llvm-6502/lib/Target/ARM/InstPrinter/ARMInstPrinter.cpp

1469 lines
46 KiB
C++
Raw Normal View History

//===-- ARMInstPrinter.cpp - Convert ARM MCInst to assembly syntax --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class prints an ARM MCInst to a .s file.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "ARMInstPrinter.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#include "ARMGenAsmWriter.inc"
/// translateShiftImm - Convert shift immediate from 0-31 to 1-32 for printing.
///
/// getSORegOffset returns an integer from 0-31, representing '32' as 0.
static unsigned translateShiftImm(unsigned imm) {
// lsr #32 and asr #32 exist, but should be encoded as a 0.
assert((imm & ~0x1f) == 0 && "Invalid shift encoding");
if (imm == 0)
return 32;
return imm;
}
/// Prints the shift value with an immediate value.
static void printRegImmShift(raw_ostream &O, ARM_AM::ShiftOpc ShOpc,
unsigned ShImm, bool UseMarkup) {
if (ShOpc == ARM_AM::no_shift || (ShOpc == ARM_AM::lsl && !ShImm))
return;
O << ", ";
assert (!(ShOpc == ARM_AM::ror && !ShImm) && "Cannot have ror #0");
O << getShiftOpcStr(ShOpc);
if (ShOpc != ARM_AM::rrx) {
O << " ";
if (UseMarkup)
O << "<imm:";
O << "#" << translateShiftImm(ShImm);
if (UseMarkup)
O << ">";
}
}
ARMInstPrinter::ARMInstPrinter(const MCAsmInfo &MAI,
const MCInstrInfo &MII,
const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI) :
MCInstPrinter(MAI, MII, MRI) {
// Initialize the set of available features.
setAvailableFeatures(STI.getFeatureBits());
}
void ARMInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
OS << markup("<reg:")
<< getRegisterName(RegNo)
<< markup(">");
}
void ARMInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
StringRef Annot) {
unsigned Opcode = MI->getOpcode();
// Check for HINT instructions w/ canonical names.
if (Opcode == ARM::HINT || Opcode == ARM::t2HINT) {
switch (MI->getOperand(0).getImm()) {
case 0: O << "\tnop"; break;
case 1: O << "\tyield"; break;
case 2: O << "\twfe"; break;
case 3: O << "\twfi"; break;
case 4: O << "\tsev"; break;
default:
// Anything else should just print normally.
printInstruction(MI, O);
printAnnotation(O, Annot);
return;
}
printPredicateOperand(MI, 1, O);
if (Opcode == ARM::t2HINT)
O << ".w";
printAnnotation(O, Annot);
return;
}
// Check for MOVs and print canonical forms, instead.
if (Opcode == ARM::MOVsr) {
// FIXME: Thumb variants?
const MCOperand &Dst = MI->getOperand(0);
const MCOperand &MO1 = MI->getOperand(1);
const MCOperand &MO2 = MI->getOperand(2);
const MCOperand &MO3 = MI->getOperand(3);
O << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm()));
printSBitModifierOperand(MI, 6, O);
printPredicateOperand(MI, 4, O);
O << '\t';
printRegName(O, Dst.getReg());
O << ", ";
printRegName(O, MO1.getReg());
O << ", ";
printRegName(O, MO2.getReg());
assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
printAnnotation(O, Annot);
return;
}
if (Opcode == ARM::MOVsi) {
// FIXME: Thumb variants?
const MCOperand &Dst = MI->getOperand(0);
const MCOperand &MO1 = MI->getOperand(1);
const MCOperand &MO2 = MI->getOperand(2);
O << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO2.getImm()));
printSBitModifierOperand(MI, 5, O);
printPredicateOperand(MI, 3, O);
O << '\t';
printRegName(O, Dst.getReg());
O << ", ";
printRegName(O, MO1.getReg());
if (ARM_AM::getSORegShOp(MO2.getImm()) == ARM_AM::rrx) {
printAnnotation(O, Annot);
return;
}
O << ", "
<< markup("<imm:")
<< "#" << translateShiftImm(ARM_AM::getSORegOffset(MO2.getImm()))
<< markup(">");
printAnnotation(O, Annot);
return;
}
// A8.6.123 PUSH
if ((Opcode == ARM::STMDB_UPD || Opcode == ARM::t2STMDB_UPD) &&
MI->getOperand(0).getReg() == ARM::SP &&
MI->getNumOperands() > 5) {
// Should only print PUSH if there are at least two registers in the list.
O << '\t' << "push";
printPredicateOperand(MI, 2, O);
if (Opcode == ARM::t2STMDB_UPD)
O << ".w";
O << '\t';
printRegisterList(MI, 4, O);
printAnnotation(O, Annot);
return;
}
if (Opcode == ARM::STR_PRE_IMM && MI->getOperand(2).getReg() == ARM::SP &&
MI->getOperand(3).getImm() == -4) {
O << '\t' << "push";
printPredicateOperand(MI, 4, O);
O << "\t{";
printRegName(O, MI->getOperand(1).getReg());
O << "}";
printAnnotation(O, Annot);
return;
}
// A8.6.122 POP
if ((Opcode == ARM::LDMIA_UPD || Opcode == ARM::t2LDMIA_UPD) &&
MI->getOperand(0).getReg() == ARM::SP &&
MI->getNumOperands() > 5) {
// Should only print POP if there are at least two registers in the list.
O << '\t' << "pop";
printPredicateOperand(MI, 2, O);
if (Opcode == ARM::t2LDMIA_UPD)
O << ".w";
O << '\t';
printRegisterList(MI, 4, O);
printAnnotation(O, Annot);
return;
}
if (Opcode == ARM::LDR_POST_IMM && MI->getOperand(2).getReg() == ARM::SP &&
MI->getOperand(4).getImm() == 4) {
O << '\t' << "pop";
printPredicateOperand(MI, 5, O);
O << "\t{";
printRegName(O, MI->getOperand(0).getReg());
O << "}";
printAnnotation(O, Annot);
return;
}
// A8.6.355 VPUSH
if ((Opcode == ARM::VSTMSDB_UPD || Opcode == ARM::VSTMDDB_UPD) &&
MI->getOperand(0).getReg() == ARM::SP) {
O << '\t' << "vpush";
printPredicateOperand(MI, 2, O);
O << '\t';
printRegisterList(MI, 4, O);
printAnnotation(O, Annot);
return;
}
// A8.6.354 VPOP
if ((Opcode == ARM::VLDMSIA_UPD || Opcode == ARM::VLDMDIA_UPD) &&
MI->getOperand(0).getReg() == ARM::SP) {
O << '\t' << "vpop";
printPredicateOperand(MI, 2, O);
O << '\t';
printRegisterList(MI, 4, O);
printAnnotation(O, Annot);
return;
}
if (Opcode == ARM::tLDMIA) {
bool Writeback = true;
unsigned BaseReg = MI->getOperand(0).getReg();
for (unsigned i = 3; i < MI->getNumOperands(); ++i) {
if (MI->getOperand(i).getReg() == BaseReg)
Writeback = false;
}
O << "\tldm";
printPredicateOperand(MI, 1, O);
O << '\t';
printRegName(O, BaseReg);
if (Writeback) O << "!";
O << ", ";
printRegisterList(MI, 3, O);
printAnnotation(O, Annot);
return;
}
// Combine 2 GPRs from disassember into a GPRPair to match with instr def.
// ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
// a single GPRPair reg operand is used in the .td file to replace the two
// GPRs. However, when decoding them, the two GRPs cannot be automatically
// expressed as a GPRPair, so we have to manually merge them.
// FIXME: We would really like to be able to tablegen'erate this.
if (Opcode == ARM::LDREXD || Opcode == ARM::STREXD) {
const MCRegisterClass& MRC = MRI.getRegClass(ARM::GPRRegClassID);
bool isStore = Opcode == ARM::STREXD;
unsigned Reg = MI->getOperand(isStore ? 1 : 0).getReg();
if (MRC.contains(Reg)) {
MCInst NewMI;
MCOperand NewReg;
NewMI.setOpcode(Opcode);
if (isStore)
NewMI.addOperand(MI->getOperand(0));
NewReg = MCOperand::CreateReg(MRI.getMatchingSuperReg(Reg, ARM::gsub_0,
&MRI.getRegClass(ARM::GPRPairRegClassID)));
NewMI.addOperand(NewReg);
// Copy the rest operands into NewMI.
for(unsigned i= isStore ? 3 : 2; i < MI->getNumOperands(); ++i)
NewMI.addOperand(MI->getOperand(i));
printInstruction(&NewMI, O);
return;
}
}
printInstruction(MI, O);
printAnnotation(O, Annot);
}
void ARMInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isReg()) {
unsigned Reg = Op.getReg();
printRegName(O, Reg);
} else if (Op.isImm()) {
O << markup("<imm:")
<< '#' << formatImm(Op.getImm())
<< markup(">");
} else {
assert(Op.isExpr() && "unknown operand kind in printOperand");
// If a symbolic branch target was added as a constant expression then print
// that address in hex. And only print 32 unsigned bits for the address.
const MCConstantExpr *BranchTarget = dyn_cast<MCConstantExpr>(Op.getExpr());
int64_t Address;
if (BranchTarget && BranchTarget->EvaluateAsAbsolute(Address)) {
O << "0x";
O.write_hex((uint32_t)Address);
}
else {
// Otherwise, just print the expression.
O << *Op.getExpr();
}
}
}
void ARMInstPrinter::printThumbLdrLabelOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
if (MO1.isExpr()) {
O << *MO1.getExpr();
return;
}
O << markup("<mem:") << "[pc, ";
int32_t OffImm = (int32_t)MO1.getImm();
bool isSub = OffImm < 0;
// Special value for #-0. All others are normal.
if (OffImm == INT32_MIN)
OffImm = 0;
if (isSub) {
O << markup("<imm:")
<< "#-" << formatImm(-OffImm)
<< markup(">");
} else {
O << markup("<imm:")
<< "#" << formatImm(OffImm)
<< markup(">");
}
O << "]" << markup(">");
}
// so_reg is a 4-operand unit corresponding to register forms of the A5.1
// "Addressing Mode 1 - Data-processing operands" forms. This includes:
// REG 0 0 - e.g. R5
// REG REG 0,SH_OPC - e.g. R5, ROR R3
// REG 0 IMM,SH_OPC - e.g. R5, LSL #3
void ARMInstPrinter::printSORegRegOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
const MCOperand &MO3 = MI->getOperand(OpNum+2);
printRegName(O, MO1.getReg());
// Print the shift opc.
ARM_AM::ShiftOpc ShOpc = ARM_AM::getSORegShOp(MO3.getImm());
O << ", " << ARM_AM::getShiftOpcStr(ShOpc);
if (ShOpc == ARM_AM::rrx)
return;
O << ' ';
printRegName(O, MO2.getReg());
assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
}
void ARMInstPrinter::printSORegImmOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
printRegName(O, MO1.getReg());
// Print the shift opc.
printRegImmShift(O, ARM_AM::getSORegShOp(MO2.getImm()),
ARM_AM::getSORegOffset(MO2.getImm()), UseMarkup);
}
//===--------------------------------------------------------------------===//
// Addressing Mode #2
//===--------------------------------------------------------------------===//
void ARMInstPrinter::printAM2PreOrOffsetIndexOp(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(Op);
const MCOperand &MO2 = MI->getOperand(Op+1);
const MCOperand &MO3 = MI->getOperand(Op+2);
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
if (!MO2.getReg()) {
if (ARM_AM::getAM2Offset(MO3.getImm())) { // Don't print +0.
O << ", "
<< markup("<imm:")
<< "#"
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
<< ARM_AM::getAM2Offset(MO3.getImm())
<< markup(">");
}
O << "]" << markup(">");
return;
}
O << ", ";
O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()));
printRegName(O, MO2.getReg());
printRegImmShift(O, ARM_AM::getAM2ShiftOpc(MO3.getImm()),
ARM_AM::getAM2Offset(MO3.getImm()), UseMarkup);
O << "]" << markup(">");
}
void ARMInstPrinter::printAddrModeTBB(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(Op);
const MCOperand &MO2 = MI->getOperand(Op+1);
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
O << ", ";
printRegName(O, MO2.getReg());
O << "]" << markup(">");
}
void ARMInstPrinter::printAddrModeTBH(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(Op);
const MCOperand &MO2 = MI->getOperand(Op+1);
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
O << ", ";
printRegName(O, MO2.getReg());
O << ", lsl " << markup("<imm:") << "#1" << markup(">") << "]" << markup(">");
}
void ARMInstPrinter::printAddrMode2Operand(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(Op);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
#ifndef NDEBUG
const MCOperand &MO3 = MI->getOperand(Op+2);
unsigned IdxMode = ARM_AM::getAM2IdxMode(MO3.getImm());
assert(IdxMode != ARMII::IndexModePost &&
"Should be pre or offset index op");
#endif
printAM2PreOrOffsetIndexOp(MI, Op, O);
}
void ARMInstPrinter::printAddrMode2OffsetOperand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
if (!MO1.getReg()) {
unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
O << markup("<imm:")
<< '#' << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
<< ImmOffs
<< markup(">");
return;
}
O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()));
printRegName(O, MO1.getReg());
printRegImmShift(O, ARM_AM::getAM2ShiftOpc(MO2.getImm()),
ARM_AM::getAM2Offset(MO2.getImm()), UseMarkup);
}
//===--------------------------------------------------------------------===//
// Addressing Mode #3
//===--------------------------------------------------------------------===//
void ARMInstPrinter::printAM3PostIndexOp(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(Op);
const MCOperand &MO2 = MI->getOperand(Op+1);
const MCOperand &MO3 = MI->getOperand(Op+2);
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
O << "], " << markup(">");
if (MO2.getReg()) {
O << (char)ARM_AM::getAM3Op(MO3.getImm());
printRegName(O, MO2.getReg());
return;
}
unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm());
O << markup("<imm:")
<< '#'
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()))
<< ImmOffs
<< markup(">");
}
void ARMInstPrinter::printAM3PreOrOffsetIndexOp(const MCInst *MI, unsigned Op,
raw_ostream &O,
bool AlwaysPrintImm0) {
const MCOperand &MO1 = MI->getOperand(Op);
const MCOperand &MO2 = MI->getOperand(Op+1);
const MCOperand &MO3 = MI->getOperand(Op+2);
O << markup("<mem:") << '[';
printRegName(O, MO1.getReg());
if (MO2.getReg()) {
O << ", " << getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()));
printRegName(O, MO2.getReg());
O << ']' << markup(">");
return;
}
//If the op is sub we have to print the immediate even if it is 0
unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm());
ARM_AM::AddrOpc op = ARM_AM::getAM3Op(MO3.getImm());
if (AlwaysPrintImm0 || ImmOffs || (op == ARM_AM::sub)) {
O << ", "
<< markup("<imm:")
<< "#"
<< ARM_AM::getAddrOpcStr(op)
<< ImmOffs
<< markup(">");
}
O << ']' << markup(">");
}
template <bool AlwaysPrintImm0>
void ARMInstPrinter::printAddrMode3Operand(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(Op);
if (!MO1.isReg()) { // For label symbolic references.
printOperand(MI, Op, O);
return;
}
const MCOperand &MO3 = MI->getOperand(Op+2);
unsigned IdxMode = ARM_AM::getAM3IdxMode(MO3.getImm());
if (IdxMode == ARMII::IndexModePost) {
printAM3PostIndexOp(MI, Op, O);
return;
}
printAM3PreOrOffsetIndexOp(MI, Op, O, AlwaysPrintImm0);
}
void ARMInstPrinter::printAddrMode3OffsetOperand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
if (MO1.getReg()) {
O << getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm()));
printRegName(O, MO1.getReg());
return;
}
unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
O << markup("<imm:")
<< '#' << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm())) << ImmOffs
<< markup(">");
}
void ARMInstPrinter::printPostIdxImm8Operand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO = MI->getOperand(OpNum);
unsigned Imm = MO.getImm();
O << markup("<imm:")
<< '#' << ((Imm & 256) ? "" : "-") << (Imm & 0xff)
<< markup(">");
}
void ARMInstPrinter::printPostIdxRegOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
O << (MO2.getImm() ? "" : "-");
printRegName(O, MO1.getReg());
}
void ARMInstPrinter::printPostIdxImm8s4Operand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO = MI->getOperand(OpNum);
unsigned Imm = MO.getImm();
O << markup("<imm:")
<< '#' << ((Imm & 256) ? "" : "-") << ((Imm & 0xff) << 2)
<< markup(">");
}
void ARMInstPrinter::printLdStmModeOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MI->getOperand(OpNum)
.getImm());
O << ARM_AM::getAMSubModeStr(Mode);
}
template <bool AlwaysPrintImm0>
void ARMInstPrinter::printAddrMode5Operand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, OpNum, O);
return;
}
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm());
unsigned Op = ARM_AM::getAM5Op(MO2.getImm());
if (AlwaysPrintImm0 || ImmOffs || Op == ARM_AM::sub) {
O << ", "
<< markup("<imm:")
<< "#"
<< ARM_AM::getAddrOpcStr(ARM_AM::getAM5Op(MO2.getImm()))
<< ImmOffs * 4
<< markup(">");
}
O << "]" << markup(">");
}
void ARMInstPrinter::printAddrMode6Operand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
if (MO2.getImm()) {
O << ":" << (MO2.getImm() << 3);
}
O << "]" << markup(">");
}
void ARMInstPrinter::printAddrMode7Operand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
O << "]" << markup(">");
}
void ARMInstPrinter::printAddrMode6OffsetOperand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO = MI->getOperand(OpNum);
if (MO.getReg() == 0)
O << "!";
else {
O << ", ";
printRegName(O, MO.getReg());
}
}
void ARMInstPrinter::printBitfieldInvMaskImmOperand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO = MI->getOperand(OpNum);
uint32_t v = ~MO.getImm();
int32_t lsb = countTrailingZeros(v);
int32_t width = (32 - countLeadingZeros (v)) - lsb;
assert(MO.isImm() && "Not a valid bf_inv_mask_imm value!");
O << markup("<imm:") << '#' << lsb << markup(">")
<< ", "
<< markup("<imm:") << '#' << width << markup(">");
}
void ARMInstPrinter::printMemBOption(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
unsigned val = MI->getOperand(OpNum).getImm();
O << ARM_MB::MemBOptToString(val);
}
void ARMInstPrinter::printInstSyncBOption(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
unsigned val = MI->getOperand(OpNum).getImm();
O << ARM_ISB::InstSyncBOptToString(val);
}
void ARMInstPrinter::printShiftImmOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
unsigned ShiftOp = MI->getOperand(OpNum).getImm();
bool isASR = (ShiftOp & (1 << 5)) != 0;
unsigned Amt = ShiftOp & 0x1f;
if (isASR) {
O << ", asr "
<< markup("<imm:")
<< "#" << (Amt == 0 ? 32 : Amt)
<< markup(">");
}
else if (Amt) {
O << ", lsl "
<< markup("<imm:")
<< "#" << Amt
<< markup(">");
}
}
void ARMInstPrinter::printPKHLSLShiftImm(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
unsigned Imm = MI->getOperand(OpNum).getImm();
if (Imm == 0)
return;
assert(Imm > 0 && Imm < 32 && "Invalid PKH shift immediate value!");
O << ", lsl " << markup("<imm:") << "#" << Imm << markup(">");
}
void ARMInstPrinter::printPKHASRShiftImm(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
unsigned Imm = MI->getOperand(OpNum).getImm();
// A shift amount of 32 is encoded as 0.
if (Imm == 0)
Imm = 32;
assert(Imm > 0 && Imm <= 32 && "Invalid PKH shift immediate value!");
O << ", asr " << markup("<imm:") << "#" << Imm << markup(">");
}
void ARMInstPrinter::printRegisterList(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
O << "{";
for (unsigned i = OpNum, e = MI->getNumOperands(); i != e; ++i) {
if (i != OpNum) O << ", ";
printRegName(O, MI->getOperand(i).getReg());
}
O << "}";
}
void ARMInstPrinter::printGPRPairOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
unsigned Reg = MI->getOperand(OpNum).getReg();
printRegName(O, MRI.getSubReg(Reg, ARM::gsub_0));
O << ", ";
printRegName(O, MRI.getSubReg(Reg, ARM::gsub_1));
}
void ARMInstPrinter::printSetendOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNum);
if (Op.getImm())
O << "be";
else
O << "le";
}
void ARMInstPrinter::printCPSIMod(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNum);
O << ARM_PROC::IModToString(Op.getImm());
}
void ARMInstPrinter::printCPSIFlag(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNum);
unsigned IFlags = Op.getImm();
for (int i=2; i >= 0; --i)
if (IFlags & (1 << i))
O << ARM_PROC::IFlagsToString(1 << i);
if (IFlags == 0)
O << "none";
}
void ARMInstPrinter::printMSRMaskOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNum);
unsigned SpecRegRBit = Op.getImm() >> 4;
unsigned Mask = Op.getImm() & 0xf;
if (getAvailableFeatures() & ARM::FeatureMClass) {
unsigned SYSm = Op.getImm();
unsigned Opcode = MI->getOpcode();
// For reads of the special registers ignore the "mask encoding" bits
// which are only for writes.
if (Opcode == ARM::t2MRS_M)
SYSm &= 0xff;
switch (SYSm) {
default: llvm_unreachable("Unexpected mask value!");
case 0:
case 0x800: O << "apsr"; return; // with _nzcvq bits is an alias for aspr
case 0x400: O << "apsr_g"; return;
case 0xc00: O << "apsr_nzcvqg"; return;
case 1:
case 0x801: O << "iapsr"; return; // with _nzcvq bits is an alias for iapsr
case 0x401: O << "iapsr_g"; return;
case 0xc01: O << "iapsr_nzcvqg"; return;
case 2:
case 0x802: O << "eapsr"; return; // with _nzcvq bits is an alias for eapsr
case 0x402: O << "eapsr_g"; return;
case 0xc02: O << "eapsr_nzcvqg"; return;
case 3:
case 0x803: O << "xpsr"; return; // with _nzcvq bits is an alias for xpsr
case 0x403: O << "xpsr_g"; return;
case 0xc03: O << "xpsr_nzcvqg"; return;
case 5:
case 0x805: O << "ipsr"; return;
case 6:
case 0x806: O << "epsr"; return;
case 7:
case 0x807: O << "iepsr"; return;
case 8:
case 0x808: O << "msp"; return;
case 9:
case 0x809: O << "psp"; return;
case 0x10:
case 0x810: O << "primask"; return;
case 0x11:
case 0x811: O << "basepri"; return;
case 0x12:
case 0x812: O << "basepri_max"; return;
case 0x13:
case 0x813: O << "faultmask"; return;
case 0x14:
case 0x814: O << "control"; return;
}
}
// As special cases, CPSR_f, CPSR_s and CPSR_fs prefer printing as
// APSR_nzcvq, APSR_g and APSRnzcvqg, respectively.
if (!SpecRegRBit && (Mask == 8 || Mask == 4 || Mask == 12)) {
O << "APSR_";
switch (Mask) {
default: llvm_unreachable("Unexpected mask value!");
case 4: O << "g"; return;
case 8: O << "nzcvq"; return;
case 12: O << "nzcvqg"; return;
}
}
if (SpecRegRBit)
O << "SPSR";
else
O << "CPSR";
if (Mask) {
O << '_';
if (Mask & 8) O << 'f';
if (Mask & 4) O << 's';
if (Mask & 2) O << 'x';
if (Mask & 1) O << 'c';
}
}
void ARMInstPrinter::printPredicateOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
// Handle the undefined 15 CC value here for printing so we don't abort().
if ((unsigned)CC == 15)
O << "<und>";
else if (CC != ARMCC::AL)
O << ARMCondCodeToString(CC);
}
void ARMInstPrinter::printMandatoryPredicateOperand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
O << ARMCondCodeToString(CC);
}
void ARMInstPrinter::printSBitModifierOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
if (MI->getOperand(OpNum).getReg()) {
assert(MI->getOperand(OpNum).getReg() == ARM::CPSR &&
"Expect ARM CPSR register!");
O << 's';
}
}
void ARMInstPrinter::printNoHashImmediate(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
O << MI->getOperand(OpNum).getImm();
}
void ARMInstPrinter::printPImmediate(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
O << "p" << MI->getOperand(OpNum).getImm();
}
void ARMInstPrinter::printCImmediate(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
O << "c" << MI->getOperand(OpNum).getImm();
}
void ARMInstPrinter::printCoprocOptionImm(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
O << "{" << MI->getOperand(OpNum).getImm() << "}";
}
void ARMInstPrinter::printPCLabel(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
llvm_unreachable("Unhandled PC-relative pseudo-instruction!");
}
template<unsigned scale>
void ARMInstPrinter::printAdrLabelOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO = MI->getOperand(OpNum);
if (MO.isExpr()) {
O << *MO.getExpr();
return;
}
int32_t OffImm = (int32_t)MO.getImm() << scale;
O << markup("<imm:");
if (OffImm == INT32_MIN)
O << "#-0";
else if (OffImm < 0)
O << "#-" << -OffImm;
else
O << "#" << OffImm;
O << markup(">");
}
void ARMInstPrinter::printThumbS4ImmOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
O << markup("<imm:")
<< "#" << formatImm(MI->getOperand(OpNum).getImm() * 4)
<< markup(">");
}
void ARMInstPrinter::printThumbSRImm(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
unsigned Imm = MI->getOperand(OpNum).getImm();
O << markup("<imm:")
<< "#" << formatImm((Imm == 0 ? 32 : Imm))
<< markup(">");
}
void ARMInstPrinter::printThumbITMask(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
// (3 - the number of trailing zeros) is the number of then / else.
unsigned Mask = MI->getOperand(OpNum).getImm();
unsigned Firstcond = MI->getOperand(OpNum-1).getImm();
unsigned CondBit0 = Firstcond & 1;
unsigned NumTZ = countTrailingZeros(Mask);
assert(NumTZ <= 3 && "Invalid IT mask!");
for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
bool T = ((Mask >> Pos) & 1) == CondBit0;
if (T)
O << 't';
else
O << 'e';
}
}
void ARMInstPrinter::printThumbAddrModeRROperand(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(Op);
const MCOperand &MO2 = MI->getOperand(Op + 1);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
if (unsigned RegNum = MO2.getReg()) {
O << ", ";
printRegName(O, RegNum);
}
O << "]" << markup(">");
}
void ARMInstPrinter::printThumbAddrModeImm5SOperand(const MCInst *MI,
unsigned Op,
raw_ostream &O,
unsigned Scale) {
const MCOperand &MO1 = MI->getOperand(Op);
const MCOperand &MO2 = MI->getOperand(Op + 1);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op, O);
return;
}
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
if (unsigned ImmOffs = MO2.getImm()) {
O << ", "
<< markup("<imm:")
<< "#" << formatImm(ImmOffs * Scale)
<< markup(">");
}
O << "]" << markup(">");
}
void ARMInstPrinter::printThumbAddrModeImm5S1Operand(const MCInst *MI,
unsigned Op,
raw_ostream &O) {
printThumbAddrModeImm5SOperand(MI, Op, O, 1);
}
void ARMInstPrinter::printThumbAddrModeImm5S2Operand(const MCInst *MI,
unsigned Op,
raw_ostream &O) {
printThumbAddrModeImm5SOperand(MI, Op, O, 2);
}
void ARMInstPrinter::printThumbAddrModeImm5S4Operand(const MCInst *MI,
unsigned Op,
raw_ostream &O) {
printThumbAddrModeImm5SOperand(MI, Op, O, 4);
}
void ARMInstPrinter::printThumbAddrModeSPOperand(const MCInst *MI, unsigned Op,
raw_ostream &O) {
printThumbAddrModeImm5SOperand(MI, Op, O, 4);
}
// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
// register with shift forms.
// REG 0 0 - e.g. R5
// REG IMM, SH_OPC - e.g. R5, LSL #3
void ARMInstPrinter::printT2SOOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
unsigned Reg = MO1.getReg();
printRegName(O, Reg);
// Print the shift opc.
assert(MO2.isImm() && "Not a valid t2_so_reg value!");
printRegImmShift(O, ARM_AM::getSORegShOp(MO2.getImm()),
ARM_AM::getSORegOffset(MO2.getImm()), UseMarkup);
}
template <bool AlwaysPrintImm0>
void ARMInstPrinter::printAddrModeImm12Operand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, OpNum, O);
return;
}
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
int32_t OffImm = (int32_t)MO2.getImm();
bool isSub = OffImm < 0;
// Special value for #-0. All others are normal.
if (OffImm == INT32_MIN)
OffImm = 0;
if (isSub) {
O << ", "
<< markup("<imm:")
<< "#-" << -OffImm
<< markup(">");
}
else if (AlwaysPrintImm0 || OffImm > 0) {
O << ", "
<< markup("<imm:")
<< "#" << OffImm
<< markup(">");
}
O << "]" << markup(">");
}
template<bool AlwaysPrintImm0>
void ARMInstPrinter::printT2AddrModeImm8Operand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
int32_t OffImm = (int32_t)MO2.getImm();
bool isSub = OffImm < 0;
// Don't print +0.
if (OffImm == INT32_MIN)
OffImm = 0;
if (isSub) {
O << ", "
<< markup("<imm:")
<< "#-" << -OffImm
<< markup(">");
} else if (AlwaysPrintImm0 || OffImm > 0) {
O << ", "
<< markup("<imm:")
<< "#" << OffImm
<< markup(">");
}
O << "]" << markup(">");
}
template<bool AlwaysPrintImm0>
void ARMInstPrinter::printT2AddrModeImm8s4Operand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
if (!MO1.isReg()) { // For label symbolic references.
printOperand(MI, OpNum, O);
return;
}
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
int32_t OffImm = (int32_t)MO2.getImm();
bool isSub = OffImm < 0;
assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
// Don't print +0.
if (OffImm == INT32_MIN)
OffImm = 0;
if (isSub) {
O << ", "
<< markup("<imm:")
<< "#-" << -OffImm
<< markup(">");
} else if (AlwaysPrintImm0 || OffImm > 0) {
O << ", "
<< markup("<imm:")
<< "#" << OffImm
<< markup(">");
}
O << "]" << markup(">");
}
void ARMInstPrinter::printT2AddrModeImm0_1020s4Operand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
if (MO2.getImm()) {
O << ", "
<< markup("<imm:")
<< "#" << formatImm(MO2.getImm() * 4)
<< markup(">");
}
O << "]" << markup(">");
}
void ARMInstPrinter::printT2AddrModeImm8OffsetOperand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
int32_t OffImm = (int32_t)MO1.getImm();
O << ", " << markup("<imm:");
if (OffImm == INT32_MIN)
O << "#-0";
else if (OffImm < 0)
O << "#-" << -OffImm;
else
O << "#" << OffImm;
O << markup(">");
}
void ARMInstPrinter::printT2AddrModeImm8s4OffsetOperand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
int32_t OffImm = (int32_t)MO1.getImm();
assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
O << ", " << markup("<imm:");
if (OffImm == INT32_MIN)
O << "#-0";
else if (OffImm < 0)
O << "#-" << -OffImm;
else
O << "#" << OffImm;
O << markup(">");
}
void ARMInstPrinter::printT2AddrModeSoRegOperand(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO1 = MI->getOperand(OpNum);
const MCOperand &MO2 = MI->getOperand(OpNum+1);
const MCOperand &MO3 = MI->getOperand(OpNum+2);
O << markup("<mem:") << "[";
printRegName(O, MO1.getReg());
assert(MO2.getReg() && "Invalid so_reg load / store address!");
O << ", ";
printRegName(O, MO2.getReg());
unsigned ShAmt = MO3.getImm();
if (ShAmt) {
assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
O << ", lsl "
<< markup("<imm:")
<< "#" << ShAmt
<< markup(">");
}
O << "]" << markup(">");
}
void ARMInstPrinter::printFPImmOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
const MCOperand &MO = MI->getOperand(OpNum);
O << markup("<imm:")
<< '#' << ARM_AM::getFPImmFloat(MO.getImm())
<< markup(">");
}
void ARMInstPrinter::printNEONModImmOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
unsigned EncodedImm = MI->getOperand(OpNum).getImm();
unsigned EltBits;
uint64_t Val = ARM_AM::decodeNEONModImm(EncodedImm, EltBits);
O << markup("<imm:")
<< "#0x";
O.write_hex(Val);
O << markup(">");
}
void ARMInstPrinter::printImmPlusOneOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
unsigned Imm = MI->getOperand(OpNum).getImm();
O << markup("<imm:")
<< "#" << formatImm(Imm + 1)
<< markup(">");
}
void ARMInstPrinter::printRotImmOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
unsigned Imm = MI->getOperand(OpNum).getImm();
if (Imm == 0)
return;
O << ", ror "
<< markup("<imm:")
<< "#";
switch (Imm) {
default: assert (0 && "illegal ror immediate!");
case 1: O << "8"; break;
case 2: O << "16"; break;
case 3: O << "24"; break;
}
O << markup(">");
}
void ARMInstPrinter::printFBits16(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
O << markup("<imm:")
<< "#" << 16 - MI->getOperand(OpNum).getImm()
<< markup(">");
}
void ARMInstPrinter::printFBits32(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
O << markup("<imm:")
<< "#" << 32 - MI->getOperand(OpNum).getImm()
<< markup(">");
}
void ARMInstPrinter::printVectorIndex(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
O << "[" << MI->getOperand(OpNum).getImm() << "]";
}
void ARMInstPrinter::printVectorListOne(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
O << "{";
printRegName(O, MI->getOperand(OpNum).getReg());
O << "}";
}
void ARMInstPrinter::printVectorListTwo(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
unsigned Reg = MI->getOperand(OpNum).getReg();
unsigned Reg0 = MRI.getSubReg(Reg, ARM::dsub_0);
unsigned Reg1 = MRI.getSubReg(Reg, ARM::dsub_1);
O << "{";
printRegName(O, Reg0);
O << ", ";
printRegName(O, Reg1);
O << "}";
}
void ARMInstPrinter::printVectorListTwoSpaced(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
unsigned Reg = MI->getOperand(OpNum).getReg();
unsigned Reg0 = MRI.getSubReg(Reg, ARM::dsub_0);
unsigned Reg1 = MRI.getSubReg(Reg, ARM::dsub_2);
O << "{";
printRegName(O, Reg0);
O << ", ";
printRegName(O, Reg1);
O << "}";
}
void ARMInstPrinter::printVectorListThree(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
O << "{";
printRegName(O, MI->getOperand(OpNum).getReg());
O << ", ";
printRegName(O, MI->getOperand(OpNum).getReg() + 1);
O << ", ";
printRegName(O, MI->getOperand(OpNum).getReg() + 2);
O << "}";
}
void ARMInstPrinter::printVectorListFour(const MCInst *MI, unsigned OpNum,
raw_ostream &O) {
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
O << "{";
printRegName(O, MI->getOperand(OpNum).getReg());
O << ", ";
printRegName(O, MI->getOperand(OpNum).getReg() + 1);
O << ", ";
printRegName(O, MI->getOperand(OpNum).getReg() + 2);
O << ", ";
printRegName(O, MI->getOperand(OpNum).getReg() + 3);
O << "}";
}
void ARMInstPrinter::printVectorListOneAllLanes(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
O << "{";
printRegName(O, MI->getOperand(OpNum).getReg());
O << "[]}";
}
void ARMInstPrinter::printVectorListTwoAllLanes(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
unsigned Reg = MI->getOperand(OpNum).getReg();
unsigned Reg0 = MRI.getSubReg(Reg, ARM::dsub_0);
unsigned Reg1 = MRI.getSubReg(Reg, ARM::dsub_1);
O << "{";
printRegName(O, Reg0);
O << "[], ";
printRegName(O, Reg1);
O << "[]}";
}
void ARMInstPrinter::printVectorListThreeAllLanes(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
O << "{";
printRegName(O, MI->getOperand(OpNum).getReg());
O << "[], ";
printRegName(O, MI->getOperand(OpNum).getReg() + 1);
O << "[], ";
printRegName(O, MI->getOperand(OpNum).getReg() + 2);
O << "[]}";
}
void ARMInstPrinter::printVectorListFourAllLanes(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
O << "{";
printRegName(O, MI->getOperand(OpNum).getReg());
O << "[], ";
printRegName(O, MI->getOperand(OpNum).getReg() + 1);
O << "[], ";
printRegName(O, MI->getOperand(OpNum).getReg() + 2);
O << "[], ";
printRegName(O, MI->getOperand(OpNum).getReg() + 3);
O << "[]}";
}
void ARMInstPrinter::printVectorListTwoSpacedAllLanes(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
unsigned Reg = MI->getOperand(OpNum).getReg();
unsigned Reg0 = MRI.getSubReg(Reg, ARM::dsub_0);
unsigned Reg1 = MRI.getSubReg(Reg, ARM::dsub_2);
O << "{";
printRegName(O, Reg0);
O << "[], ";
printRegName(O, Reg1);
O << "[]}";
}
void ARMInstPrinter::printVectorListThreeSpacedAllLanes(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
O << "{";
printRegName(O, MI->getOperand(OpNum).getReg());
O << "[], ";
printRegName(O, MI->getOperand(OpNum).getReg() + 2);
O << "[], ";
printRegName(O, MI->getOperand(OpNum).getReg() + 4);
O << "[]}";
}
void ARMInstPrinter::printVectorListFourSpacedAllLanes(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
O << "{";
printRegName(O, MI->getOperand(OpNum).getReg());
O << "[], ";
printRegName(O, MI->getOperand(OpNum).getReg() + 2);
O << "[], ";
printRegName(O, MI->getOperand(OpNum).getReg() + 4);
O << "[], ";
printRegName(O, MI->getOperand(OpNum).getReg() + 6);
O << "[]}";
}
void ARMInstPrinter::printVectorListThreeSpaced(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
O << "{";
printRegName(O, MI->getOperand(OpNum).getReg());
O << ", ";
printRegName(O, MI->getOperand(OpNum).getReg() + 2);
O << ", ";
printRegName(O, MI->getOperand(OpNum).getReg() + 4);
O << "}";
}
void ARMInstPrinter::printVectorListFourSpaced(const MCInst *MI,
unsigned OpNum,
raw_ostream &O) {
// Normally, it's not safe to use register enum values directly with
// addition to get the next register, but for VFP registers, the
// sort order is guaranteed because they're all of the form D<n>.
O << "{";
printRegName(O, MI->getOperand(OpNum).getReg());
O << ", ";
printRegName(O, MI->getOperand(OpNum).getReg() + 2);
O << ", ";
printRegName(O, MI->getOperand(OpNum).getReg() + 4);
O << ", ";
printRegName(O, MI->getOperand(OpNum).getReg() + 6);
O << "}";
}