show up as a link failure of
llvm-stress when building with -DBUILD_SHARED_LIBS=ON.
This fixes pr18900.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201711 91177308-0d34-0410-b5e6-96231b3b80d8
r201608 made llvm corretly handle private globals with MachO. r201622 fixed
a bug in it and r201624 and r201625 were changes for using private linkage,
assuming that llvm would do the right thing.
They all got reverted because r201608 introduced a crash in LTO. This patch
includes a fix for that. The issue was that TargetLoweringObjectFile now has
to be initialized before we can mangle names of private globals. This is
trivially true during the normal codegen pipeline (the asm printer does it),
but LTO has to do it manually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201700 91177308-0d34-0410-b5e6-96231b3b80d8
On x86, shifting a vector by a scalar is significantly cheaper than shifting a
vector by another fully general vector. Unfortunately, because SelectionDAG
operates on just one basic block at a time, the shufflevector instruction that
reveals whether the right-hand side of a shift *is* really a scalar is often
not visible to CodeGen when it's needed.
This adds another handler to CodeGenPrepare, to sink any useful shufflevector
instructions down to the basic block where they're used, predicated on a target
hook (since on other architectures, doing so will often just introduce extra
real work).
rdar://problem/16063505
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201655 91177308-0d34-0410-b5e6-96231b3b80d8
The IR
@foo = private constant i32 42
is valid, but before this patch we would produce an invalid MachO from it. It
was invalid because it would use an L label in a section where the liker needs
the labels in order to atomize it.
One way of fixing it would be to just reject this IR in the backend, but that
would not be very front end friendly.
What this patch does is use an 'l' prefix in sections that we know the linker
requires symbols for atomizing them. This allows frontends to just use
private and not worry about which sections they go to or how the linker handles
them.
One small issue with this strategy is that now a symbol name depends on the
section, which is not available before codegen. This is not a problem in
practice. The reason is that it only happens with private linkage, which will
be ignored by the non codegen users (llvm-nm and llvm-ar).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201608 91177308-0d34-0410-b5e6-96231b3b80d8
A simple register copy on X86 is just 3 bytes, whereas movabsq is a 10 byte
instruction. Marking movabsq as not beeing cheap will allow LICM to move it
out of the loop and it also prevents unnecessary rematerializations if the
value is needed in more than one register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201377 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for
targets with mature MC support. Such targets will always parse the inline
assembly (even when emitting assembly). Targets without mature MC support
continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced
with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler
to parse inline assembly (even when emitting assembly output). UseIntegratedAs
is set to true for targets that consider any failure to parse valid assembly
to be a bug. Target specific subclasses generally enable the integrated
assembler in their constructor. The default value can be overridden with
-no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example,
those that use mnemonics such as 'foo' or 'hello world') have been updated to
disable the integrated assembler.
Changes since review (and last commit attempt):
- Fixed test failures that were missed due to configuration of local build.
(fixes crash.ll and a couple others).
- Fixed tests that happened to pass because the local build was on X86
(should fix 2007-12-17-InvokeAsm.ll)
- mature-mc-support.ll's should no longer require all targets to be compiled.
(should fix ARM and PPC buildbots)
- Object output (-filetype=obj and similar) now forces the integrated assembler
to be enabled regardless of default setting or -no-integrated-as.
(should fix SystemZ buildbots)
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201333 91177308-0d34-0410-b5e6-96231b3b80d8
'OK_NonUniformConstValue' to identify operands which are constants but
not constant splats.
The cost model now allows returning 'OK_NonUniformConstValue'
for non splat operands that are instances of ConstantVector or
ConstantDataVector.
With this change, targets are now able to compute different costs
for instructions with non-uniform constant operands.
For example, On X86 the cost of a vector shift may vary depending on whether
the second operand is a uniform or non-uniform constant.
This patch applies the following changes:
- The cost model computation now takes into account non-uniform constants;
- The cost of vector shift instructions has been improved in
X86TargetTransformInfo analysis pass;
- BBVectorize, SLPVectorizer and LoopVectorize now know how to distinguish
between non-uniform and uniform constant operands.
Added a new test to verify that the output of opt
'-cost-model -analyze' is valid in the following configurations: SSE2,
SSE4.1, AVX, AVX2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201272 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of expanding a packed shift into a sequence of scalar shifts,
the backend now tries (when possible) to convert the vector shift into a
vector multiply.
Before this change, a shift of a MVT::v8i16 vector by a
build_vector of constants was always scalarized into a long sequence of "vector
extracts + scalar shifts + vector insert".
With this change, if there is SSE2 support, we emit a single vector multiply.
This change also affects SSE4.1, AVX, AVX2 shifts:
- A shift of a MVT::v4i32 vector by a build_vector of non uniform constants
is now lowered when possible into a single SSE4.1 vector multiply.
- Packed v16i16 shift left by constant build_vector are now expanded when
possible into a single AVX2 vpmullw.
This change also improves the lowering of AVX512f vector shifts.
Added test CodeGen/X86/vec_shift6.ll with some code examples that are affected
by this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201271 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201237 91177308-0d34-0410-b5e6-96231b3b80d8
Original commits messages:
Add MRMXr/MRMXm form to X86 for use by instructions which treat the 'reg' field of modrm byte as a don't care value. Will allow for simplification of disassembler code.
Simplify a bunch of code by removing the need for the x86 disassembler table builder to know about extended opcodes. The modrm forms are sufficient to convey the information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201065 91177308-0d34-0410-b5e6-96231b3b80d8
r201059 appears to cause a crash in a bootstrapped build of clang. Craig
isn't available to look at it right now, so I'm reverting it while he
investigates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201064 91177308-0d34-0410-b5e6-96231b3b80d8
These methods normally call each other and it is really annoying if the
arguments are in different order. The more common rule was that the arguments
specific to call are first (GV, Encoding, Suffix) and the auxiliary objects
(Mang, TM) come after. This patch changes the exceptions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201044 91177308-0d34-0410-b5e6-96231b3b80d8
It is never null and it is not used in casts, so there is no reason to use a
pointer. This matches how we pass TM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201025 91177308-0d34-0410-b5e6-96231b3b80d8
Generalize the AArch64 .td nodes for AssertZext and AssertSext. Use
them to match the relevant pextr store instructions.
The test widen_load-2.ll requires a slight change because with the
stores gone, the remaining instructions are scheduled in a different
order.
Add test cases for SSE4 and AVX variants.
Resolves rdar://13414672.
Patch by Adam Nemet <anemet@apple.com>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200957 91177308-0d34-0410-b5e6-96231b3b80d8
The most important part of this is probably adding any cost at all for
operations like zext <8 x i8> to <8 x i32>. Before they were being
recorded as extremely costly (24, I believe) which made LLVM fall back
on a 4-wide vectorisation of a loop.
It also rebalances the values for sext, zext and trunc. Lacking any
other sane metric that might work across CPU microarchitectures I went
for instructions. This seems to be in reasonable accord with the rest
of the table (sitofp, ...) though no doubt at least one value is
sub-optimal for some bizarre reason.
Finally, separate AVX and AVX2 values are provided where appropriate.
The CodeGen is quite different in many cases.
rdar://problem/15981990
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200928 91177308-0d34-0410-b5e6-96231b3b80d8
I believe VZEXT_MOVL means "zero all vector elements except the first" (and
should have identical input & output types) whereas VZEXT means "zero extend
each element of a vector (discarding higher elements if necessary)".
For example:
(v4i32 (vzext (v16i8 ...)))
should zero extend the low 4 bytes of the incoming vector to 32-bits,
discarding higher bytes.
However, somewhere in the past, these two concepts had become confused, even
leading to a nonsensical VSEXT_MOVL.
This re-merges the nodes where appropriate (all VSEXT_MOVL -> VSEXT, VZEXT_MOVL
-> VZEXT when it's an actual extension).
rdar://problem/15981990
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200918 91177308-0d34-0410-b5e6-96231b3b80d8
This is a nop. doesSectionRequireSymbols is only used from
isSymbolLinkerVisible. isSymbolLinkerVisible only use from ELF was in
if (!Asm.isSymbolLinkerVisible(Symbol) && !Symbol.isUndefined())
return false;
if (Symbol.isTemporary())
return false;
If the symbol is a temporary this code returns false and it is irrelevant if
we take the first if or not. If the symbol is not a temporary,
Asm.isSymbolLinkerVisible returns true without ever calling
doesSectionRequireSymbols.
This was an horrible leftover from when support for ELF was first added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200894 91177308-0d34-0410-b5e6-96231b3b80d8
Commuting the 231 and 132 variants would swap addends and
multiplicands/multipliers, which isn't valid.
I'm still trying to reduce a decent test case for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200792 91177308-0d34-0410-b5e6-96231b3b80d8
Calls with inalloca are lowered by skipping all stores for arguments
passed in memory and the initial stack adjustment to allocate argument
memory.
Now the frontend is responsible for the memory layout, and the backend
doesn't have to do any work. As a result these changes are pretty
minimal.
Reviewers: echristo
Differential Revision: http://llvm-reviews.chandlerc.com/D2637
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200596 91177308-0d34-0410-b5e6-96231b3b80d8
Allocas marked inalloca are never static, but we were trying to put them
into the static alloca map if they were in the entry block. Also add an
assertion in x86 fastisel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200593 91177308-0d34-0410-b5e6-96231b3b80d8
It looks like these pseudos were only used for pattern matching. Def pats are
the appropriate way to do that. As a bonus, these intrinsics will now have
memory operands folded properly, and better FMA3 variants selected where
appropriate (see r199933).
<rdar://problem/15611947>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200577 91177308-0d34-0410-b5e6-96231b3b80d8
If we have a callee cleanup convention, the callee is going to pop the
arguments off the stack, not push them on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200566 91177308-0d34-0410-b5e6-96231b3b80d8
MSVC always places the 'this' parameter for a method first. The
implicit 'sret' pointer for methods always comes second. We already
implement this for __thiscall by putting sret parameters on the stack,
but __cdecl methods require putting both parameters on the stack in
opposite order.
Using a special calling convention allows frontends to keep the sret
parameter first, which avoids breaking lots of assumptions in LLVM and
Clang.
Fixes PR15768 with the corresponding change in Clang.
Reviewers: ributzka, majnemer
Differential Revision: http://llvm-reviews.chandlerc.com/D2663
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200561 91177308-0d34-0410-b5e6-96231b3b80d8
These should end up (in ELF) as R_X86_64_32S relocs, not R_X86_64_32.
Kill the horrid and incomplete special case and FIXME in
EncodeInstruction() and set things up so it can infer the signedness
from the ImmType just like it can the size and whether it's PC-relative.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200495 91177308-0d34-0410-b5e6-96231b3b80d8
None of the object file formats reported error on iterator increment. In
retrospect, that is not too surprising: no object format stores symbols or
sections in a linked list or other structure that requires chasing pointers.
As a consequence, all error checking can be done on begin() and end().
This reduces the text segment of bin/llvm-readobj in my machine from 521233 to
518526 bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200442 91177308-0d34-0410-b5e6-96231b3b80d8
The subtarget info is explicitly passed to the EncodeInstruction
method and we should use that subtarget info to influence any
encoding decisions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200350 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids miscompiling MS inline asm in LLVM where we have to infer
clobbers. Test case forthcoming in Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200279 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch we used getIntImmCost from TargetTransformInfo to determine if
a load of a constant should be converted to just a constant, but the threshold
for this was set to an arbitrary value. This value works well for the two
targets (X86 and ARM) that implement this target-hook, but it isn't
target-independent at all.
Now targets have the possibility to decide directly if this optimization should
be performed. The default value is set to false to preserve the current
behavior. The target hook has been moved to TargetLowering, which removed the
last use and need of TargetTransformInfo in SelectionDAG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200271 91177308-0d34-0410-b5e6-96231b3b80d8
lib/Target/X86/Disassembler/X86DisassemblerDecoder.c:1361:7: error: C++ style comments are not allowed in ISO C90
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200153 91177308-0d34-0410-b5e6-96231b3b80d8
This has a few advantages:
* Only targets that use a MCTargetStreamer have to worry about it.
* There is never a MCTargetStreamer without a MCStreamer, so we can use a
reference.
* A MCTargetStreamer can talk to the MCStreamer in its constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200129 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r200058 and adds the using directive for
ARMTargetTransformInfo to silence two g++ overload warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200062 91177308-0d34-0410-b5e6-96231b3b80d8
This commit caused -Woverloaded-virtual warnings. The two new
TargetTransformInfo::getIntImmCost functions were only added to the superclass,
and to the X86 subclass. The other targets were not updated, and the
warning highlighted this by pointing out that e.g. ARMTTI::getIntImmCost was
hiding the two new getIntImmCost variants.
We could pacify the warning by adding "using TargetTransformInfo::getIntImmCost"
to the various subclasses, or turning it off, but I suspect that it's wrong to
leave the functions unimplemnted in those targets. The default implementations
return TCC_Free, which I don't think is right e.g. for ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200058 91177308-0d34-0410-b5e6-96231b3b80d8
Retry commit r200022 with a fix for the build bot errors. Constant expressions
have (unlike instructions) module scope use lists and therefore may have users
in different functions. The fix is to simply ignore these out-of-function uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200034 91177308-0d34-0410-b5e6-96231b3b80d8
This pass identifies expensive constants to hoist and coalesces them to
better prepare it for SelectionDAG-based code generation. This works around the
limitations of the basic-block-at-a-time approach.
First it scans all instructions for integer constants and calculates its
cost. If the constant can be folded into the instruction (the cost is
TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
consider it expensive and leave it alone. This is the default behavior and
the default implementation of getIntImmCost will always return TCC_Free.
If the cost is more than TCC_BASIC, then the integer constant can't be folded
into the instruction and it might be beneficial to hoist the constant.
Similar constants are coalesced to reduce register pressure and
materialization code.
When a constant is hoisted, it is also hidden behind a bitcast to force it to
be live-out of the basic block. Otherwise the constant would be just
duplicated and each basic block would have its own copy in the SelectionDAG.
The SelectionDAG recognizes such constants as opaque and doesn't perform
certain transformations on them, which would create a new expensive constant.
This optimization is only applied to integer constants in instructions and
simple (this means not nested) constant cast experessions. For example:
%0 = load i64* inttoptr (i64 big_constant to i64*)
Reviewed by Eric
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200022 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
This commit teaches the X86 backend to create the same X86 instructions when it
lowers an sadd/ssub with overflow intrinsic and a conditional branch that uses
that overflow result. This allows SelectionDAG to recognize and remove one of
the redundant operations.
This fixes <rdar://problem/15874016> and <rdar://problem/15661073>.
Reviewed by Nadav
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199976 91177308-0d34-0410-b5e6-96231b3b80d8
registers in memory addresses that do not match the index register. As it does
for .att_syntax.
rdar://15887380
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199948 91177308-0d34-0410-b5e6-96231b3b80d8
scale factors in memory addresses. As it does for .att_syntax.
It was producing:
Assertion failed: (((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) && "Invalid scale!"), function CreateMem, file /Volumes/SandBox/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp, line 1133.
rdar://14967214
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199942 91177308-0d34-0410-b5e6-96231b3b80d8
when used with symbolic disassembly, add a check that the operand
is an immediate and has not been symbolicated to MCExpr operand.
I’m trying to enable the ‘C’ disassembly API option
LLVMDisassembler_Option_SetInstrComments for darwin’s
otool(1) that uses the llvm disassembler API. The problem is
that the disassembler API can change an immediate operand to
an MCExpr operand if it symbolicates it with the call backs.
And if it does the code in llvm::EmitAnyX86InstComments()
will crash when it assumes these operands are immediates.
The fix for this is very straight forward to just protect the call
to getImm() with a check of isImm(). So if the immediate for
an instruction is symbolicated it simply doesn’t get the X86
verbose assembly comments:
% otool -tV test_asm.o
test_asm.o:
(__TEXT,__text) section
_t1:
0000000000000000 vpshufd $_t1, %xmm1, %xmm0
0000000000000005 retq
0000000000000006 nopw %cs:_t1(%rax,%rax)
_t2:
0000000000000010 vpshufd $-0x1, %xmm0, %xmm0 ## xmm0 = xmm0[3,3,3,3]
0000000000000015 retq
0000000000000016 nopw %cs:_t1(%rax,%rax)
_t3:
0000000000000020 vpshufd $_t1, %xmm1, %xmm0
0000000000000025 retq
0000000000000026 nopw %cs:_t1(%rax,%rax)
_t4:
0000000000000030 vpshufd $0x2d, %xmm0, %xmm0 ## xmm0 = xmm0[1,3,2,0]
0000000000000035 retq
The fact that the immediate $0x0 is being symbolicated at
all in this case is a different problem which my next patch
will address.
rdar://10989286
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199697 91177308-0d34-0410-b5e6-96231b3b80d8
Add target specific rules for combining vselect dag nodes into movss/movsd
when possible.
If the vector type of the vselect dag node in input is either MVT::v4i13 or
MVT::v4f32, then try to fold according to rules:
1) fold (vselect (build_vector (0, -1, -1, -1)), A, B) -> (movss A, B)
2) fold (vselect (build_vector (-1, 0, 0, 0)), A, B) -> (movss B, A)
If the vector type of the vselect dag node in input is either MVT::v2i64 or
MVT::v2f64 (and we have SSE2), then try to fold according to rules:
3) fold (vselect (build_vector (0, -1)), A, B) -> (movsd A, B)
4) fold (vselect (build_vector (-1, 0)), A, B) -> (movsd B, A)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199683 91177308-0d34-0410-b5e6-96231b3b80d8
The addition of IC_OPSIZE_ADSIZE in r198759 wasn't quite complete. It
also turns out to have been unnecessary. The disassembler handles the
AdSize prefix for itself, and doesn't care about the difference between
(e.g.) MOV8ao8 and MOB8ao8_16 definitions. So just let them coexist and
don't worry about it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199654 91177308-0d34-0410-b5e6-96231b3b80d8
The disassembler has a special case for 'L' vs. 'W' in its heuristic for
checking for 32-bit and 16-bit equivalents. We could expand the heuristic,
but better just to be consistent in using the 'L' suffix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199652 91177308-0d34-0410-b5e6-96231b3b80d8
Not quite sure why this was marked isAsmParserOnly, but it means that the
disassembler can't see it either.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199651 91177308-0d34-0410-b5e6-96231b3b80d8
When disassembling in 16-bit mode the meaning of the OpSize bit is
inverted. Instructions found in the IC_OPSIZE context will actually
*not* have the 0x66 prefix, and instructions in the IC context will
have the 0x66 prefix. Make use of the existing special-case handling
for the 0x66 prefix being in the wrong place, to cope with this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199650 91177308-0d34-0410-b5e6-96231b3b80d8
Aside from cleaning up the code, this also adds support for the -code16
environment and actually enables the MODE_16BIT mode that was previously
not accessible.
There is no point adding any testing for 16-bit yet though; basically
nothing will work because we aren't handling the OpSize prefix correctly
for 16-bit mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199649 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds two new target-independent calling conventions for runtime
calls - PreserveMost and PreserveAll.
The target-specific implementation for X86-64 is defined as following:
- Arguments are passed as for the default C calling convention
- The same applies for the return value(s)
- PreserveMost preserves all GPRs - except R11
- PreserveAll preserves all GPRs and all XMMs/YMMs - except R11
Reviewed by Lang and Philip
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199508 91177308-0d34-0410-b5e6-96231b3b80d8
MSVC on x64 requires that we create image relative symbol
references to refer to RTTI data. Seeing as how there is no way to
explicitly make reference to a given relocation type in LLVM IR, pattern
match expressions of the form &foo - &__ImageBase.
Differential Revision: http://llvm-reviews.chandlerc.com/D2523
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199312 91177308-0d34-0410-b5e6-96231b3b80d8
promotion code, Tablegen will now select FPExt for floating point promotions
(previously it had returned AExt, which is not valid for floating point types).
Any out-of-tree targets that were relying on AExt being returned for FP
promotions will need to update their code check for FPExt instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199252 91177308-0d34-0410-b5e6-96231b3b80d8
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199218 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a regression intruced by r198113.
Revision r198113 introduced an algorithm that tries to fold a vector shift
by immediate count into a build_vector if the input vector is a known vector
of constants.
However the algorithm only worked under the assumption that the input vector
type and the shift type are exactly the same.
This patch disables the folding of vector shift by immediate count if the
input vector type and the shift value type are not the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199213 91177308-0d34-0410-b5e6-96231b3b80d8
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199204 91177308-0d34-0410-b5e6-96231b3b80d8
This should allow SSE instructions to be encoded correctly in 16-bit mode which r198586 probably broke.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199193 91177308-0d34-0410-b5e6-96231b3b80d8
This finishes the job started in r198756, and creates separate opcodes for
64-bit vs. 32-bit versions of the rest of the RET instructions too.
LRETL/LRETQ are interesting... I can't see any justification for their
existence in the SDM. There should be no 'LRETL' in 64-bit mode, and no
need for a REX.W prefix for LRETQ. But this is what GAS does, and my
Sandybridge CPU and an Opteron 6376 concur when tested as follows:
asm __volatile__("pushq $0x1234\nmovq $0x33,%rax\nsalq $32,%rax\norq $1f,%rax\npushq %rax\nlretl $8\n1:");
asm __volatile__("pushq $1234\npushq $0x33\npushq $1f\nlretq $8\n1:");
asm __volatile__("pushq $0x33\npushq $1f\nlretq\n1:");
asm __volatile__("pushq $0x1234\npushq $0x33\npushq $1f\nlretq $8\n1:");
cf. PR8592 and commit r118903, which added LRETQ. I only added LRETIQ to
match it.
I don't quite understand how the Intel syntax parsing for ret
instructions is working, despite r154468 allegedly fixing it. Aren't the
explicitly sized 'retw', 'retd' and 'retq' supposed to work? I have at
least made the 'lretq' work with (and indeed *require*) the 'q'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199106 91177308-0d34-0410-b5e6-96231b3b80d8
The target specific parser should return `false' if the target AsmParser handles
the directive, and `true' if the generic parser should handle the directive.
Many of the target specific directive handlers would `return Error' which does
not follow these semantics. This change simply changes the target specific
routines to conform to the semantis of the ParseDirective correctly.
Conformance to the semantics improves diagnostics emitted for the invalid
directives. X86 is taken as a sample to ensure that multiple diagnostics are
not presented for a single error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199068 91177308-0d34-0410-b5e6-96231b3b80d8
Use separate callee-save masks for XMM and YMM registers for anyregcc on X86 and
select the proper mask depending on the target cpu we compile for.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198985 91177308-0d34-0410-b5e6-96231b3b80d8
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198836 91177308-0d34-0410-b5e6-96231b3b80d8
They do *different* things to %esp, so they are not equivalent.
Rename PUSHi8 to PUSH32i8 and add the missing PUSH16i8.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198761 91177308-0d34-0410-b5e6-96231b3b80d8
We can't do a perfect job here. We *have* to allow (%dx) even in 64-bit
mode, for example, because it might be used for an unofficial form of
the in/out instructions. We actually want to do a better job of validation
*later*. Perhaps *instead* of doing it where we are at the moment.
But for now, doing what validation we *can* do in the place that the code
already has its validation, is an improvement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198760 91177308-0d34-0410-b5e6-96231b3b80d8
It seems there is no separate instruction class for having AdSize *and*
OpSize bits set, which is required in order to disambiguate between all
these instructions. So add that to the disassembler.
Hm, perhaps we do need an AdSize16 bit after all?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198759 91177308-0d34-0410-b5e6-96231b3b80d8
Where "where possible" means that it's an immediate value and it's below
0x10000. In fact GAS will either truncate or error with larger values,
and will insist on using the addr32 prefix to get 32-bit addressing. So
perhaps we should do that, in a later patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198758 91177308-0d34-0410-b5e6-96231b3b80d8
JCXZ should have the 0x67 prefix only if we're in 32-bit mode, so make that
appropriately conditional. And JECXZ needs the prefix instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198757 91177308-0d34-0410-b5e6-96231b3b80d8
I couldn't see how to do this sanely without splitting RETQ from RETL.
Eric says: "sad about the inability to roundtrip them now, but...".
I have no idea what that means, but perhaps it wants preserving in the
commit comment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198756 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes the bulk of 16-bit output, and the corresponding test case
x86-16.s now looks mostly like the x86-32.s test case that it was
originally based on. A few irrelevant instructions have been dropped,
and there are still some corner cases to be fixed in subsequent patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198752 91177308-0d34-0410-b5e6-96231b3b80d8
Modern versions of OSX/Darwin's ld (ld64 > 97.17) have an optimisation present that allows the back end to omit relocations (and replace them with an absolute difference) for FDE some text section refs.
This patch allows a backend to opt-in to this behaviour by setting "DwarfFDESymbolsUseAbsDiff". At present, this is only enabled for modern x86 OSX ports.
test changes by David Fang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198744 91177308-0d34-0410-b5e6-96231b3b80d8
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198688 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM backend has been using most of the MachO related subtarget
checks almost interchangeably, and since the only target it's had to
run on has been IOS (which is all three of MachO, Darwin and IOS) it's
worked out OK so far.
But we'd like to support embedded targets under the "*-*-none-macho"
triple, which means everything starts falling apart and inconsistent
behaviours emerge.
This patch should pick a reasonably sensible set of behaviours for the
new triple (and any others that come along, with luck). Some choices
were debatable (notably FP == r7 or r11), but we can revisit those
later when deficiencies become apparent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198617 91177308-0d34-0410-b5e6-96231b3b80d8
The 0x66 prefix toggles between 16-bit and 32-bit addressing mode.
So in 32-bit mode it is used to switch to 16-bit addressing mode for the
following instruction, while in 16-bit mode it's the other way round — it's
used to switch to 32-bit mode instead.
Thus, emit the 0x66 prefix byte for OpSize only in 32-bit (and 64-bit) mode,
and introduce a new OpSize16 bit which is used in 16-bit mode instead.
This is just the basic infrastructure for that change; a subsequent patch
will add the new OpSize16 bit to the 32-bit instructions that need it.
Patch from David Woodhouse.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198586 91177308-0d34-0410-b5e6-96231b3b80d8