This is a necessary prerequisite for bootstrapping the emission
of debug info inside modules.
- Adds a FlagExternalTypeRef to DICompositeType.
External types must have a unique identifier.
- External type references are emitted using a forward declaration
with a DW_AT_signature([DW_FORM_ref_sig8]) based on the UID.
http://reviews.llvm.org/D9612
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242302 91177308-0d34-0410-b5e6-96231b3b80d8
These were the cause of a verifier error when building 7zip with
-verify-machineinstrs. Running 'make check' with the verifier
triggered the same error on the test here so i've updated the test
to run the verifier on one of its runs instead of adding a new one.
While looking at this code, there was a stale comment that these
instructions were only used for disassembly. This probably used to
be the case, but they are now used in the 'ARM load / store optimization pass' too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242300 91177308-0d34-0410-b5e6-96231b3b80d8
The vec_sld interface provides access to the vsldoi instruction.
Unlike most of the vec_* interfaces, we do not attempt to change the
generated code for vec_sld based on the endian mode. It is too
difficult to correctly infer the desired semantics because of
different element types, and the corrected instruction sequence is
expensive, involving loading a permute control vector and performing a
generalized permute.
For GCC, this was implemented as "Don't touch the vec_sld"
implementation. When it came time for the LLVM implementation, I did
the same thing. However, this was hasty and incorrect. In LLVM's
version of altivec.h, vec_sld was previously defined in terms of the
vec_perm interface. Because vec_perm semantics are adjusted for
little endian, this means that leaving vec_sld untouched causes it to
generate something different for LE than for BE. Not good.
This back-end patch accompanies the changes to altivec.h that change
vec_sld's behavior for little endian. Those changes mean that we see
slightly different code in the back end when trying to recognize a
VSLDOI instruction in isVSLDOIShuffleMask. In particular, a
ShuffleKind of 1 (where the two inputs are identical) must now be
treated the same way as a ShuffleKind of 2 (little endian with
different inputs) when little endian mode is in force. This is
because ShuffleKind of 1 is defined using big-endian numbering.
This has a ripple effect on LowerBUILD_VECTOR, where we create our own
internal VSLDOI instructions. Because these are a ShuffleKind of 1,
they will now have their shift amounts subtracted from 16 when
recognizing the shuffle mask. To avoid problems we have to subtract
them from 16 again before creating the VSLDOI instructions.
There are a couple of other uses of BuildVSLDOI, but these do not need
to be modified because the shift amount is 8, which is unchanged when
subtracted from 16.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242296 91177308-0d34-0410-b5e6-96231b3b80d8
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242295 91177308-0d34-0410-b5e6-96231b3b80d8
- Create a new CopyRewriter for Uncoalescable copy-like instructions
- Change the ValueTracker to return a ValueTrackerResult
This makes optimizeUncoalescable looks more like optimizeCoalescable and
use the CopyRewritter infrastructure.
This is also the preparation for looking up into PHI nodes in the
ValueTracker.
Differential Revision: http://reviews.llvm.org/D11195
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242294 91177308-0d34-0410-b5e6-96231b3b80d8
inspection.
While we want to handle calls specially in this code because they should
have been modeled by the call graph analysis that precedes it, we should
*not* be re-implementing the predicates for whether an instruction reads
or writes memory. Those are well defined already. Notably, at least the
following issues seem to be clearly missed before:
- Ordered atomic loads can "write" to memory by causing writes from other
threads to become visible. Similarly for ordered atomic stores.
- AtomicRMW instructions quite obviously both read and write to memory.
- AtomicCmpXchg instructions also read and write to memory.
- Fences read and write to memory.
- Invokes of intrinsics or memory allocation functions.
I don't have any test cases, and I suspect this has never really come up
in the real world. But there is no reason why it wouldn't, and it makes
the code simpler to do this the right way.
While here, I've tried to make the loops significantly simpler as well
and added helpful comments as to what is going on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242281 91177308-0d34-0410-b5e6-96231b3b80d8
Current implementation handles unordered comparison poorly in soft-float mode.
Consider (a ULE b) which is a <= b. It is lowered to (ledf2(a, b) <= 0 || unorddf2(a, b) != 0) (in general). We can do better job by lowering it to (__gtdf2(a, b) <= 0).
Such replacement is true for other CMP's (ult, ugt, uge). In general, we just call same function as for ordered case but negate comparison against zero.
Differential Revision: http://reviews.llvm.org/D10804
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242280 91177308-0d34-0410-b5e6-96231b3b80d8
This is a direct port of the code from the X86 backend (r239486/r240361), which
uses the MachineCombiner to reassociate (floating-point) adds/muls to increase
ILP, to the PowerPC backend. The rationale is the same.
There is a lot of copy-and-paste here between the X86 code and the PowerPC
code, and we should extract at least some of this into CodeGen somewhere.
However, I don't want to do that until this code is enhanced to handle FMAs as
well. After that, we'll be in a better position to extract the common parts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242279 91177308-0d34-0410-b5e6-96231b3b80d8
If the source of the copy that defines the addend is a physical register, then
its existing live range may not extend to the FMA being mutated. Make sure we
extend the live range of the register to meet the FMA because it will become
its operand in this case.
I don't have an independent test case, but it will be exposed by change to be
committed shortly enabling the use of the machine combiner to do fadd/fmul
reassociation, and will be covered by one of the associated regression tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242278 91177308-0d34-0410-b5e6-96231b3b80d8
MachineCombiner predicated its use of scheduling-based metrics on
hasInstrSchedModel(), but useful conclusions can be drawn from pipeline
itineraries as well. Almost all of the logic (except for resource tracking in
preservesResourceLen) can be used if we have an itinerary, so enable it in that
case as well.
This will be used by the PowerPC backend in an upcoming commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242277 91177308-0d34-0410-b5e6-96231b3b80d8
The unsigned opcode argument here was the result of BinaryOperator->getOpcode().
That returns a BinaryOps enum which is more accurate than passing around an
unsigned.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242265 91177308-0d34-0410-b5e6-96231b3b80d8
This code was checking if we are an ICmpInst or FCmpInst then throwing
unreachable if we are neither. We must be one or the other, so use a
cast on the FCmpInst case to ensure that we are that case. Then we can
avoid having an unreachable but still catch an error if we ever had another
subclass of CmpInst.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242264 91177308-0d34-0410-b5e6-96231b3b80d8
This code was breaking from the case statement if the getStoreSizeInBits()
value was not a multiple of 0. Given that the implementation returns
getStoreSize() * 8, it can only be a multiple of 8.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242255 91177308-0d34-0410-b5e6-96231b3b80d8
The calls here were both to getStoreSizeInBits() which multiplies by 8.
We then immediately divided by 8. Calling getStoreSize() returns the
values we need without the extra arithmetic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242254 91177308-0d34-0410-b5e6-96231b3b80d8
This is useful when we want to do block frequency analysis
conditionally (e.g. only in PGO mode) but don't want to add
one more pass dependence.
Patch by congh.
Approved by dexonsmith.
Differential Revision: http://reviews.llvm.org/D11196
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242248 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
processFunctionBeforeCalleeSavedScan was renamed to determineCalleeSaves and now takes a BitVector parameter as of rL242165, reviewed in http://reviews.llvm.org/D10909
WebAssembly is still marked as experimental and therefore doesn't build by default. It does, however, grep by default! I notice that processFunctionBeforeCalleeSavedScan is still mentioned in a few comments and error messages, which I also fixed.
Reviewers: qcolombet, sunfish
Subscribers: jfb, dsanders, hfinkel, MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D11199
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242242 91177308-0d34-0410-b5e6-96231b3b80d8
Follow-up r235483, with the corresponding support in PPC. We use a regular call
for symbolic targets (because they're much cheaper than indirect calls).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242239 91177308-0d34-0410-b5e6-96231b3b80d8
I am planning to add more nested classes inside RuntimePointerCheck so
all these triple-nesting would be hard to follow.
Also rename it to RuntimePointerChecking (i.e. append 'ing').
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242218 91177308-0d34-0410-b5e6-96231b3b80d8
We used to take the address specified as the direct target of the patchpoint
and did no TOC-pointer handling. This, however, as not all that useful,
because MCJIT tends to create a lot of modules, and they have their own TOC
sections. Thus, to call from the generated code to other generated code, you
really need to switch TOC pointers. Make this work as expected, and under
ELFv1, tread the address as the function descriptor address so that the correct
TOC pointer can be loaded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242217 91177308-0d34-0410-b5e6-96231b3b80d8
For now the Archive owns the buffers of the thin archive members.
This makes for a simple API, but all the buffers are destructed
only when the archive is destructed. This should be fine since we
close the files after mmap so we should not hit an open file
limit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242215 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAG already had begin/end methods for iterating over all
the nodes, but didn't define an iterator_range for us in foreach
loops.
This adds such a method and uses it in some of the eligible places
throughout the backends.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242212 91177308-0d34-0410-b5e6-96231b3b80d8
The simplify_type specialisation allows us to cast directly from
SDValue to an SDNode* subclass so we don't need to pass a SDNode*
to cast<>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242209 91177308-0d34-0410-b5e6-96231b3b80d8
This commit moves the function 'printReg' towards the start of the file so that
it can be used by the conversion methods in MIRPrinter and not just the printing
methods in MIPrinter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242203 91177308-0d34-0410-b5e6-96231b3b80d8
Sometimes an incidentally created instruction can duplicate a Value used
elsewhere. It then often doesn't end up in the leader table. If it's later
removed, we attempt to remove it from the leader table and segfault.
Instead we should just ignore the removal request, which won't cause any
problems. The reverse situation, where the original instruction is replaced by
the new one (which you might think could leave the leader table empty) cannot
occur, because the incidental instruction will never be found in the first
place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242199 91177308-0d34-0410-b5e6-96231b3b80d8
MOVSDto64rr and MOV64toSDrr are defined to convert between FR64 (%xmm)
<-> GR64 registers, not VR64 (%mm) <-> GR64. This is wrong.
I found this by inspection and could not find a suitable testcase for it
since (1) we don't handle MMX bitcasts in Peephole optimizer as to
generate COPYs that (2) could be expanded back to the appropriate x86
instruction in ExpandPostRA.
Switch to use the appropriate instructions: MMX_MOVD64from64rr and
MMX_MOVD64to64rr here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242191 91177308-0d34-0410-b5e6-96231b3b80d8
PowerPC uses itineraries to describe processor pipelines (and dispatch-group
restrictions for P7/P8 cores). Unfortunately, the target-independent
implementation of TII.getInstrLatency calls ItinData->getStageLatency, and that
looks for the largest cycle count in the pipeline for any given instruction.
This, however, yields the wrong answer for the PPC itineraries, because we
don't encode the full pipeline. Because the functional units are fully
pipelined, we only model the initial stages (there are no relevant hazards in
the later stages to model), and so the technique employed by getStageLatency
does not really work. Instead, we should take the maximum output operand
latency, and that's what PPCInstrInfo::getInstrLatency now does.
This caused some test-case churn, including two unfortunate side effects.
First, the new arrangement of copies we get from function parameters now
sometimes blocks VSX FMA mutation (a FIXME has been added to the code and the
test cases), and we have one significant test-suite regression:
SingleSource/Benchmarks/BenchmarkGame/spectral-norm
56.4185% +/- 18.9398%
In this benchmark we have a loop with a vectorized FP divide, and it with the
new scheduling both divides end up in the same dispatch group (which in this
case seems to cause a problem, although why is not exactly clear). The grouping
structure is hard to predict from the bottom of the loop, and there may not be
much we can do to fix this.
Very few other test-suite performance effects were really significant, but
almost all weakly favor this change. However, in light of the issues
highlighted above, I've left the old behavior available via a
command-line flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242188 91177308-0d34-0410-b5e6-96231b3b80d8
Convert logical operations on general-purpose registers to the correspon-
ding operations on predicate registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242186 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Before this change, personality directives were not emitted
if there was no invoke left in the function (of course until
recently this also meant that we couldn't know what
the personality actually was). This patch forces personality directives
to still be emitted, unless it is known to be a noop in the absence of
invokes, or the user explicitly specified `nounwind` (and not
`uwtable`) on the function.
Reviewers: majnemer, rnk
Subscribers: rnk, llvm-commits
Differential Revision: http://reviews.llvm.org/D10884
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242185 91177308-0d34-0410-b5e6-96231b3b80d8
This can be done only with moves which theoretically
will optimize better later.
Although this transform increases the instruction count,
it should be code size / cycle count neutral in the worst
VALU case. It also seems to slightly improve a couple
of testcases due to other DAG combines this exposes.
This is probably slightly worse for the SALU case, so
it might be better to handle this during moveToVALU,
although then you lose some simplifications like
the load width reducing in the simple testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242177 91177308-0d34-0410-b5e6-96231b3b80d8
If the read2 produced was supposed to be writing into a
super register, it would use the wrong subregister indices.
Fix this by inserting copies, so we only ever write to a vreg_64.
Run the register coalescer again to clean this up, although this
isn't ideal and often does result in an extra move.
Also remove the assert that offset1 > offset0.
There isn't a real reason to not allow this other than a minor
convenience in the compiler, and it doesn't seem worth the effort
of avoiding it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242174 91177308-0d34-0410-b5e6-96231b3b80d8
We have a detailed def/use lists for every physical register in
MachineRegisterInfo anyway, so there is little use in maintaining an
additional bitset of which ones are used.
Removing it frees us from extra book keeping. This simplifies
VirtRegMap.
Differential Revision: http://reviews.llvm.org/D10911
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242173 91177308-0d34-0410-b5e6-96231b3b80d8
Do not use MachineRegisterInfo::setPhysRegUsed()/isPhysRegUsed()
anymore. This bitset changes function-global state and is set by the
VirtRegRewriter anyway.
Simply use a bitvector private to RAGreedy.
Differential Revision: http://reviews.llvm.org/D10910
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242169 91177308-0d34-0410-b5e6-96231b3b80d8
This changes TargetFrameLowering::processFunctionBeforeCalleeSavedScan():
- Rename the function to determineCalleeSaves()
- Pass a bitset of callee saved registers by reference, thus avoiding
the function-global PhysRegUsed bitset in MachineRegisterInfo.
- Without PhysRegUsed the implementation is fine tuned to not save
physcial registers which are only read but never modified.
Related to rdar://21539507
Differential Revision: http://reviews.llvm.org/D10909
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242165 91177308-0d34-0410-b5e6-96231b3b80d8
Generate extract instructions (via intrinsics) before the DAG combiner
folds shifts into unrecognizable forms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242163 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
- Signed 16-bit should have priority over unsigned.
- For la, unsigned 16-bit must use ori+addu rather than directly use ori.
- Correct tests on 32-bit immediates with 64-bit predicates by
sign-extending the immediate beforehand. For example, isInt<16>(0xffff8000)
should be true and use addiu.
Also split li/la testing into separate files due to their size.
Reviewers: vkalintiris
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10967
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242139 91177308-0d34-0410-b5e6-96231b3b80d8
Volatile loads and stores are made visible in global state regardless of
what memory is involved. It is not correct to disregard the ordering
and synchronization scope because it is possible to synchronize with
memory operations performed by hardware.
This partially addresses PR23737.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242126 91177308-0d34-0410-b5e6-96231b3b80d8
- Factor out code to query and modify the sign bit of a floatingpoint
value as an integer. This also works if none of the targets integer
types is big enough to hold all bits of the floatingpoint value.
- Legalize FABS(x) as FCOPYSIGN(x, 0.0) if FCOPYSIGN is available,
otherwise perform bit manipulation on the sign bit. The previous code
used "x >u 0 ? x : -x" which is incorrect for x being -0.0! It also
takes 34 instructions on ARM Cortex-M4. With this patch we only
require 5:
vldr d0, LCPI0_0
vmov r2, r3, d0
lsrs r2, r3, #31
bfi r1, r2, #31, #1
bx lr
(This could be further improved if the compiler would recognize that
r2, r3 is zero).
- Only lower FCOPYSIGN(x, y) = sign(x) ? -FABS(x) : FABS(x) if FABS is
available otherwise perform bit manipulation on the sign bit.
- Perform the sign(x) test by masking out the sign bit and comparing
with 0 rather than shifting the sign bit to the highest position and
testing for "<s 0". For x86 copysignl (on 80bit values) this gets us:
testl $32768, %eax
rather than:
shlq $48, %rax
sets %al
testb %al, %al
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242107 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The capability was lost with D10429 where the personality function was set at function level rather than landing pad level. Now there is no way to get/set the personality function from the C API. That is a problem.
Note that the whole thing could be avoided by improving the C API testing, as started by D10725
Reviewers: chandlerc, bogner, majnemer, andrew.w.kaylor, rafael, rnk, axw
Subscribers: rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D10946
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242104 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we would refrain from attempting to increase the linkage of
available_externally globals because they were considered weak for the
linker. Now they are treated more like a declaration instead of a weak
definition.
This was causing SSE alignment faults in Chromuim, when some code
assumed it could increase the alignment of a dllimported global that it
didn't control. http://crbug.com/509256
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242091 91177308-0d34-0410-b5e6-96231b3b80d8
This commit serializes the sub register indices from the register machine
operands.
Reviewers: Duncan P. N. Exon Smith
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242084 91177308-0d34-0410-b5e6-96231b3b80d8
This patch allows VSX swap optimization to succeed more frequently.
Specifically, it is concerned with common code sequences that occur
when copying a scalar floating-point value to a vector register. This
patch currently handles cases where the floating-point value is
already in a register, but does not yet handle loads (such as via an
LXSDX scalar floating-point VSX load). That will be dealt with later.
A typical case is when a scalar value comes in as a floating-point
parameter. The value is copied into a virtual VSFRC register, and
then a sequence of SUBREG_TO_REG and/or COPY operations will convert
it to a full vector register of the class required by the context. If
this vector register is then used as part of a lane-permuted
computation, the original scalar value will be in the wrong lane. We
can fix this by adding a swap operation following any widening
SUBREG_TO_REG operation. Additional COPY operations may be needed
around the swap operation in order to keep register assignment happy,
but these are pro forma operations that will be removed by coalescing.
If a scalar value is otherwise directly referenced in a computation
(such as by one of the many XS* vector-scalar operations), we
currently disable swap optimization. These operations are
lane-sensitive by definition. A MentionsPartialVR flag is added for
use in each swap table entry that mentions a scalar floating-point
register without having special handling defined.
A common idiom for PPC64LE is to convert a double-precision scalar to
a vector by performing a splat operation. This ensures that the value
can be referenced as V[0], as it would be for big endian, whereas just
converting the scalar to a vector with a SUBREG_TO_REG operation
leaves this value only in V[1]. A doubleword splat operation is one
form of an XXPERMDI instruction, which takes one doubleword from a
first operand and another doubleword from a second operand, with a
two-bit selector operand indicating which doublewords are chosen. In
the general case, an XXPERMDI can be permitted in a lane-swapped
region provided that it is properly transformed to select the
corresponding swapped values. This transformation is to reverse the
order of the two input operands, and to reverse and complement the
bits of the selector operand (derivation left as an exercise to the
reader ;).
A new test case that exercises the scalar-to-vector and generalized
XXPERMDI transformations is added as CodeGen/PowerPC/swaps-le-5.ll.
The patch also requires a change to CodeGen/PowerPC/swaps-le-3.ll to
use CHECK-DAG instead of CHECK for two independent instructions that
now appear in reverse order.
There are two small unrelated changes that are added with this patch.
First, the XXSLDWI instruction was incorrectly omitted from the list
of lane-sensitive instructions; this is now fixed. Second, I observed
that the same webs were being rejected over and over again for
different reasons. Since it's sufficient to reject a web only once, I
added a check for this to speed up the compilation time slightly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242081 91177308-0d34-0410-b5e6-96231b3b80d8
When spotting that a loop can use ctpop, we were incorrectly replacing all uses of a value with a value derived from ctpop.
The bug here was exposed because we were replacing a use prior to the ctpop with the ctpop value and so we have a use before def, i.e., we changed
%tobool.5 = icmp ne i32 %num, 0
store i1 %tobool.5, i1* %ptr
br i1 %tobool.5, label %for.body.lr.ph, label %for.end
to
store i1 %1, i1* %ptr
%0 = call i32 @llvm.ctpop.i32(i32 %num)
%1 = icmp ne i32 %0, 0
br i1 %1, label %for.body.lr.ph, label %for.end
Even if we inserted the ctpop so that it dominates the store here, that would still be incorrect. The store doesn’t want the result of ctpop.
The fix is very simple, and involves replacing only the branch condition with the ctpop instead of all uses.
Reviewed by Hal Finkel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242068 91177308-0d34-0410-b5e6-96231b3b80d8
The outlined funclets call intrinsics which reference labels from the
LSDA. This situation can easily arise in small functions with a single
cleanup at -O0, where Clang marks a definition as nounwind, and then
WinEHPrepare "discovers" that the landingpad is dead by accident and
deletes it.
We now need to ask the LLVM IR Function for it's personality directly,
rather than going through MachineModuleInfo.
Fixes PR23892.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242063 91177308-0d34-0410-b5e6-96231b3b80d8
Enable partial and runtime loop unrolling for NVPTX backend via
TTI::UnrollingPreferences with a small threshold. This partially unrolls
small loops which are often unrolled by the PTX to SASS compiler
and unrolling earlier can be beneficial.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242049 91177308-0d34-0410-b5e6-96231b3b80d8
Enable runtime unrolling for loops with unroll count metadata ("#pragma unroll N")
and a runtime trip count. Also, do not unroll loops with unroll full metadata if the
loop has a runtime loop count. Previously, such loops would be unrolled with a
very large threshold (pragma-unroll-threshold) if runtime unrolled happened to be
enabled resulting in a very large (and likely unwise) unroll factor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242047 91177308-0d34-0410-b5e6-96231b3b80d8
This commit serializes the fixed stack objects, including fixed spill slots.
The fixed stack objects are serialized using a YAML sequence of YAML inline
mappings. Each mapping has the object's ID, type, size, offset, and alignment.
The objects that aren't spill slots also serialize the isImmutable and isAliased
flags.
The fixed stack objects are a part of the machine function's YAML mapping.
Reviewers: Duncan P. N. Exon Smith
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242045 91177308-0d34-0410-b5e6-96231b3b80d8
This is a C++11 feature that both GCC and MSVC have supported as ane extension
long before C++11 was approved.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242042 91177308-0d34-0410-b5e6-96231b3b80d8
Passes should never modify it, just use the const version. While there
reduce copying in LoopInterchange. No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242041 91177308-0d34-0410-b5e6-96231b3b80d8
It had accidently accepted a symbol+offset value (and emitted
incorrect code for it, keeping only the offset part) instead of
properly reporting the constraint as invalid.
Differential Revision: http://reviews.llvm.org/D11039
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242040 91177308-0d34-0410-b5e6-96231b3b80d8
The 64/128-bit vector types are legal if NEON instructions are
available. However, there was no matching patterns for @llvm.cttz.*()
intrinsics and result in fatal error.
This commit fixes the problem by lowering cttz to:
a. ctpop((x & -x) - 1)
b. width - ctlz(x & -x) - 1
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242037 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The iteration order within a member of DepCands is deterministic
and therefore we don't have to sort the accesses within a member.
We also don't have to copy the indices of the pointers into a
vector, since we can iterate over the members of the class.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11145
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242033 91177308-0d34-0410-b5e6-96231b3b80d8
In this patch I have only encoding. Intrinsics and DAG lowering will be in the next patch.
I temporary removed the old intrinsics test (just to split this patch).
Half types are not covered here.
Differential Revision: http://reviews.llvm.org/D11134
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242023 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This at least saves compile time. I also encountered a case where
ephemeral values affect whether other variables are promoted, causing
performance issues. It may be a bug in LSR, but I didn't manage to
reduce it yet. Anyhow, I believe it's in general not worth considering
ephemeral values in LSR.
Reviewers: atrick, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11115
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242011 91177308-0d34-0410-b5e6-96231b3b80d8
Register r12 ('ip') is used by GCC for this purpose
and hence is used here. As discussed on the GCC mailing
list, the register choice is an ABI issue and so
choosing the same register as GCC means
__builtin_call_with_static_chain is compatible.
A similar patch has just gone in the AArch64 backend,
so this is just the ARM counterpart, following the same
discussion.
Patch by Stephen Cross.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241996 91177308-0d34-0410-b5e6-96231b3b80d8
While the v4i32 shl operation is already vectorized using a cvttps2dq/pmulld pattern, the lshr/ashr opeations are still scalarized.
This patch adds vectorization support for non-uniform v4i32 shift operations - it splats constant shift amounts to allow them to use the immediate sse shift instructions, or extracts/zero-extends non-constant shift amounts. The individual results are then blended together.
Differential Revision: http://reviews.llvm.org/D11063
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241989 91177308-0d34-0410-b5e6-96231b3b80d8
There is no suitable basic block to sink instructions in loops without
exits. The only way an instruction in a loop without exits can be used
is as an incoming value to a PHI. In such cases, the incoming block for
the corresponding value is unreachable.
This fixes PR24013.
Differential Revision: http://reviews.llvm.org/D10903
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241987 91177308-0d34-0410-b5e6-96231b3b80d8
r238842 added the TargetRecip system for controlling use of reciprocal
estimates for sqrt and division using a set of parameters that can be set by
the frontend. Clang now supports a sophisticated -mrecip option, and this will
allow that option to effectively control the relevant code-generation
functionality of the PPC backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241985 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for the 'nest' attribute, which allows the static chain
register to be set for functions calls under non-Darwin PPC/PPC64 targets. r11
is the chain register (which the PPC64 ELF ABI calls the "environment
pointer"). For indirect calls under PPC64 ELFv1, this would normally be loaded
from the function descriptor, but providing an explicit 'nest' parameter will
override that process and use the value provided.
This allows __builtin_call_with_static_chain to work as expected on PowerPC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241984 91177308-0d34-0410-b5e6-96231b3b80d8
r236894 caused PR23626 (Clang miscompiles webkit's base64 decoder), and was
reverted in r237984. This reapplies the patch with an additional test case for
PR23626 and the associated fix (both scales and offsets in the
BasicAliasAnalysis::constantOffsetHeuristic should initially be zero).
Patch by Nick White, thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241981 91177308-0d34-0410-b5e6-96231b3b80d8
The following functions are moved from the LoopVectorizer to VectorUtils:
- getGEPInductionOperand
- stripGetElementPtr
- getUniqueCastUse
- getStrideFromPointer
These used to be static functions in LoopVectorize, but will also be used by
the upcoming loop versioning LICM transformation.
Patch by Ashutosh Nema!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241980 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds new attribute called "argmemonly". Function marked with this attribute can only access memory through it's argument pointers. This attribute directly corresponds to the "OnlyAccessesArgumentPointees" ModRef behaviour in alias analysis.
Differential Revision: http://reviews.llvm.org/D10398
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241979 91177308-0d34-0410-b5e6-96231b3b80d8
No in-tree alias analysis used this facility, and it was not called in
any particularly rigorous way, so it seems unlikely to be correct.
Note that one of the only stateful AA implementations in-tree,
GlobalsModRef is completely broken currently (and any AA passes like it
are equally broken) because Module AA passes are not effectively
invalidated when a function pass that fails to update the AA stack runs.
Ultimately, it doesn't seem like we know how we want to build stateful
AA, and until then trying to support and maintain correctness for an
untested API is essentially impossible. To that end, I'm planning to rip
out all of the update API. It can return if and when we need it and know
how to build it on top of the new pass manager and as part of *tested*
stateful AA implementations in the tree.
Differential Revision: http://reviews.llvm.org/D10889
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241975 91177308-0d34-0410-b5e6-96231b3b80d8
Disallow all mutation of `MCSubtargetInfo` expect the feature bits.
Besides deleting the assignment operators -- which were dead "code" --
this restricts `InitMCProcessorInfo()` to subclass initialization
sequences, and exposes a new more limited function called
`setDefaultFeatures()` for use by the ARMAsmParser `.cpu` directive.
There's a small functional change here: ARMAsmParser used to adjust
`MCSubtargetInfo::CPUSchedModel` as a side effect of calling
`InitMCProcessorInfo()`, but I've removed that suspicious behaviour.
Since the AsmParser shouldn't be doing any scheduling, there shouldn't
be any observable change...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241961 91177308-0d34-0410-b5e6-96231b3b80d8
Most loads and stores are derived from pointers derived from
a kernel argument load inserted during argument lowering.
This was just using the EntryToken chain for the argument loads,
and any users of these loads were also on the EntryToken chain.
Return the chain of the lowered argument load so that dependent loads
end up on the correct chain.
No test since I'm not aware of any case where this actually
broke.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241960 91177308-0d34-0410-b5e6-96231b3b80d8
Integral class statics are handled oddly in MSVC, we don't need them
in this case, use an enum instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241958 91177308-0d34-0410-b5e6-96231b3b80d8
Force all creators of `MCSubtargetInfo` to immediately initialize it,
merging the default constructor and the initializer into an initializing
constructor. Besides cleaning up the code a little, this makes it clear
that the initializer is never called again later.
Out-of-tree backends need a trivial change: instead of calling:
auto *X = new MCSubtargetInfo();
InitXYZMCSubtargetInfo(X, ...);
return X;
they should call:
return createXYZMCSubtargetInfoImpl(...);
There's no real functionality change here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241957 91177308-0d34-0410-b5e6-96231b3b80d8
Remove all calls to `MCSubtargetInfo::InitCPUSched()` and merge its body
into the only relevant caller, `MCSubtargetInfo::InitMCProcessorInfo()`.
We were only calling the former after explicitly calling the latter with
the same CPU; it's confusing to have both methods exposed.
Besides a minor (surely unmeasurable) speedup in ARM and X86 from
avoiding running the logic twice, no functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241956 91177308-0d34-0410-b5e6-96231b3b80d8
This in turn would sometimes introduce new cleanupblocks that didn't
previously exist. The uses were being introduced by SSA value demotion.
We actually want to *promote* uses of EH pointers and selectors, so I
added some spcecial casing to avoid demoting such instructions. This is
getting overly complicated, but hopefully we'll come along and delete it
in the new representation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241950 91177308-0d34-0410-b5e6-96231b3b80d8
The motivation is to allow GatherAllAliases / FindBetterChain
to not give up on dependent loads of a pointer from constant memory.
This is important for AMDGPU, because most loads are pointers
derived from a load of a kernel argument from constant memory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241948 91177308-0d34-0410-b5e6-96231b3b80d8
`MCSchedModel` is large. Make `MCSchedModel::GetDefaultSchedModel()`
return by-reference instead of by-value, so we can store a pointer in
`MCSubtargetInfo::CPUSchedModel` instead of a copy.
Note: since `MCSchedModel` is POD, this doesn't create a static
constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241947 91177308-0d34-0410-b5e6-96231b3b80d8
Integral class statics are handled oddly in MSVC, we don't need them in
this case, use an enum instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241945 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR23804: assertion failure in emitPrologue in the case of a
function with an empty frame and a dynamic alloca that needs stack
realignment. This is a typical case for AddressSanitizer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241943 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Following the discussion on r241884, it's more reasonable to assume that a
target has no vector registers by default instead of letting every such
target overrides getNumberOfRegisters.
Therefore, this patch modifies BasicTTIImpl::getNumberOfRegisters to
return 0 when Vector is true, and partially reverts r241884 which
modifies NVPTXTTIImpl::getNumberOfRegisters.
It also fixes a performance bug in LoopVectorizer. Even if a target has
no vector registers, vectorization may still help ILP. So, we need both
checks to be false before disabling loop vectorization all together.
Reviewers: hfinkel
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11108
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241942 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The class will obviously need improvement down the road. For one, there
is no reason that addPHINodes would have to be exposed like that. I
will make this and other improvements in follow-up patches.
The main goal is to be able to share this functionality. The
LoopLoadElimination pass I am working on needs it too. Later we can
move other clients as well (LV and Ashutosh's LICMVer).
Reviewers: hfinkel, ashutosh.nema
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10577
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241932 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This makes them available to the LoopVersioning class as that is moved
to its own module in the next patch.
Reviewers: ashutosh.nema, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10576
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241931 91177308-0d34-0410-b5e6-96231b3b80d8
This commit factors out common code from MergeBaseUpdateLoadStore() and
MergeBaseUpdateLSMultiple() and introduces a new function
MergeBaseUpdateLSDouble() which merges adds/subs preceding/following a
strd/ldrd instruction into an strd/ldrd instruction with writeback where
possible.
Differential Revision: http://reviews.llvm.org/D10676
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241928 91177308-0d34-0410-b5e6-96231b3b80d8
If our two inputs have known top-zero bit counts M and N, we trivially
know that the output cannot have any bits set in the top (min(M, N)-1)
bits, since nothing could carry past that point.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241927 91177308-0d34-0410-b5e6-96231b3b80d8
This commit implements the initial serialization of stack objects from the
MachineFrameInfo class. It can only serialize the ordinary stack objects
(including ordinary spill slots), but it doesn't serialize variable sized or
fixed stack objects yet.
The stack objects are serialized using a YAML sequence of YAML inline mappings.
Each mapping has the object's ID, type, size, offset and alignment. The stack
objects are a part of machine function's YAML mapping.
Reviewers: Duncan P. N. Exon Smith
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241922 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The target frame lowering's concrete type is always known in RegisterInfo, yet it's only sometimes devirtualized through a static_cast. This change adds an auto-generated static function <Target>GenRegisterInfo::getFrameLowering(const MachineFunction &MF) which does this devirtualization, and uses this function in all targets which can.
This change was suggested by sunfish in D11070 for WebAssembly, I figure that I may as well improve the other targets while I'm here.
Subscribers: sunfish, ted, llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11093
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241921 91177308-0d34-0410-b5e6-96231b3b80d8
This improves the logic in several ways and is a preparation for
followup patches:
- First perform an analysis and create a list of merge candidates, then
transform. This simplifies the code in that you have don't have to
care to much anymore that you may be holding iterators to
MachineInstrs that get removed.
- Analyze/Transform basic blocks in reverse order. This allows to use
LivePhysRegs to find free registers instead of the RegisterScavenger.
The RegisterScavenger will become less precise in the future as it
relies on the deprecated kill-flags.
- Return the newly created node in MergeOps so there's no need to look
around in the schedule to find it.
- Rename some MBBI iterators to InsertBefore to make their role clear.
- General code cleanup.
Differential Revision: http://reviews.llvm.org/D10140
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241920 91177308-0d34-0410-b5e6-96231b3b80d8
FCmp behaves a lot like a floating-point binary operator in many ways,
and can benefit from fast-math information. Flags such as nsz and nnan
can affect if this fcmp (in combination with a select) can be treated
as a fminnum/fmaxnum operation.
This adds backwards-compatible bitcode support, IR parsing and writing,
LangRef changes and IRBuilder changes. I'll need to audit InstSimplify
and InstCombine in a followup to find places where flags should be
copied.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241901 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Reviewers: rnk, JosephTremoulet, reames, nlewycky, rjmccall
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11041
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241888 91177308-0d34-0410-b5e6-96231b3b80d8
Not doing this can lead to misoptimizations down the line, e.g. because
of range metadata on the replacing load excluding values that are valid
for the load that is being replaced.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241886 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Without this patch, LoopVectorizer in certain cases (see loop-vectorize.ll)
produces code with complex control flow which hurts later optimizations. Since
NVPTX doesn't have vector registers in LLVM's sense
(NVPTXTTI::getRegisterBitWidth(true) == 32), we for now declare no vector
registers to effectively disable loop vectorization.
Reviewers: jholewinski
Subscribers: jingyue, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11089
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241884 91177308-0d34-0410-b5e6-96231b3b80d8
Apparently this is important, otherwise _except_handler3 assumes that
the registration node is corrupted and ignores it.
Also fix a bug in WinEHPrepare where we would insert code after a
terminator instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241877 91177308-0d34-0410-b5e6-96231b3b80d8
The virtual registers are serialized using a YAML sequence of YAML inline
mappings. Each mapping has the id of the virtual register and the register
class.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10981
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241868 91177308-0d34-0410-b5e6-96231b3b80d8
Currently canCheckPtrAtRT returns two flags NeedRTCheck and CanDoRT.
NeedRTCheck says whether we need checks and CanDoRT whether we can
generate the checks. The idea is to encode three states with these:
Need/Can:
(1) false/dont-care: no checks are needed
(2) true/false: we need checks but can't generate them
(3) true/true: we need checks and we can generate them
This is pretty unnecessary since the caller (analyzeLoop) is only
interested in whether we can generate the checks if we actually need
them (i.e. 1 or 3).
So this change cleans up to return just that (CanDoRTIfNeeded) and pulls
all the underlying logic into canCheckPtrAtRT.
By doing all this, we simplify analyzeLoop which is the complex function
in LAA.
There is further room for improvement here by using RtCheck.Need
directly rather than a new local variable NeedRTCheck but that's for a
later patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241866 91177308-0d34-0410-b5e6-96231b3b80d8
The runtime does not restore CSRs when transferring control back to the
function handling the exception. According to the experts on IRC, LLVM's
register allocator has no way to model register clobbers that only
happen on one edge of the CFG. For now, don't worry about trying to use
the meager three CSRs available on 32-bit X86 and just say that such
invokes preserve nothing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241865 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a new error which is reported when the MIR Parser encounters
a machine function without any machine basic blocks. The machine verifier
expects that the machine functions have at least one MBB, and this error will
prevent machine functions without MBBs from reaching the machine verifier and
crashing with an assertion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241862 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Before this change ImplicitNullChecks would only pick loads of the form:
```
test Reg, Reg
jz elsewhere
fallthrough:
movl 32(Reg), Reg2
```
but not (say)
```
test Reg, Reg
jz elsewhere
fallthrough:
inc Reg3
movl 32(Reg), Reg2
```
This change teaches ImplicitNullChecks to look through "unrelated"
instructions like `inc Reg3` when searching for a load instruction
to convert to a trapping load.
Reviewers: atrick, JosephTremoulet, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11044
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241850 91177308-0d34-0410-b5e6-96231b3b80d8
This commit serializes the 13 scalar boolean and integer attributes from the
MachineFrameInfo class: IsFrameAddressTaken, IsReturnAddressTaken, HasStackMap,
HasPatchPoint, StackSize, OffsetAdjustment, MaxAlignment, AdjustsStack,
HasCalls, MaxCallFrameSize, HasOpaqueSPAdjustment, HasVAStart, and
HasMustTailInVarArgFunc. These attributes are serialized as part
of the frameInfo YAML mapping, which itself is a part of the machine function's
YAML mapping.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241844 91177308-0d34-0410-b5e6-96231b3b80d8
It looks like ld64 requires it. With this we seem to be able to bootstrap using
llvm-ar+/usr/bin/true instead of ar+ranlib (currently on stage2).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241842 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In RewriteLoopExitValues, before expanding out an SCEV expression using
SCEVExpander, try to see if an existing LLVM IR expression already
computes the value we're interested in. If so use that existing
expression.
Apart from reducing IndVars' reliance on the rest of the compilation
pipeline, this also prevents IndVars from concluding some expressions as
"high cost" when they're not. For instance,
`InductiveRangeCheckElimination` often emits code of the following form:
```
len = umin(len_A, len_B)
loop:
...
if (i++ < len)
goto loop
outside_loop:
use(i)
```
`SCEVExpander` refuses to rewrite the use of `i` in `outside_loop`,
since it thinks the value of `i` on loop exit, `len`, is a high cost
expansion since it contains an `umax` in it. With this change,
`IndVars` can see that it can re-use `len` instead of creating a new
expression to compute `umin(len_A, len_B)`.
I considered putting this cleverness in `SCEVExpander`, but I was
worried that it may then have a deterimental effect on other passes
that use it. So I decided it was better to just do this in the one
place where it seems like an obviously good idea, with the intent of
generalizing later if needed.
Reviewers: atrick, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10782
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241838 91177308-0d34-0410-b5e6-96231b3b80d8
This patch allows the read_register and write_register intrinsics to
read/write the RBP/EBP registers on X86 iff the targeted register is
the frame pointer for the containing function.
Differential Revision: http://reviews.llvm.org/D10977
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241827 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes bugs that were exposed by the addition of fast-math-flags in the DAG:
r237046 ( http://reviews.llvm.org/rL237046 ):
1. When replacing a division node, it's not enough to RAUW.
We should call CombineTo() to delete dead nodes and combine again.
2. Because we are changing the DAG, we can't return an empty SDValue
after the transform. As the code comments say:
Visitation implementation - Implement dag node combining for different node types.
The semantics are as follows: Return Value:
SDValue.getNode() == 0 - No change was made
SDValue.getNode() == N - N was replaced, is dead and has been handled.
otherwise - N should be replaced by the returned Operand.
The new test case shows no difference with or without this patch, but it will crash if
we re-apply r237046 or enable FMF via the current -enable-fmf-dag cl::opt.
Differential Revision: http://reviews.llvm.org/D9893
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241826 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The checking pointer group construction algorithm relied on the iteration on DepCands.
We would need the same leaders across runs and the same iteration order over the underlying std::set for determinism.
This changes the algorithm to process the pointers in the order in which they were added to the runtime check, which is deterministic.
We need to update the tests, since the order in which pointers appear has changed.
No new tests were added, since it is impossible to test for non-determinism.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11064
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241809 91177308-0d34-0410-b5e6-96231b3b80d8
The gnu ar format uses BE numbers. The BSD one uses LE. Add a helper for one or the
other. NFC for now, just removes some noise from the following patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241808 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: If shift amount is a constant value > 64 bit it is handled incorrectly during type legalization and X86 lowering. This patch the type of shift amount argument in function DAGTypeLegalizer::ExpandShiftByConstant from unsigned to APInt.
Reviewers: nadav, majnemer, sanjoy, RKSimon
Subscribers: RKSimon, llvm-commits
Differential Revision: http://reviews.llvm.org/D10767
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241806 91177308-0d34-0410-b5e6-96231b3b80d8
It will get another use in the following patch. Also rename the other helper to
printGNUSmallMemberHeader for consistency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241805 91177308-0d34-0410-b5e6-96231b3b80d8
The nest attribute is currently supported on the x86 (32-bit) and x86-64
backends, but not on ARM (32-bit) or AArch64. This patch adds support for
nest to the AArch64 backend.
Register x18 is used by GCC for this purpose and hence is used here.
As discussed on the GCC mailing list the register choice is an ABI issue
and so choosing the same register as GCC means __builtin_call_with_static_chain
is compatible.
Patch by Stephen Cross.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241794 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: If shift amount is a constant value > 64 bit it is handled incorrectly during type legalization and X86 lowering. This patch the type of shift amount argument in function DAGTypeLegalizer::ExpandShiftByConstant from unsigned to APInt.
Reviewers: nadav, majnemer, sanjoy, RKSimon
Subscribers: RKSimon, llvm-commits
Differential Revision: http://reviews.llvm.org/D10767
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241790 91177308-0d34-0410-b5e6-96231b3b80d8
The justification of this change is here: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-March/082989.html
According to the current GEP syntax, vector GEP requires that each index must be a vector with the same number of elements.
%A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
In this implementation I let each index be or vector or scalar. All vector indices must have the same number of elements. The scalar value will mean the splat vector value.
(1) %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
or
(2) %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
In all cases the %A type is <4 x i8*>
In the case (2) we add the same offset to all pointers.
The case (1) covers C[B[i]] case, when we have the same base C and different offsets B[i].
The documentation is updated.
http://reviews.llvm.org/D10496
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241788 91177308-0d34-0410-b5e6-96231b3b80d8
The original name was too close to NeedRTCheck which is what the actual
memcheck analysis returns. This flag, as the new name suggests, is only
used to whether to initiate that analysis.
Also a comment is added to answer one question I had about this code for
a long time. Namely, how does this flag differ from
isDependencyCheckNeeded since they are seemingly set at the same time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241784 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Remove empty subclass in the process.
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren, ted
Differential Revision: http://reviews.llvm.org/D11045
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241780 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11042
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241779 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11040
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241778 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11038
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241777 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11037
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241776 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241775 91177308-0d34-0410-b5e6-96231b3b80d8
DataLayout is no longer optional. It was initialized with or without
a DataLayout, and the DataLayout when supplied could have been the
one from the TargetMachine.
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11021
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241774 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Avoid using the TargetMachine owned DataLayout and use the Module owned
one instead. This requires passing the DataLayout up the stack to
ComputeValueVTs().
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11019
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241773 91177308-0d34-0410-b5e6-96231b3b80d8
Column information is present in CodeView when the line table subsection
has bit 0 set to 1 in it's flags field. The column information is
represented as a pair of 16-bit quantities: a starting and ending
column. This information is present at the end of the chunk, after all
the line-PC pairs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241764 91177308-0d34-0410-b5e6-96231b3b80d8
Fix some places where the word consecutive is used but the code really
means constant-stride (i.e. not just unit stride).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241763 91177308-0d34-0410-b5e6-96231b3b80d8
This commit ([LAA] Fix estimation of number of memchecks) regressed the
logic a bit. We shouldn't quit the analysis if we encounter a pointer
without known bounds *unless* we actually need to emit a memcheck for
it.
The original code was using NumComparisons which is now computed
differently. Instead I compute NeedRTCheck from NumReadPtrChecks and
NumWritePtrChecks.
As side note, I find the separation of NeedRTCheck and CanDoRT
confusing, so I will try to merge them in a follow-up patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241756 91177308-0d34-0410-b5e6-96231b3b80d8
Place all code corresponding to a run-time check in one place.
Previously we generated some code, then proceeded to a next check, then
finished the code for the first check (like splitting blocks and
generating branches). Now the code for generating a check is
self-contained.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241741 91177308-0d34-0410-b5e6-96231b3b80d8
A recent patch added calls to isInstructionTriviallyDead without the
corresponding dependency on TransformUtils.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241731 91177308-0d34-0410-b5e6-96231b3b80d8
All the usual X86 target-specific conventions are collapsed to the
normal Win64 convention, but the custom conventions like GHC and webkit
should not be.
Previously we would assume that the caller allocated 32 bytes of shadow
space for us, which is not how webkit_jscc or other custom conventions
are supposed to work.
Based on a patch by peavo@outlook.com.
Fixes PR24051.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241725 91177308-0d34-0410-b5e6-96231b3b80d8
No support for the symbol table yet (but will hopefully add it today).
We always use the long filename format so that we can align the member,
which is an advantage of the BSD format.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241721 91177308-0d34-0410-b5e6-96231b3b80d8
This commit changes the type of the field 'Name' in the struct
'yaml::MachineBasicBlock' from 'std::string' to 'yaml::StringValue'. This change
allows the MIR parser to report errors related to the MBB name with the proper
source locations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241718 91177308-0d34-0410-b5e6-96231b3b80d8
The inferred output file name is based on the first input file, not the
first one with extension .obj. The output file was also being written to
the wrong directory; it needs to be written to whichever directory on the
libpath it was found in. This change fixes both issues.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241710 91177308-0d34-0410-b5e6-96231b3b80d8
r239285 ([LoopAccessAnalysis] Teach LAA to check the memory dependence
between strided accesses.) introduced a new case under
MemoryDepChecker::isDependent. We normally have debug output for each
case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241707 91177308-0d34-0410-b5e6-96231b3b80d8
The 32-bit lowering assumed that WinEHPrepare had this invariant.
WinEHPrepare did it for C++, but not SEH. The result was that we would
insert calls to llvm.x86.seh.restoreframe in normal basic blocks, which
corrupted the frame pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241699 91177308-0d34-0410-b5e6-96231b3b80d8
There's no reason to be able to mutate `MCSubtargetInfo` in
`getDeprecationInfo()`. Constify the reference.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241693 91177308-0d34-0410-b5e6-96231b3b80d8
- Implement copying ASR to/from GPR regs.
- Mark ASRs as non-allocatable, so it won't try to arbitrarily use
them inappropriately.
- Instead of inserting explicit WRASR/RDASR nodes in the MUL/DIV
routines, just do normal register copies.
- Also...mark div as using Y, not just writing it.
Added a test case with some code which previously died with an
assertion failure (with -O0), or produced wrong code (otherwise).
(Third time's the charm?)
Differential Revision: http://reviews.llvm.org/D10401
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241686 91177308-0d34-0410-b5e6-96231b3b80d8