With the SVR4 ABI on PowerPC, vector arguments for vararg calls are passed differently depending on whether they are a fixed or a variable argument. Variable vector arguments always go into memory, fixed vector arguments are put
into vector registers. If there are no free vector registers available, fixed vector arguments are put on the stack.
The NumFixedArgs attribute allows to decide for an argument in a vararg call whether it belongs to the fixed or variable portion of the parameter list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74764 91177308-0d34-0410-b5e6-96231b3b80d8
Note, isUndef marker must be placed even on implicit_def def operand or else the scavenger will not ignore it. This is necessary because -O0 path does not use liveintervalanalysis, it treats implicit_def just like any other def.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74601 91177308-0d34-0410-b5e6-96231b3b80d8
- This more or less amounts to a revert of r65379. I'm curious to know what
happened that caused this variable to become unused.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74579 91177308-0d34-0410-b5e6-96231b3b80d8
have the alignment be calculated up front, and have the back-ends obey whatever
alignment is decided upon.
This allows for future work that would allow for precise no-op placement and the
like.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74564 91177308-0d34-0410-b5e6-96231b3b80d8
The register allocator, when it allocates a register to a virtual register defined by an implicit_def, can allocate any physical register without worrying about overlapping live ranges. It should mark all of operands of the said virtual register so later passes will do the right thing.
This is not the best solution. But it should be a lot less fragile to having the scavenger try to track what is defined by implicit_def.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74518 91177308-0d34-0410-b5e6-96231b3b80d8
the SelectionDAG::getGlobalAddress function properly looks through
aliases to determine thread-localness, but then passes the GV* down
to GlobalAddressSDNode::GlobalAddressSDNode which does not. Instead
of passing down isTarget, just pass down the predetermined node
opcode. This fixes some assertions with out of tree changes I'm
working on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74325 91177308-0d34-0410-b5e6-96231b3b80d8
The OpActions array had a limit of 32 value types, so change it to use
MVT::MAX_ALLOWED_VALUETYPE in its declaration and change the accesses to
this array to work with a VT.getSimpleVT() that is larger than 32.
Also, add a comment to the place where MVT::MAX_ALLOWED_VALUETYPE is
defined indicating that it must be a multiple of 32.
This is part of the work allow MVT::LAST_VALUETYPE be greater than 32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74130 91177308-0d34-0410-b5e6-96231b3b80d8
This change doubles the allowable value for MVT::LAST_VALUETYPE. It does
this by doing several things.
1. Introduces MVT::MAX_ALLOWED_LAST_VALUETYPE which in this change has a
value of 64. This value contains the current maximum for the
MVT::LAST_VALUETYPE.
2. Instead of checking "MVT::LAST_VALUETYPE <= 32", all of those uses
now become "MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_LAST_VALUETYPE"
3. Changes the dimension of the ValueTypeActions from 2 elements to four
elements and adds comments ahead of the declaration indicating the it is
"(MVT::MAX_ALLOWED_LAST_VALUETYPE/32) * 2". This at least lets us find
what is affected if and when MVT::MAX_ALLOWED_LAST_VALUETYPE gets
changed.
4. Adds initializers for the new elements of ValueTypeActions.
This does NOT add any types in MVT. That would be done separately.
This doubles the size of ValueTypeActions from 64 bits to 128 bits and
gives us the freedom to add more types for AVX.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74110 91177308-0d34-0410-b5e6-96231b3b80d8
a bunch of code from all the targets, and eliminates nondeterministic
ordering of directives being emitted in the output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74096 91177308-0d34-0410-b5e6-96231b3b80d8
Support for .text relocations, implementing TargetELFWriter overloaded methods for x86/x86_64.
Use a map to track global values to their symbol table indexes
Code cleanup and small fixes
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73894 91177308-0d34-0410-b5e6-96231b3b80d8
- Change register allocation hint to a pair of unsigned integers. The hint type is zero (which means prefer the register specified as second part of the pair) or entirely target dependent.
- Allow targets to specify alternative register allocation orders based on allocation hint.
Part 2.
- Use the register allocation hint system to implement more aggressive load / store multiple formation.
- Aggressively form LDRD / STRD. These are formed *before* register allocation. It has to be done this way to shorten live interval of base and offset registers. e.g.
v1025 = LDR v1024, 0
v1026 = LDR v1024, 0
=>
v1025,v1026 = LDRD v1024, 0
If this transformation isn't done before allocation, v1024 will overlap v1025 which means it more difficult to allocate a register pair.
- Even with the register allocation hint, it may not be possible to get the desired allocation. In that case, the post-allocation load / store multiple pass must fix the ldrd / strd instructions. They can either become ldm / stm instructions or back to a pair of ldr / str instructions.
This is work in progress, not yet enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73381 91177308-0d34-0410-b5e6-96231b3b80d8
ADDC/ADDE use MVT::i1 (later, whatever it gets legalized to)
instead of MVT::Flag. Remove CARRY_FALSE in favor of 0; adjust
all target-independent code to use this format.
Most targets will still produce a Flag-setting target-dependent
version when selection is done. X86 is converted to use i32
instead, which means TableGen needs to produce different code
in xxxGenDAGISel.inc. This keys off the new supportsHasI1 bit
in xxxInstrInfo, currently set only for X86; in principle this
is temporary and should go away when all other targets have
been converted. All relevant X86 instruction patterns are
modified to represent setting and using EFLAGS explicitly. The
same can be done on other targets.
The immediate behavior change is that an ADC/ADD pair are no
longer tightly coupled in the X86 scheduler; they can be
separated by instructions that don't clobber the flags (MOV).
I will soon add some peephole optimizations based on using
other instructions that set the flags to feed into ADC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72707 91177308-0d34-0410-b5e6-96231b3b80d8
entries as there are basic blocks in the function. LiveVariables::getVarInfo
creates a VarInfo struct for every register in the function, leading to
quadratic space use. This patch changes the BitVector to a SparseBitVector,
which doesn't help the worst-case memory use but does reduce the actual use in
very long functions with short-lived variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72426 91177308-0d34-0410-b5e6-96231b3b80d8
will allow simplifying LegalizeDAG to eliminate type legalization. (I
have a patch to do that, but it's not quite finished; I'll commit it
once it's finished and I've fixed any review comments for this patch.)
See the comment at the beginning of
lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp for more details on the
motivation for this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72325 91177308-0d34-0410-b5e6-96231b3b80d8
code in preparation for code generation. The main thing it does
is handle the case when eh.exception calls (and, in a future
patch, eh.selector calls) are far away from landing pads. Right
now in practice you only find eh.exception calls close to landing
pads: either in a landing pad (the common case) or in a landing
pad successor, due to loop passes shifting them about. However
future exception handling improvements will result in calls far
from landing pads:
(1) Inlining of rewinds. Consider the following case:
In function @f:
...
invoke @g to label %normal unwind label %unwinds
...
unwinds:
%ex = call i8* @llvm.eh.exception()
...
In function @g:
...
invoke @something to label %continue unwind label %handler
...
handler:
%ex = call i8* @llvm.eh.exception()
... perform cleanups ...
"rethrow exception"
Now inline @g into @f. Currently this is turned into:
In function @f:
...
invoke @something to label %continue unwind label %handler
...
handler:
%ex = call i8* @llvm.eh.exception()
... perform cleanups ...
invoke "rethrow exception" to label %normal unwind label %unwinds
unwinds:
%ex = call i8* @llvm.eh.exception()
...
However we would like to simplify invoke of "rethrow exception" into
a branch to the %unwinds label. Then %unwinds is no longer a landing
pad, and the eh.exception call there is then far away from any landing
pads.
(2) Using the unwind instruction for cleanups.
It would be nice to have codegen handle the following case:
invoke @something to label %continue unwind label %run_cleanups
...
handler:
... perform cleanups ...
unwind
This requires turning "unwind" into a library call, which
necessarily takes a pointer to the exception as an argument
(this patch also does this unwind lowering). But that means
you are using eh.exception again far from a landing pad.
(3) Bugpoint simplifications. When bugpoint is simplifying
exception handling code it often generates eh.exception calls
far from a landing pad, which then causes codegen to assert.
Bugpoint then latches on to this assertion and loses sight
of the original problem.
Note that it is currently rare for this pass to actually do
anything. And in fact it normally shouldn't do anything at
all given the code coming out of llvm-gcc! But it does fire
a few times in the testsuite. As far as I can see this is
almost always due to the LoopStrengthReduce codegen pass
introducing pointless loop preheader blocks which are landing
pads and only contain a branch to another block. This other
block contains an eh.exception call. So probably by tweaking
LoopStrengthReduce a bit this can be avoided.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72276 91177308-0d34-0410-b5e6-96231b3b80d8
The following is checked:
* Operand counts: All explicit operands must be present.
* Register classes: All physical and virtual register operands must be
compatible with the register class required by the instruction descriptor.
* Register live intervals: Registers must be defined only once, and must be
defined before use.
The machine code verifier is enabled with the command-line option
'-verify-machineinstrs', or by defining the environment variable
LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive all the
verifier errors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71918 91177308-0d34-0410-b5e6-96231b3b80d8
of exception handling builtin sjlj targets in functions turns out not to
be necessary. Marking the intrinsic implementation in the .td file as
defining all registers is sufficient to get the context saved properly by
the containing function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71743 91177308-0d34-0410-b5e6-96231b3b80d8
booleans. This gives a better indication of what the "addReg()" is
doing. Remembering what all of those booleans mean isn't easy, especially if you
aren't spending all of your time in that code.
I took Jakob's suggestion and made it illegal to pass in "true" for the
flag. This should hopefully prevent any unintended misuse of this (by reverting
to the old way of using addReg()).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71722 91177308-0d34-0410-b5e6-96231b3b80d8
a supporting preliminary patch for GCC-compatible SjLJ exception handling. Note that these intrinsics are not designed to be invoked directly by the user, but
rather used by the front-end as target hooks for exception handling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71610 91177308-0d34-0410-b5e6-96231b3b80d8
checking for bcopy... no
checking for getc_unlocked... Assertion failed: (0 && "Unknown SCEV kind!"), function operator(), file /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmCore.roots/llvmCore~obj/src/lib/Analysis/ScalarEvolution.cpp, line 511.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/libdecnumber/decUtility.c:360: internal compiler error: Abort trap
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[4]: *** [decUtility.o] Error 1
make[4]: *** Waiting for unfinished jobs....
Assertion failed: (0 && "Unknown SCEV kind!"), function operator(), file /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmCore.roots/llvmCore~obj/src/lib/Analysis/ScalarEvolution.cpp, line 511.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/libdecnumber/decNumber.c:5591: internal compiler error: Abort trap
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[4]: *** [decNumber.o] Error 1
make[3]: *** [all-stage2-libdecnumber] Error 2
make[3]: *** Waiting for unfinished jobs....
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71165 91177308-0d34-0410-b5e6-96231b3b80d8
shows up in -print-machineinstrs. This doesn't appear to affect anything, but it was
weird for some DBG_LABELs to have DebugLocs but not all of them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70921 91177308-0d34-0410-b5e6-96231b3b80d8
VirtRegMap keeps track of allocations so it knows what's not used. As a horrible hack, the stack coloring can color spill slots with *free* registers. That is, it replace reload and spills with copies from and to the free register. It unfold instructions that load and store the spill slot and replace them with register using variants.
Not yet enabled. This is part 1. More coming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70787 91177308-0d34-0410-b5e6-96231b3b80d8
Massive check in. This changes the "-fast" flag to "-O#" in llc. If you want to
use the old behavior, the flag is -O0. This change allows for finer-grained
control over which optimizations are run at different -O levels.
Most of this work was pretty mechanical. The majority of the fixes came from
verifying that a "fast" variable wasn't used anymore. The JIT still uses a
"Fast" flag. I'll change the JIT with a follow-up patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70343 91177308-0d34-0410-b5e6-96231b3b80d8
use the old behavior, the flag is -O0. This change allows for finer-grained
control over which optimizations are run at different -O levels.
Most of this work was pretty mechanical. The majority of the fixes came from
verifying that a "fast" variable wasn't used anymore. The JIT still uses a
"Fast" flag. I'm not 100% sure if it's necessary to change it there...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70270 91177308-0d34-0410-b5e6-96231b3b80d8
PR2957
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70225 91177308-0d34-0410-b5e6-96231b3b80d8
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
A clean up of x86 shuffle code, and some canonicalizing in DAGCombiner is next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69952 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a very subtle bug. vr defined by an implicit_def is allowed overlap with any register since it doesn't actually modify anything. However, if it's used as a two-address use, its live range can be extended and it can be spilled. The spiller must take care not to emit a reload for the vn number that's defined by the implicit_def. This is both a correctness and performance issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69743 91177308-0d34-0410-b5e6-96231b3b80d8
in the MachineFunction class, renaming it to addLiveIn for consistency with
the same method in MachineBasicBlock. Thanks for Anton for suggesting this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69615 91177308-0d34-0410-b5e6-96231b3b80d8
value type union: this field was causing problems for
some compilers on 64 bit systems, presumably because
SimpleTy is 32 bits wide while the other fields are
64 bits wide.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69515 91177308-0d34-0410-b5e6-96231b3b80d8
type as the vector element type: allow them to be of
a wider integer type than the element type all the way
through the system, and not just as far as LegalizeDAG.
This should be safe because it used to be this way
(the old type legalizer would produce such nodes), so
backends should be able to handle it. In fact only
targets which have legal vector types with an illegal
promoted element type will ever see this (eg: <4 x i16>
on ppc). This fixes a regression with the new type
legalizer (vec_splat.ll). Also, treat SCALAR_TO_VECTOR
the same as BUILD_VECTOR. After all, it is just a
special case of BUILD_VECTOR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69467 91177308-0d34-0410-b5e6-96231b3b80d8
to support replacing a node with another that has a superset of
the result types. Use this instead of calling
ReplaceAllUsesOfValueWith for each value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@69209 91177308-0d34-0410-b5e6-96231b3b80d8
promoted to legal types without changing the type of the vector. This is
following a suggestion from Duncan
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2009-February/019923.html).
The transformation that used to be done during type legalization is now
postponed to DAG legalization. This allows the BUILD_VECTORs to be optimized
and potentially handled specially by target-specific code.
It turns out that this is also consistent with an optimization done by the
DAG combiner: a BUILD_VECTOR and INSERT_VECTOR_ELT may be combined by
replacing one of the BUILD_VECTOR operands with the newly inserted element;
but INSERT_VECTOR_ELT allows its scalar operand to be larger than the
element type, with any extra high bits being implicitly truncated. The
result is a BUILD_VECTOR where one of the operands has a type larger the
the vector element type.
Any code that operates on BUILD_VECTORs may now need to be aware of the
potential type discrepancy between the vector element type and the
BUILD_VECTOR operands. This patch updates all of the places that I could
find to handle that case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68996 91177308-0d34-0410-b5e6-96231b3b80d8
Now debug_inlined section is covered by TAI->doesDwarfUsesInlineInfoSection(), which is false by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68964 91177308-0d34-0410-b5e6-96231b3b80d8
to support C99 inline, GNU extern inline, etc. Related bugzilla's
include PR3517, PR3100, & PR2933. Nothing uses this yet, but it
appears to work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68940 91177308-0d34-0410-b5e6-96231b3b80d8
Create debug_inlined dwarf section using these information. This info is used by gdb, at least on Darwin, to enable better experience debugging inlined functions. See DwarfWriter.cpp for more information on structure of debug_inlined section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68847 91177308-0d34-0410-b5e6-96231b3b80d8
the key. This will cause it to create a new std::string, which isn't
wanted. Instead, pass back the "const char*". Modify the EmitString() method to
take a "const char*".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68741 91177308-0d34-0410-b5e6-96231b3b80d8
register destinations that are tied to source operands. The
TargetInstrDescr::findTiedToSrcOperand method silently fails for inline
assembly. The existing MachineInstr::isRegReDefinedByTwoAddr was very
close to doing what is needed, so this revision makes a few changes to
that method and also renames it to isRegTiedToUseOperand (for consistency
with the very similar isRegTiedToDefOperand and because it handles both
two-address instructions and inline assembly with tied registers).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68714 91177308-0d34-0410-b5e6-96231b3b80d8
Note that these are distinct from TargetInstrInfo::INSERT_SUBREG
and TargetInstrInfo::EXTRACT_SUBREG, which are used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68355 91177308-0d34-0410-b5e6-96231b3b80d8
is appropriate. This helps visually differentiate host-oriented
calculations from target-oriented calculations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68227 91177308-0d34-0410-b5e6-96231b3b80d8
entered via fall-through. Don't miss fallthroughs from blocks
terminated by conditional branches. Also, move
isOnlyReachableByFallthrough out of line.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68129 91177308-0d34-0410-b5e6-96231b3b80d8
only reachable via fall-through edges. This dramatically reduces the
number of labels printed, and thus also the number of labels the
assembler must parse and remember.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68073 91177308-0d34-0410-b5e6-96231b3b80d8
causing a bootstrap failure. Bootstraps here on
x86-32-linux and x86-64-linux. Requested by the
author Gabor Greif who says that a bug that might
have been causing the failure has since been fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67844 91177308-0d34-0410-b5e6-96231b3b80d8
- Make type declarations match the struct/class keyword of the definition.
- Move AddSignalHandler into the namespace where it belongs.
- Correctly call functions from template base.
- Some other small changes.
With this patch, LLVM and Clang should build properly and with far less noise under VS2008.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67347 91177308-0d34-0410-b5e6-96231b3b80d8
by inserting explicit zero extensions where necessary. Included
is a testcase where SelectionDAG produces a virtual register
holding an i1 value which FastISel previously mistakenly assumed
to be zero-extended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66941 91177308-0d34-0410-b5e6-96231b3b80d8
1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants.
2. MachineConstantPool alignment field is also a log2 value.
3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values.
4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries.
5. Asm printer uses expensive data structure multimap to track constant pool entries by sections.
6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic.
Solutions:
1. ConstantPoolSDNode alignment field is changed to keep non-log2 value.
2. MachineConstantPool alignment field is also changed to keep non-log2 value.
3. Functions that create ConstantPool nodes are passing in non-log2 alignments.
4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT.
5. Asm printer uses cheaper data structure to group constant pool entries.
6. Asm printer compute entry offsets after grouping is done.
7. Change JIT code to compute entry offsets on the fly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
1. Use the same value# to represent unknown values being merged into sub-registers.
2. When coalescer commute an instruction and the destination is a physical register, update its sub-registers by merging in the extended ranges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66610 91177308-0d34-0410-b5e6-96231b3b80d8
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/gcc/libgcc2.c: In function '__muldi3':
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/gcc/libgcc2.c:567: internal compiler error: Bus error
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/gcc/libgcc2.c: In function '__lshrdi3':
/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvmgcc42.roots/llvmgcc42~obj/src/gcc/libgcc2.c:421: internal compiler error: Bus error
Please submit a full bug report,
with preprocessed source if appropriate.
See <URL:http://developer.apple.com/bugreporter> for instructions.
make[5]: *** [libgcc/./_lshrdi3.o] Error 1
make[5]: *** Waiting for unfinished jobs....
make[5]: *** [libgcc/./_muldi3.o] Error 1
make[5]: *** [libgcc/./_negdi2.o] Error 1
--- Reverse-merging (from foreign repository) r66415 into '.':
U include/llvm/BasicBlock.h
U include/llvm/ADT/ilist_node.h
U include/llvm/CodeGen/SelectionDAG.h
U include/llvm/CodeGen/MachineFunction.h
U include/llvm/CodeGen/MachineBasicBlock.h
U include/llvm/Function.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66426 91177308-0d34-0410-b5e6-96231b3b80d8
from 66280. I was unable to verify this with gcc-3.4.6, but with gcc-3.3 it
avoids the "base class with only non-default constructor in class without
a constructor" warning. Apparently that warning was promoted to an error
in gcc-3.4.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66424 91177308-0d34-0410-b5e6-96231b3b80d8
because less bytes are allocated and subobject construction is gone.
For reference how it works, see BasicBlock.h.
Btw. it is very assuring to see that somebody has invented
this ilist-embedded sentinel technique before me :-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66026 91177308-0d34-0410-b5e6-96231b3b80d8
arbitrary vector sizes. Add an optional MinSplatBits parameter to specify
a minimum for the splat element size. Update the PPC target to use the
revised interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65899 91177308-0d34-0410-b5e6-96231b3b80d8
results via reference parameters.
This patch also appears to fix Evan's reported problem supplied as a
reduced bugpoint test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65426 91177308-0d34-0410-b5e6-96231b3b80d8
them are generic changes.
- Use the "fast" flag that's already being passed into the asm printers instead
of shoving it into the DwarfWriter.
- Instead of calling "MI->getParent()->getParent()" for every MI, set the
machine function when calling "runOnMachineFunction" in the asm printers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65379 91177308-0d34-0410-b5e6-96231b3b80d8
a DBG_LABEL or not. We want to fall back to the original way of emitting debug
info when we're in -O0/-fast mode.
- Add plumbing in to pass the "Fast" flag to places that need it.
- XFAIL DebugInfo/deaddebuglabel.ll. This is finding 11 labels instead of 8. I
need to investigate still.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65367 91177308-0d34-0410-b5e6-96231b3b80d8
instruction. The class also consolidates the code for detecting constant
splats that's shared across PowerPC and the CellSPU backends (and might be
useful for other backends.) Also introduces SelectionDAG::getBUID_VECTOR() for
generating new BUILD_VECTOR nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65296 91177308-0d34-0410-b5e6-96231b3b80d8
that has not been JIT'd yet, the callee is put on a list of pending functions
to JIT. The call is directed through a stub, which is updated with the address
of the function after it has been JIT'd. A new interface for allocating and
updating empty stubs is provided.
Add support for removing the ModuleProvider the JIT was created with, which
would otherwise invalidate the JIT's PassManager, which is initialized with the
ModuleProvider's Module.
Add support under a new ExecutionEngine flag for emitting the infomration
necessary to update Function and GlobalVariable stubs after JITing them, by
recording the address of the stub and the name of the GlobalValue. This allows
code to be copied from one address space to another, where libraries may live
at different virtual addresses, and have the stubs updated with their new
correct target addresses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64906 91177308-0d34-0410-b5e6-96231b3b80d8
(Note: Eventually, commits like this will be handled via a pre-commit hook that
does this automagically, as well as expand tabs to spaces and look for 80-col
violations.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64827 91177308-0d34-0410-b5e6-96231b3b80d8
U include/llvm/CodeGen/DebugLoc.h
U lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
U lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.cpp
Enable debug location generation at -Os. This goes with the reapplication of the
r63639 patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64715 91177308-0d34-0410-b5e6-96231b3b80d8
Cleanup some warning.
Remark: when struct/class are declared differently than they are defined, this make problem for VC++ since it seems to mangle class differently that struct. These error are very hard to understand and find. So please, try to keep your definition/declaration in sync.
Only tested with VS2008. hope it does not break anything. feel free to revert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64554 91177308-0d34-0410-b5e6-96231b3b80d8
instruction index across each part. Instruction indices are used
to make live range queries, and live ranges can extend beyond
scheduling region boundaries.
Refactor the ScheduleDAGSDNodes class some more so that it
doesn't have to worry about this additional information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64288 91177308-0d34-0410-b5e6-96231b3b80d8
scheduling, and generalize is so that preserves state across
scheduling regions. This fixes incorrect live-range information around
terminators and labels, which are effective region boundaries.
In place of looking for terminators to anchor inter-block dependencies,
introduce special entry and exit scheduling units for this purpose.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64254 91177308-0d34-0410-b5e6-96231b3b80d8
Adjust derived classes to pass UnknownLoc where
a DebugLoc does not make sense. Pick one of
DebugLoc and non-DebugLoc variants to survive
for all such classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@64000 91177308-0d34-0410-b5e6-96231b3b80d8
Many targets build placeholder nodes for special operands, e.g.
GlobalBaseReg on X86 and PPC for the PIC base. There's no
sensible way to associate debug info with these. I've left
them built with getNode calls with explicit DebugLoc::getUnknownLoc operands.
I'm not too happy about this but don't see a good improvement;
I considered adding a getPseudoOperand or something, but it
seems to me that'll just make it harder to read.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63992 91177308-0d34-0410-b5e6-96231b3b80d8
getCALLSEQ_{END,START} to permit passing no DebugLoc
there. UNDEF doesn't logically have DebugLoc; add
getUNDEF to encapsulate this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63978 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAGISel::CreateScheduler, and make it just create the
scheduler. Leave running the scheduler to the higher-level code.
This makes the higher-level code a little more explicit and
easier to follow, and will help enable some future refactoring.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63944 91177308-0d34-0410-b5e6-96231b3b80d8
that used this header to select a scheduling policy should
use SchedulerRegistry.h instead (llvm-gcc and clang were
updated a while ago).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63934 91177308-0d34-0410-b5e6-96231b3b80d8
support GraphViz, I've been using the foo->dump() facility. This
patch is a minor rewrite to the SelectionDAG dump() stuff to make it a
little more helpful. The existing foo->dump() functionality does not
change; this patch adds foo->dumpr(). All of this is only useful when
running LLVM under a debugger.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63736 91177308-0d34-0410-b5e6-96231b3b80d8
information. This eliminates the need for the Flags field in MemSDNode,
so this makes LoadSDNode and StoreSDNode smaller. Also, it makes
FoldingSetNodeIDs for loads and stores two AddIntegers smaller.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63577 91177308-0d34-0410-b5e6-96231b3b80d8
Live interval reconstruction needs to account for this, and scour its maps to
prevent dangling references.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63558 91177308-0d34-0410-b5e6-96231b3b80d8
crashes or wrong code with codegen of large integers:
eliminate the legacy getIntegerVTBitMask and
getIntegerVTSignBit methods, which returned their
value as a uint64_t, so couldn't handle huge types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63494 91177308-0d34-0410-b5e6-96231b3b80d8
returned by getShiftAmountTy may be too small
to hold shift values (it is an i8 on x86-32).
Before and during type legalization, use a large
but legal type for shift amounts: getPointerTy;
afterwards use getShiftAmountTy, fixing up any
shift amounts with a big type during operation
legalization. Thanks to Dan for writing the
original patch (which I shamelessly pillaged).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63482 91177308-0d34-0410-b5e6-96231b3b80d8
- Modify TableGen to add the DebugLoc when calling getTargetNode.
(The light-weight wrappers are only temporary. The non-DebugLoc version will be
removed once the whole debug info stuff is finished with.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@63273 91177308-0d34-0410-b5e6-96231b3b80d8