While post-indexed LD1/ST1 instructions do exist for vector loads,
this patch makes use of the more flexible addressing-modes in LDR/STR
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207838 91177308-0d34-0410-b5e6-96231b3b80d8
Given the following C code llvm currently generates suboptimal code for
x86-64:
__m128 bss4( const __m128 *ptr, size_t i, size_t j )
{
float f = ptr[i][j];
return (__m128) { f, f, f, f };
}
=================================================
define <4 x float> @_Z4bss4PKDv4_fmm(<4 x float>* nocapture readonly %ptr, i64 %i, i64 %j) #0 {
%a1 = getelementptr inbounds <4 x float>* %ptr, i64 %i
%a2 = load <4 x float>* %a1, align 16, !tbaa !1
%a3 = trunc i64 %j to i32
%a4 = extractelement <4 x float> %a2, i32 %a3
%a5 = insertelement <4 x float> undef, float %a4, i32 0
%a6 = insertelement <4 x float> %a5, float %a4, i32 1
%a7 = insertelement <4 x float> %a6, float %a4, i32 2
%a8 = insertelement <4 x float> %a7, float %a4, i32 3
ret <4 x float> %a8
}
=================================================
shlq $4, %rsi
addq %rdi, %rsi
movslq %edx, %rax
vbroadcastss (%rsi,%rax,4), %xmm0
retq
=================================================
The movslq is uneeded, but is present because of the trunc to i32 and then
sext back to i64 that the backend adds for vbroadcastss.
We can't remove it because it changes the meaning. The IR that clang
generates is already suboptimal. What clang really should emit is:
%a4 = extractelement <4 x float> %a2, i64 %j
This patch makes that legal. A separate patch will teach clang to do it.
Differential Revision: http://reviews.llvm.org/D3519
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207801 91177308-0d34-0410-b5e6-96231b3b80d8
This creates a lot of core infrastructure in which to add, with little
effort, quite a bit more to mips fast-isel
Test Plan: simplestore.ll
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D3527
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207790 91177308-0d34-0410-b5e6-96231b3b80d8
Use i32 instead of specifying SReg_32. When this is
the pseudo INDIRECT_BASE_ADDR, this would give a bogus
verifier error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207770 91177308-0d34-0410-b5e6-96231b3b80d8
The canonical form of the BFM instruction is always one of the more explicit
extract or insert operations, which makes reading output much easier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207752 91177308-0d34-0410-b5e6-96231b3b80d8
For pattern like ((x >> C1) & Mask) << C2, DAG combiner may convert it
into (x >> (C1-C2)) & (Mask << C2), which makes pattern matching of ubfx
more difficult.
For example:
Given
%shr = lshr i64 %x, 4
%and = and i64 %shr, 15
%arrayidx = getelementptr inbounds [8 x [64 x i64]]* @arr, i64 0, %i64 2, i64 %and
%0 = load i64* %arrayidx
With current shift folding, it takes 3 instrs to compute base address:
lsr x8, x0, #1
and x8, x8, #0x78
add x8, x9, x8
If using ubfx, it only needs 2 instrs:
ubfx x8, x0, #4, #4
add x8, x9, x8, lsl #3
This fixes bug 19589
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207702 91177308-0d34-0410-b5e6-96231b3b80d8
There is no need to check if we want to hoist the immediate value of an
shift instruction. Simply return TCC_Free right away.
This change is like r206101, but for X86.
rdar://problem/16190769
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207692 91177308-0d34-0410-b5e6-96231b3b80d8
We can't use SALU instructions for this since they ignore the EXEC mask
and are always executed.
This fixes several OpenCV tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207661 91177308-0d34-0410-b5e6-96231b3b80d8
target cannot be determined accurately. This is the case for NaCl where the
sandboxing instructions are added in MC layer, after the MipsLongBranch pass.
It is also the case when the code has inline assembly. Instead of calculating
offset in the MipsLongBranch pass, use %hi(sym1 - sym2) and %lo(sym1 - sym2)
expressions that are resolved during the fixup.
This patch also deletes microMIPS test file test/CodeGen/Mips/micromips-long-branch.ll
and implements microMIPS CHECKs in a much simpler way in a file
test/CodeGen/Mips/longbranch.ll, together with MIPS32 and MIPS64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207656 91177308-0d34-0410-b5e6-96231b3b80d8
The canonical syntax for shifts by a variable amount does not end with 'v', but
that syntax should be supported as an alias (presumably for legacy reasons).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207649 91177308-0d34-0410-b5e6-96231b3b80d8
On instructions using the NZCV register, a couple of conditions have dual
representations: HS/CS and LO/CC (meaning unsigned-higher-or-same/carry-set and
unsigned-lower/carry-clear). The first of these is more descriptive in most
circumstances, so we should print it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207644 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This isn't supported directly so we rotate the vector by the desired number of
elements, insert to element zero, then rotate back.
The i64 case generates rather poor code on MIPS32. There is an obvious
optimisation to be made in future (do both insert.w's inside a shared
rotate/unrotate sequence) but for now it's sufficient to select valid code
instead of aborting.
Depends on D3536
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://reviews.llvm.org/D3537
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207640 91177308-0d34-0410-b5e6-96231b3b80d8
Since these are mostly used in "lsl #16", "lsl #32", "lsl #48" combinations to
piece together an immediate in 16-bit chunks, hex is probably the most
appropriate format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207635 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly aimed at the NEON logical operations and MOVI/MVNI (since they
accept weird shifts which are more naturally understandable in hex notation).
Also changes BRK/HINT etc, which is probably a neutral change, but easier than
the alternative.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207634 91177308-0d34-0410-b5e6-96231b3b80d8
Since these instructions only accept a 12-bit immediate, possibly shifted left
by 12, the canonical syntax used by the architecture reference manual is "#N {,
lsl #12 }". We should accept an immediate that has already been shifted, (e.g.
Also, print a comment giving the full addend since it can be helpful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207633 91177308-0d34-0410-b5e6-96231b3b80d8
This is a partial port of r204816 (cpirker "Elf support for MC-JIT
runtime dynamic linker") from AArch64 to ARM64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207625 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces the stack lowering emission of the stack probe function for
Windows on ARM. The stack on Windows on ARM is a dynamically paged stack where
any page allocation which crosses a page boundary of the following guard page
will cause a page fault. This page fault must be handled by the kernel to
ensure that the page is faulted in. If this does not occur and a write access
any memory beyond that, the page fault will go unserviced, resulting in an
abnormal program termination.
The watermark for the stack probe appears to be at 4080 bytes (for
accommodating the stack guard canaries and stack alignment) when SSP is
enabled. Otherwise, the stack probe is emitted on the page size boundary of
4096 bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207615 91177308-0d34-0410-b5e6-96231b3b80d8
IMAGE_REL_ARM_MOV32T relocations require that the movw/movt pair-wise
relocation is not split up and reordered. When expanding the mov32imm
pseudo-instruction, create a bundle if the machine operand is referencing an
address. This helps ensure that the relocatable address load is not reordered
by subsequent passes.
Unfortunately, this only partially handles the case as the Constant Island Pass
occurs after the instructions are unbundled and does not properly handle
bundles. That is a more fundamental issue with the pass itself and beyond the
scope of this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207608 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, musttail codegen is relying on sibcall optimization, and
reporting a fatal error if fails. Sibcall optimization fails when stack
arguments need to be modified, which is insufficient for musttail.
The logic for moving arguments in memory safely is already implemented
for GuaranteedTailCallOpt. This change merely arranges for musttail
calls to use it.
No functional change for GuaranteedTailCallOpt.
Reviewers: espindola
Differential Revision: http://reviews.llvm.org/D3493
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207598 91177308-0d34-0410-b5e6-96231b3b80d8
SI_IF and SI_ELSE are terminators which also produce a value. For
these instructions ISel always inserts a COPY to move their value
to another basic block. This COPY ends up between SI_(IF|ELSE)
and the S_BRANCH* instruction at the end of the block.
This breaks MachineBasicBlock::getFirstTerminator() and also the
machine verifier which assumes that terminators are grouped together at
the end of blocks.
To solve this we coalesce the copy away right after ISel to make sure
there are no instructions in between terminators at the end of blocks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207591 91177308-0d34-0410-b5e6-96231b3b80d8
SALU instructions ignore control flow, so it is not always safe to use
them within branches. This is a partial solution to this problem
until we can come up with something better.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207590 91177308-0d34-0410-b5e6-96231b3b80d8
This is a squash of several optimization commits:
- calculate DIV_Lo and DIV_Hi separately
- use BFE_U32 if we are operating on 32bit values
- use precomputed constants instead of shifting in UDVIREM
- skip the first 32 iterations of udivrem
v2: Check whether BFE is supported before using it
Patch by: Jan Vesely
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207589 91177308-0d34-0410-b5e6-96231b3b80d8
There are no patterns for this. This was already fixed for ARM64 but I forgot
to apply it to AArch64 too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207515 91177308-0d34-0410-b5e6-96231b3b80d8
This gets us pretty code for divs of i16 vectors. Turn the existing
intrinsics into the corresponding nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207317 91177308-0d34-0410-b5e6-96231b3b80d8
Otherwise the legalizer would just scalarize everything. Support for
mulhi in the targets isn't that great yet so on most targets we get
exactly the same scalarized output. Add a test for x86 vector udiv.
I had to disable the mulhi nodes on ARM because there aren't any patterns
for it. As far as I know ARM has instructions for getting the high part of
a multiply so this should be fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207315 91177308-0d34-0410-b5e6-96231b3b80d8
The included test case would return the incorrect results, because the expansion
of an shift with a constant shift amount of 0 would generate undefined behavior.
This is because ExpandShiftByConstant assumes that all shifts by constants with
a value of 0 have already been optimized away. This doesn't happen for opaque
constants and usually this isn't a problem, because opaque constants won't take
this code path - they are not supposed to. In the case that the opaque constant
has to be expanded by the legalizer, the legalizer would drop the opaque flag.
In this case we hit the limitations of ExpandShiftByConstant and create incorrect
code.
This commit fixes the legalizer by not dropping the opaque flag when expanding
opaque constants and adding an assertion to ExpandShiftByConstant to catch this
not supported case in the future.
This fixes <rdar://problem/16718472>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207304 91177308-0d34-0410-b5e6-96231b3b80d8
Scaling factors are not free on X86 because every "complex" addressing mode
breaks the related instruction into 2 allocations instead of 1.
<rdar://problem/16730541>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207301 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If we're doing a v4f32/v4i32 shuffle on x86 with SSE4.1, we can lower
certain shufflevectors to an insertps instruction:
When most of the shufflevector result's elements come from one vector (and
keep their index), and one element comes from another vector or a memory
operand.
Added tests for insertps optimizations on shufflevector.
Added support and tests for v4i32 vector optimization.
Reviewers: nadav
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3475
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207291 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic is no longer needed with the new @llvm.arm.hint(i32) intrinsic
which provides a generic, extensible manner for adding hint instructions. This
functionality can now be represented as @llvm.arm.hint(i32 5).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207246 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce the llvm.arm.hint(i32) intrinsic that can be used to inject hints into
the instruction stream. This is particularly useful for generating IR from a
compiler where the user may inject an intrinsic (e.g. __yield). These are then
pattern substituted into the correct instruction which already existed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207242 91177308-0d34-0410-b5e6-96231b3b80d8
There's no need for local symbols to go through the GOT, in fact it seems GNU ld is not even emitting GOT entries for local symbols and will error out when trying to resolve a GOT relocation for a local symbol.
This bug triggers when bootstrapping clang on AArch64 Linux with -fPIC and the ARM64 backend. The AArch64 backend is not affected.
With this commit it's now possible to bootstrap clang on AArch64 Linux with the ARM64 backend (-fPIC, -O3).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207226 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is a supplement of implementing predicate of FP, enabling aarch64 backend
no-fp tests on arm64 target for verification. During this, one bug is exposed and
fixed by this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207215 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to the 'tail' marker, except that it guarantees that
tail call optimization will occur. It also comes with convervative IR
verification rules that ensure that tail call optimization is possible.
Reviewers: nicholas
Differential Revision: http://llvm-reviews.chandlerc.com/D3240
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207143 91177308-0d34-0410-b5e6-96231b3b80d8
This patch:
- Adds two new X86 builtin intrinsics ('int_x86_rdtsc' and
'int_x86_rdtscp') as GCCBuiltin intrinsics;
- Teaches the backend how to lower the two new builtins;
- Introduces a common function to lower READCYCLECOUNTER dag nodes
and the two new rdtsc/rdtscp intrinsics;
- Improves (and extends) the existing x86 test 'rdtsc.ll'; now test 'rdtsc.ll'
correctly verifies that both READCYCLECOUNTER and the two new intrinsics
work fine for both 64bit and 32bit Subtargets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207127 91177308-0d34-0410-b5e6-96231b3b80d8
This matches ARM64 behaviour, which I think is clearer. It also puts all the
churn from that difference into one easily ignored commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207116 91177308-0d34-0410-b5e6-96231b3b80d8
ARM64 was not producing pure BFI instructions for bitfield insertion
operations, unlike AArch64. The approach had to be a little different (in
ISelDAGToDAG rather than ISelLowering), and the outcomes aren't identical but
hopefully this gives it similar power.
This should address PR19424.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207102 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to compile
return (mask & 0x8 ? a : b);
into
testb $8, %dil
cmovnel %edx, %esi
instead of
andl $8, %edi
shrl $3, %edi
cmovnel %edx, %esi
which we formed previously because dag combiner canonicalizes setcc of and into shift.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207088 91177308-0d34-0410-b5e6-96231b3b80d8
Emit the flag to indicate to the assembler that a section contains data if there
is pre-populated data present.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207028 91177308-0d34-0410-b5e6-96231b3b80d8
ANDS does not use the same encoding scheme as other xxxS instructions (e.g.,
ADDS). Take that into account to avoid wrong peephole optimization.
<rdar://problem/16693089>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207020 91177308-0d34-0410-b5e6-96231b3b80d8
AArch64 has feature predicates for NEON, FP and CRYPTO instructions.
This allows the compiler to generate code without using FP, NEON
or CRYPTO instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206949 91177308-0d34-0410-b5e6-96231b3b80d8
The 'CHECK: add' line was occasionally matching against the filename,
breaking the subsequent CHECK-NOT. Also use CHECK-LABEL.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206936 91177308-0d34-0410-b5e6-96231b3b80d8
The point of these calls is to allow Thumb-1 code to make use of the VFP unit
to perform its operations. This is not desirable with -msoft-float, since most
of the reasons you'd want that apply equally to the runtime library.
rdar://problem/13766161
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206874 91177308-0d34-0410-b5e6-96231b3b80d8
while checking candidate for bit field extract.
Otherwise the value may not fit in uint64_t and this will trigger an
assertion.
This fixes PR19503.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206834 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206707, reapplying r206704. The preceding commit
to CalcSpillWeights should have sorted out the failing buildbots.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206766 91177308-0d34-0410-b5e6-96231b3b80d8
Generating BZHI in the variable mask case, i.e. (and X, (sub (shl 1, N), 1)),
was already supported, but we were missing the constant-mask case. This patch
fixes that.
<rdar://problem/15480077>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206738 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206677, reapplying my BlockFrequencyInfo rewrite.
I've done a careful audit, added some asserts, and fixed a couple of
bugs (unfortunately, they were in unlikely code paths). There's a small
chance that this will appease the failing bots [1][2]. (If so, great!)
If not, I have a follow-up commit ready that will temporarily add
-debug-only=block-freq to the two failing tests, allowing me to compare
the code path between what the failing bots and what my machines (and
the rest of the bots) are doing. Once I've triggered those builds, I'll
revert both commits so the bots go green again.
[1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816
[2]: http://llvm-amd64.freebsd.your.org/b/builders/clang-i386-freebsd/builds/18445
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206704 91177308-0d34-0410-b5e6-96231b3b80d8
Win64 stack unwinder gets confused when execution flow "falls through" after
a call to 'noreturn' function. This fixes the "missing epilogue" problem by
emitting a trap instruction for IR 'unreachable' on x86_x64-pc-windows.
A secondary use for it would be for anyone wanting to make double-sure that
'noreturn' functions, indeed, do not return.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206684 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206666, as planned.
Still stumped on why the bots are failing. Sanitizer bots haven't
turned anything up. If anyone can help me debug either of the failures
(referenced in r206666) I'll owe them a beer. (In the meantime, I'll be
auditing my patch for undefined behaviour.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206677 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206628, reapplying r206622 (and r206626).
Two tests are failing only on buildbots [1][2]: i.e., I can't reproduce
on Darwin, and Chandler can't reproduce on Linux. Asan and valgrind
don't tell us anything, but we're hoping the msan bot will catch it.
So, I'm applying this again to get more feedback from the bots. I'll
leave it in long enough to trigger builds in at least the sanitizer
buildbots (it was failing for reasons unrelated to my commit last time
it was in), and hopefully a few others.... and then I expect to revert a
third time.
[1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816
[2]: http://llvm-amd64.freebsd.your.org/b/builders/clang-i386-freebsd/builds/18445
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206666 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This port includes the rudimentary latencies that were provided for
the Cortex-A53 Machine Model in the AArch64 backend. It also changes
the SchedAlias for COPY in the Cyclone model to an explicit
WriteRes mapping to avoid conflicts in other subtargets.
Differential Revision: http://reviews.llvm.org/D3427
Patch by Dave Estes <cestes@codeaurora.org>!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206652 91177308-0d34-0410-b5e6-96231b3b80d8
For a 256-bit BUILD_VECTOR consisting mostly of shuffles of 256-bit vectors,
both the BUILD_VECTOR and its operands may need to be legalized in multiple
steps. Consider:
(v8f32 (BUILD_VECTOR (extract_vector_elt (v8f32 %vreg0,) Constant<1>),
(extract_vector_elt %vreg0, Constant<2>),
(extract_vector_elt %vreg0, Constant<3>),
(extract_vector_elt %vreg0, Constant<4>),
(extract_vector_elt %vreg0, Constant<5>),
(extract_vector_elt %vreg0, Constant<6>),
(extract_vector_elt %vreg0, Constant<7>),
%vreg1))
a. We can't build a 256-bit vector efficiently so, we need to split it into
two 128-bit vecs and combine them with VINSERTX128.
b. Operands like (extract_vector_elt (v8f32 %vreg0), Constant<7>) needs to be
split into a VEXTRACTX128 and a further extract_vector_elt from the
resulting 128-bit vector.
c. The extract_vector_elt from b. is lowered into a shuffle to the first
element and a movss.
Depending on the order in which we legalize the BUILD_VECTOR and its
operands[1], buildFromShuffleMostly may be faced with:
(v4f32 (BUILD_VECTOR (extract_vector_elt
(vector_shuffle<1,u,u,u> (extract_subvector %vreg0, Constant<4>), undef),
Constant<0>),
(extract_vector_elt
(vector_shuffle<2,u,u,u> (extract_subvector %vreg0, Constant<4>), undef),
Constant<0>),
(extract_vector_elt
(vector_shuffle<3,u,u,u> (extract_subvector %vreg0, Constant<4>), undef),
Constant<0>),
%vreg1))
In order to figure out the underlying vector and their identity we need to see
through the shuffles.
[1] Note that the order in which operations and their operands are legalized is
only guaranteed in the first iteration of LegalizeDAG.
Fixes <rdar://problem/16296956>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206634 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206622 and the MSVC fixup in r206626.
Apparently the remotely failing tests are still failing, despite my
attempt to fix the nondeterminism in r206621.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206628 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r206556, effectively reapplying commit r206548 and
its fixups in r206549 and r206550.
In an intervening commit I've added target triples to the tests that
were failing remotely [1] (but passing locally). I'm hoping the mystery
is solved? I'll revert this again if the tests are still failing
remotely.
[1]: http://bb.pgr.jp/builders/ninja-x64-msvc-RA-centos6/builds/1816
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206622 91177308-0d34-0410-b5e6-96231b3b80d8
These tests were failing on some buildbots after r206548 (reverted in
r206556), but passing locally.
They were missing target triples, so maybe that's the problem?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206621 91177308-0d34-0410-b5e6-96231b3b80d8
Covers quite a few extra instructions (like any of the max/min ones
which were broken until recently on ARM64).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206575 91177308-0d34-0410-b5e6-96231b3b80d8
Code mostly copied from AArch64, just tidied up a trifle and plumbed
into the ARM64 way of doing things.
This also enables the AArch64 tests which inspired the previous
untested commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206574 91177308-0d34-0410-b5e6-96231b3b80d8
A vector extract followed by a dup can become a single instruction even if the
types don't match. AArch64 handled this in ISelLowering, but a few reasonably
simple patterns can take care of it in TableGen, so that's where I've put it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206573 91177308-0d34-0410-b5e6-96231b3b80d8
ARM64 was scalarizing some vector comparisons which don't quite map to
AArch64's compare and mask instructions. AArch64's approach of sacrificing a
little efficiency to emulate them with the limited set available was better, so
I ported it across.
More "inspired by" than copy/paste since the backend's internal expectations
were a bit different, but the tests were invaluable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206570 91177308-0d34-0410-b5e6-96231b3b80d8
I enhanced it a little in the process. The decision shouldn't really be beased
on whether a BUILD_VECTOR is a splat: any set of constants will do the job
provided they're related in the correct way.
Also, the BUILD_VECTOR could be any operand of the incoming AND nodes, so it's
best to check for all 4 possibilities rather than assuming it'll be the RHS.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206569 91177308-0d34-0410-b5e6-96231b3b80d8
It's not actually used to handle C or C++ ABI rules on ARM64, but could well be
emitted by other language front-ends, so it's as well to have a sensible
implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206568 91177308-0d34-0410-b5e6-96231b3b80d8
Use scalar BFE with constant shift and offset when possible.
This is complicated by the fact that the scalar version packs
the two operands of the vector version into one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206558 91177308-0d34-0410-b5e6-96231b3b80d8
Rewrite the shared implementation of BlockFrequencyInfo and
MachineBlockFrequencyInfo entirely.
The old implementation had a fundamental flaw: precision losses from
nested loops (or very wide branches) compounded past loop exits (and
convergence points).
The @nested_loops testcase at the end of
test/Analysis/BlockFrequencyAnalysis/basic.ll is motivating. This
function has three nested loops, with branch weights in the loop headers
of 1:4000 (exit:continue). The old analysis gives non-sensical results:
Printing analysis 'Block Frequency Analysis' for function 'nested_loops':
---- Block Freqs ----
entry = 1.0
for.cond1.preheader = 1.00103
for.cond4.preheader = 5.5222
for.body6 = 18095.19995
for.inc8 = 4.52264
for.inc11 = 0.00109
for.end13 = 0.0
The new analysis gives correct results:
Printing analysis 'Block Frequency Analysis' for function 'nested_loops':
block-frequency-info: nested_loops
- entry: float = 1.0, int = 8
- for.cond1.preheader: float = 4001.0, int = 32007
- for.cond4.preheader: float = 16008001.0, int = 128064007
- for.body6: float = 64048012001.0, int = 512384096007
- for.inc8: float = 16008001.0, int = 128064007
- for.inc11: float = 4001.0, int = 32007
- for.end13: float = 1.0, int = 8
Most importantly, the frequency leaving each loop matches the frequency
entering it.
The new algorithm leverages BlockMass and PositiveFloat to maintain
precision, separates "probability mass distribution" from "loop
scaling", and uses dithering to eliminate probability mass loss. I have
unit tests for these types out of tree, but it was decided in the review
to make the classes private to BlockFrequencyInfoImpl, and try to shrink
them (or remove them entirely) in follow-up commits.
The new algorithm should generally have a complexity advantage over the
old. The previous algorithm was quadratic in the worst case. The new
algorithm is still worst-case quadratic in the presence of irreducible
control flow, but it's linear without it.
The key difference between the old algorithm and the new is that control
flow within a loop is evaluated separately from control flow outside,
limiting propagation of precision problems and allowing loop scale to be
calculated independently of mass distribution. Loops are visited
bottom-up, their loop scales are calculated, and they are replaced by
pseudo-nodes. Mass is then distributed through the function, which is
now a DAG. Finally, loops are revisited top-down to multiply through
the loop scales and the masses distributed to pseudo nodes.
There are some remaining flaws.
- Irreducible control flow isn't modelled correctly. LoopInfo and
MachineLoopInfo ignore irreducible edges, so this algorithm will
fail to scale accordingly. There's a note in the class
documentation about how to get closer. See also the comments in
test/Analysis/BlockFrequencyInfo/irreducible.ll.
- Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
the 64-bit integer precision used downstream.
- The "bias" calculation proposed on llvmdev is *not* incorporated
here. This will be added in a follow-up commit, once comments from
this review have been handled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206548 91177308-0d34-0410-b5e6-96231b3b80d8
Change the command line vector-insertion.ll to explicitly set the neon syntax
to apple so that buildbots that default to other syntaxes won't fail.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206502 91177308-0d34-0410-b5e6-96231b3b80d8
Having i128 as a legal type complicates the legalization phase. v4i32
is already a legal type, so we will use that instead.
This fixes several piglit tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206500 91177308-0d34-0410-b5e6-96231b3b80d8
This patch improves the performance of vector creation in caseiswhere where
several of the lanes in the vector are a constant floating point value. It
also includes new patterns to fold together some of the instructions when the
value is 0.0f. Test cases included.
rdar://16349427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206496 91177308-0d34-0410-b5e6-96231b3b80d8
Update the SXT[BHW]/UXTW instruction aliases and the shifted reg addressing
mode handling.
PR19455 and rdar://16650642
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206495 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, SSPBufferSize was assigned the value of the "stack-protector-buffer-size"
attribute after all uses of SSPBufferSize. The effect was that the default
SSPBufferSize was always used during analysis. I moved the check for the
attribute before the analysis; now --param ssp-buffer-size= works correctly again.
Differential Revision: http://reviews.llvm.org/D3349
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206486 91177308-0d34-0410-b5e6-96231b3b80d8
The commit of r205855:
Author: Arnold Schwaighofer <aschwaighofer@apple.com>
Date: Wed Apr 9 14:20:47 2014 +0000
SLPVectorizer: Only vectorize intrinsics whose operands are widened equally
The vectorizer only knows how to vectorize intrinics by widening all operands by
the same factor.
Patch by Tyler Nowicki!
exposed a backend bug causing a regression (Cannot select ctpop).
The commit msg is a bit confusing because the patch actually changes the
behavior for the loop-vectorizer as well. As things got refactored into a
helper ctpop got snuck in to the trivially-vectorizable helper which is now
used by both vectorizers. In other words, we started seeing vector-ctpops in
the backend.
This change makes ctpop LegalizeAction::Expand for the types not supported by
the byte-only CNT instruction. We may be able to custom-lower these later to
a single CNT but this is to fix the compiler crash first.
Fixes <rdar://problem/16578951>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206433 91177308-0d34-0410-b5e6-96231b3b80d8
This is so that EF_MIPS_NAN2008 is set if we are using IEEE 754-2008
NaN encoding (-mnan=2008). This patch also adds support for parsing
'.nan legacy' and '.nan 2008' assembly directives. The handling of
these directives should match GAS' behaviour i.e., the last directive
in use sets the ELF header bit (EF_MIPS_NAN2008).
Differential Revision: http://reviews.llvm.org/D3346
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206396 91177308-0d34-0410-b5e6-96231b3b80d8
These ones used completely different sets of intrinsics, so the only way to do
it is create a separate ARM64 copy and change them all.
Other than that, CodeGen was straightforward, no deficiencies detected here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206392 91177308-0d34-0410-b5e6-96231b3b80d8
This should fix the ninja-x64-msvc-RA-centos6 builder.
I suspect the check in MipsSubtarget.cpp is incorrect and is really trying to
check for a bare-metal target rather and anything other than linux. I'll
investigate this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206385 91177308-0d34-0410-b5e6-96231b3b80d8
Now that Linux is trying to reparse all inline asm it chokes on the different
comment character in this test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206382 91177308-0d34-0410-b5e6-96231b3b80d8
The most important part here is that we should actuall emit the stubs we refer
to in the exception table, but as a side issue this uses more sensible & GCC
compatible representations for some of the bits of information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206380 91177308-0d34-0410-b5e6-96231b3b80d8