This is a nop. doesSectionRequireSymbols is only used from
isSymbolLinkerVisible. isSymbolLinkerVisible only use from ELF was in
if (!Asm.isSymbolLinkerVisible(Symbol) && !Symbol.isUndefined())
return false;
if (Symbol.isTemporary())
return false;
If the symbol is a temporary this code returns false and it is irrelevant if
we take the first if or not. If the symbol is not a temporary,
Asm.isSymbolLinkerVisible returns true without ever calling
doesSectionRequireSymbols.
This was an horrible leftover from when support for ELF was first added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200894 91177308-0d34-0410-b5e6-96231b3b80d8
Commuting the 231 and 132 variants would swap addends and
multiplicands/multipliers, which isn't valid.
I'm still trying to reduce a decent test case for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200792 91177308-0d34-0410-b5e6-96231b3b80d8
Calls with inalloca are lowered by skipping all stores for arguments
passed in memory and the initial stack adjustment to allocate argument
memory.
Now the frontend is responsible for the memory layout, and the backend
doesn't have to do any work. As a result these changes are pretty
minimal.
Reviewers: echristo
Differential Revision: http://llvm-reviews.chandlerc.com/D2637
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200596 91177308-0d34-0410-b5e6-96231b3b80d8
Allocas marked inalloca are never static, but we were trying to put them
into the static alloca map if they were in the entry block. Also add an
assertion in x86 fastisel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200593 91177308-0d34-0410-b5e6-96231b3b80d8
It looks like these pseudos were only used for pattern matching. Def pats are
the appropriate way to do that. As a bonus, these intrinsics will now have
memory operands folded properly, and better FMA3 variants selected where
appropriate (see r199933).
<rdar://problem/15611947>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200577 91177308-0d34-0410-b5e6-96231b3b80d8
If we have a callee cleanup convention, the callee is going to pop the
arguments off the stack, not push them on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200566 91177308-0d34-0410-b5e6-96231b3b80d8
MSVC always places the 'this' parameter for a method first. The
implicit 'sret' pointer for methods always comes second. We already
implement this for __thiscall by putting sret parameters on the stack,
but __cdecl methods require putting both parameters on the stack in
opposite order.
Using a special calling convention allows frontends to keep the sret
parameter first, which avoids breaking lots of assumptions in LLVM and
Clang.
Fixes PR15768 with the corresponding change in Clang.
Reviewers: ributzka, majnemer
Differential Revision: http://llvm-reviews.chandlerc.com/D2663
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200561 91177308-0d34-0410-b5e6-96231b3b80d8
These should end up (in ELF) as R_X86_64_32S relocs, not R_X86_64_32.
Kill the horrid and incomplete special case and FIXME in
EncodeInstruction() and set things up so it can infer the signedness
from the ImmType just like it can the size and whether it's PC-relative.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200495 91177308-0d34-0410-b5e6-96231b3b80d8
None of the object file formats reported error on iterator increment. In
retrospect, that is not too surprising: no object format stores symbols or
sections in a linked list or other structure that requires chasing pointers.
As a consequence, all error checking can be done on begin() and end().
This reduces the text segment of bin/llvm-readobj in my machine from 521233 to
518526 bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200442 91177308-0d34-0410-b5e6-96231b3b80d8
The subtarget info is explicitly passed to the EncodeInstruction
method and we should use that subtarget info to influence any
encoding decisions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200350 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids miscompiling MS inline asm in LLVM where we have to infer
clobbers. Test case forthcoming in Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200279 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch we used getIntImmCost from TargetTransformInfo to determine if
a load of a constant should be converted to just a constant, but the threshold
for this was set to an arbitrary value. This value works well for the two
targets (X86 and ARM) that implement this target-hook, but it isn't
target-independent at all.
Now targets have the possibility to decide directly if this optimization should
be performed. The default value is set to false to preserve the current
behavior. The target hook has been moved to TargetLowering, which removed the
last use and need of TargetTransformInfo in SelectionDAG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200271 91177308-0d34-0410-b5e6-96231b3b80d8
lib/Target/X86/Disassembler/X86DisassemblerDecoder.c:1361:7: error: C++ style comments are not allowed in ISO C90
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200153 91177308-0d34-0410-b5e6-96231b3b80d8
This has a few advantages:
* Only targets that use a MCTargetStreamer have to worry about it.
* There is never a MCTargetStreamer without a MCStreamer, so we can use a
reference.
* A MCTargetStreamer can talk to the MCStreamer in its constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200129 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r200058 and adds the using directive for
ARMTargetTransformInfo to silence two g++ overload warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200062 91177308-0d34-0410-b5e6-96231b3b80d8
This commit caused -Woverloaded-virtual warnings. The two new
TargetTransformInfo::getIntImmCost functions were only added to the superclass,
and to the X86 subclass. The other targets were not updated, and the
warning highlighted this by pointing out that e.g. ARMTTI::getIntImmCost was
hiding the two new getIntImmCost variants.
We could pacify the warning by adding "using TargetTransformInfo::getIntImmCost"
to the various subclasses, or turning it off, but I suspect that it's wrong to
leave the functions unimplemnted in those targets. The default implementations
return TCC_Free, which I don't think is right e.g. for ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200058 91177308-0d34-0410-b5e6-96231b3b80d8
Retry commit r200022 with a fix for the build bot errors. Constant expressions
have (unlike instructions) module scope use lists and therefore may have users
in different functions. The fix is to simply ignore these out-of-function uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200034 91177308-0d34-0410-b5e6-96231b3b80d8
This pass identifies expensive constants to hoist and coalesces them to
better prepare it for SelectionDAG-based code generation. This works around the
limitations of the basic-block-at-a-time approach.
First it scans all instructions for integer constants and calculates its
cost. If the constant can be folded into the instruction (the cost is
TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
consider it expensive and leave it alone. This is the default behavior and
the default implementation of getIntImmCost will always return TCC_Free.
If the cost is more than TCC_BASIC, then the integer constant can't be folded
into the instruction and it might be beneficial to hoist the constant.
Similar constants are coalesced to reduce register pressure and
materialization code.
When a constant is hoisted, it is also hidden behind a bitcast to force it to
be live-out of the basic block. Otherwise the constant would be just
duplicated and each basic block would have its own copy in the SelectionDAG.
The SelectionDAG recognizes such constants as opaque and doesn't perform
certain transformations on them, which would create a new expensive constant.
This optimization is only applied to integer constants in instructions and
simple (this means not nested) constant cast experessions. For example:
%0 = load i64* inttoptr (i64 big_constant to i64*)
Reviewed by Eric
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200022 91177308-0d34-0410-b5e6-96231b3b80d8
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
This commit teaches the X86 backend to create the same X86 instructions when it
lowers an sadd/ssub with overflow intrinsic and a conditional branch that uses
that overflow result. This allows SelectionDAG to recognize and remove one of
the redundant operations.
This fixes <rdar://problem/15874016> and <rdar://problem/15661073>.
Reviewed by Nadav
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199976 91177308-0d34-0410-b5e6-96231b3b80d8
registers in memory addresses that do not match the index register. As it does
for .att_syntax.
rdar://15887380
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199948 91177308-0d34-0410-b5e6-96231b3b80d8
scale factors in memory addresses. As it does for .att_syntax.
It was producing:
Assertion failed: (((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) && "Invalid scale!"), function CreateMem, file /Volumes/SandBox/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp, line 1133.
rdar://14967214
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199942 91177308-0d34-0410-b5e6-96231b3b80d8
when used with symbolic disassembly, add a check that the operand
is an immediate and has not been symbolicated to MCExpr operand.
I’m trying to enable the ‘C’ disassembly API option
LLVMDisassembler_Option_SetInstrComments for darwin’s
otool(1) that uses the llvm disassembler API. The problem is
that the disassembler API can change an immediate operand to
an MCExpr operand if it symbolicates it with the call backs.
And if it does the code in llvm::EmitAnyX86InstComments()
will crash when it assumes these operands are immediates.
The fix for this is very straight forward to just protect the call
to getImm() with a check of isImm(). So if the immediate for
an instruction is symbolicated it simply doesn’t get the X86
verbose assembly comments:
% otool -tV test_asm.o
test_asm.o:
(__TEXT,__text) section
_t1:
0000000000000000 vpshufd $_t1, %xmm1, %xmm0
0000000000000005 retq
0000000000000006 nopw %cs:_t1(%rax,%rax)
_t2:
0000000000000010 vpshufd $-0x1, %xmm0, %xmm0 ## xmm0 = xmm0[3,3,3,3]
0000000000000015 retq
0000000000000016 nopw %cs:_t1(%rax,%rax)
_t3:
0000000000000020 vpshufd $_t1, %xmm1, %xmm0
0000000000000025 retq
0000000000000026 nopw %cs:_t1(%rax,%rax)
_t4:
0000000000000030 vpshufd $0x2d, %xmm0, %xmm0 ## xmm0 = xmm0[1,3,2,0]
0000000000000035 retq
The fact that the immediate $0x0 is being symbolicated at
all in this case is a different problem which my next patch
will address.
rdar://10989286
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199697 91177308-0d34-0410-b5e6-96231b3b80d8
Add target specific rules for combining vselect dag nodes into movss/movsd
when possible.
If the vector type of the vselect dag node in input is either MVT::v4i13 or
MVT::v4f32, then try to fold according to rules:
1) fold (vselect (build_vector (0, -1, -1, -1)), A, B) -> (movss A, B)
2) fold (vselect (build_vector (-1, 0, 0, 0)), A, B) -> (movss B, A)
If the vector type of the vselect dag node in input is either MVT::v2i64 or
MVT::v2f64 (and we have SSE2), then try to fold according to rules:
3) fold (vselect (build_vector (0, -1)), A, B) -> (movsd A, B)
4) fold (vselect (build_vector (-1, 0)), A, B) -> (movsd B, A)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199683 91177308-0d34-0410-b5e6-96231b3b80d8
The addition of IC_OPSIZE_ADSIZE in r198759 wasn't quite complete. It
also turns out to have been unnecessary. The disassembler handles the
AdSize prefix for itself, and doesn't care about the difference between
(e.g.) MOV8ao8 and MOB8ao8_16 definitions. So just let them coexist and
don't worry about it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199654 91177308-0d34-0410-b5e6-96231b3b80d8
The disassembler has a special case for 'L' vs. 'W' in its heuristic for
checking for 32-bit and 16-bit equivalents. We could expand the heuristic,
but better just to be consistent in using the 'L' suffix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199652 91177308-0d34-0410-b5e6-96231b3b80d8
Not quite sure why this was marked isAsmParserOnly, but it means that the
disassembler can't see it either.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199651 91177308-0d34-0410-b5e6-96231b3b80d8
When disassembling in 16-bit mode the meaning of the OpSize bit is
inverted. Instructions found in the IC_OPSIZE context will actually
*not* have the 0x66 prefix, and instructions in the IC context will
have the 0x66 prefix. Make use of the existing special-case handling
for the 0x66 prefix being in the wrong place, to cope with this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199650 91177308-0d34-0410-b5e6-96231b3b80d8
Aside from cleaning up the code, this also adds support for the -code16
environment and actually enables the MODE_16BIT mode that was previously
not accessible.
There is no point adding any testing for 16-bit yet though; basically
nothing will work because we aren't handling the OpSize prefix correctly
for 16-bit mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199649 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds two new target-independent calling conventions for runtime
calls - PreserveMost and PreserveAll.
The target-specific implementation for X86-64 is defined as following:
- Arguments are passed as for the default C calling convention
- The same applies for the return value(s)
- PreserveMost preserves all GPRs - except R11
- PreserveAll preserves all GPRs and all XMMs/YMMs - except R11
Reviewed by Lang and Philip
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199508 91177308-0d34-0410-b5e6-96231b3b80d8
MSVC on x64 requires that we create image relative symbol
references to refer to RTTI data. Seeing as how there is no way to
explicitly make reference to a given relocation type in LLVM IR, pattern
match expressions of the form &foo - &__ImageBase.
Differential Revision: http://llvm-reviews.chandlerc.com/D2523
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199312 91177308-0d34-0410-b5e6-96231b3b80d8
promotion code, Tablegen will now select FPExt for floating point promotions
(previously it had returned AExt, which is not valid for floating point types).
Any out-of-tree targets that were relying on AExt being returned for FP
promotions will need to update their code check for FPExt instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199252 91177308-0d34-0410-b5e6-96231b3b80d8
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199218 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes a regression intruced by r198113.
Revision r198113 introduced an algorithm that tries to fold a vector shift
by immediate count into a build_vector if the input vector is a known vector
of constants.
However the algorithm only worked under the assumption that the input vector
type and the shift type are exactly the same.
This patch disables the folding of vector shift by immediate count if the
input vector type and the shift value type are not the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199213 91177308-0d34-0410-b5e6-96231b3b80d8
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199204 91177308-0d34-0410-b5e6-96231b3b80d8
This should allow SSE instructions to be encoded correctly in 16-bit mode which r198586 probably broke.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199193 91177308-0d34-0410-b5e6-96231b3b80d8
This finishes the job started in r198756, and creates separate opcodes for
64-bit vs. 32-bit versions of the rest of the RET instructions too.
LRETL/LRETQ are interesting... I can't see any justification for their
existence in the SDM. There should be no 'LRETL' in 64-bit mode, and no
need for a REX.W prefix for LRETQ. But this is what GAS does, and my
Sandybridge CPU and an Opteron 6376 concur when tested as follows:
asm __volatile__("pushq $0x1234\nmovq $0x33,%rax\nsalq $32,%rax\norq $1f,%rax\npushq %rax\nlretl $8\n1:");
asm __volatile__("pushq $1234\npushq $0x33\npushq $1f\nlretq $8\n1:");
asm __volatile__("pushq $0x33\npushq $1f\nlretq\n1:");
asm __volatile__("pushq $0x1234\npushq $0x33\npushq $1f\nlretq $8\n1:");
cf. PR8592 and commit r118903, which added LRETQ. I only added LRETIQ to
match it.
I don't quite understand how the Intel syntax parsing for ret
instructions is working, despite r154468 allegedly fixing it. Aren't the
explicitly sized 'retw', 'retd' and 'retq' supposed to work? I have at
least made the 'lretq' work with (and indeed *require*) the 'q'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199106 91177308-0d34-0410-b5e6-96231b3b80d8
The target specific parser should return `false' if the target AsmParser handles
the directive, and `true' if the generic parser should handle the directive.
Many of the target specific directive handlers would `return Error' which does
not follow these semantics. This change simply changes the target specific
routines to conform to the semantis of the ParseDirective correctly.
Conformance to the semantics improves diagnostics emitted for the invalid
directives. X86 is taken as a sample to ensure that multiple diagnostics are
not presented for a single error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199068 91177308-0d34-0410-b5e6-96231b3b80d8
Use separate callee-save masks for XMM and YMM registers for anyregcc on X86 and
select the proper mask depending on the target cpu we compile for.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198985 91177308-0d34-0410-b5e6-96231b3b80d8
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.
This removes the 'Writer.h' header which contained only a single function
declaration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198836 91177308-0d34-0410-b5e6-96231b3b80d8
They do *different* things to %esp, so they are not equivalent.
Rename PUSHi8 to PUSH32i8 and add the missing PUSH16i8.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198761 91177308-0d34-0410-b5e6-96231b3b80d8
We can't do a perfect job here. We *have* to allow (%dx) even in 64-bit
mode, for example, because it might be used for an unofficial form of
the in/out instructions. We actually want to do a better job of validation
*later*. Perhaps *instead* of doing it where we are at the moment.
But for now, doing what validation we *can* do in the place that the code
already has its validation, is an improvement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198760 91177308-0d34-0410-b5e6-96231b3b80d8
It seems there is no separate instruction class for having AdSize *and*
OpSize bits set, which is required in order to disambiguate between all
these instructions. So add that to the disassembler.
Hm, perhaps we do need an AdSize16 bit after all?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198759 91177308-0d34-0410-b5e6-96231b3b80d8
Where "where possible" means that it's an immediate value and it's below
0x10000. In fact GAS will either truncate or error with larger values,
and will insist on using the addr32 prefix to get 32-bit addressing. So
perhaps we should do that, in a later patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198758 91177308-0d34-0410-b5e6-96231b3b80d8
JCXZ should have the 0x67 prefix only if we're in 32-bit mode, so make that
appropriately conditional. And JECXZ needs the prefix instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198757 91177308-0d34-0410-b5e6-96231b3b80d8
I couldn't see how to do this sanely without splitting RETQ from RETL.
Eric says: "sad about the inability to roundtrip them now, but...".
I have no idea what that means, but perhaps it wants preserving in the
commit comment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198756 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes the bulk of 16-bit output, and the corresponding test case
x86-16.s now looks mostly like the x86-32.s test case that it was
originally based on. A few irrelevant instructions have been dropped,
and there are still some corner cases to be fixed in subsequent patches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198752 91177308-0d34-0410-b5e6-96231b3b80d8
Modern versions of OSX/Darwin's ld (ld64 > 97.17) have an optimisation present that allows the back end to omit relocations (and replace them with an absolute difference) for FDE some text section refs.
This patch allows a backend to opt-in to this behaviour by setting "DwarfFDESymbolsUseAbsDiff". At present, this is only enabled for modern x86 OSX ports.
test changes by David Fang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198744 91177308-0d34-0410-b5e6-96231b3b80d8
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198688 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM backend has been using most of the MachO related subtarget
checks almost interchangeably, and since the only target it's had to
run on has been IOS (which is all three of MachO, Darwin and IOS) it's
worked out OK so far.
But we'd like to support embedded targets under the "*-*-none-macho"
triple, which means everything starts falling apart and inconsistent
behaviours emerge.
This patch should pick a reasonably sensible set of behaviours for the
new triple (and any others that come along, with luck). Some choices
were debatable (notably FP == r7 or r11), but we can revisit those
later when deficiencies become apparent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198617 91177308-0d34-0410-b5e6-96231b3b80d8
The 0x66 prefix toggles between 16-bit and 32-bit addressing mode.
So in 32-bit mode it is used to switch to 16-bit addressing mode for the
following instruction, while in 16-bit mode it's the other way round — it's
used to switch to 32-bit mode instead.
Thus, emit the 0x66 prefix byte for OpSize only in 32-bit (and 64-bit) mode,
and introduce a new OpSize16 bit which is used in 16-bit mode instead.
This is just the basic infrastructure for that change; a subsequent patch
will add the new OpSize16 bit to the 32-bit instructions that need it.
Patch from David Woodhouse.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198586 91177308-0d34-0410-b5e6-96231b3b80d8
This is not really expected to work right yet. Mostly because we will
still emit the OpSize (0x66) prefix in all the wrong places, along with
a number of other corner cases. Those will all be fixed in the subsequent
commits.
Patch from David Woodhouse.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198584 91177308-0d34-0410-b5e6-96231b3b80d8
This moves the check up into the parent class so that all targets can use it
without having to copy (and keep in sync) the same error message.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198579 91177308-0d34-0410-b5e6-96231b3b80d8
Add some tests to validate correct register selection, including a fix
to an existing test which was requiring the *wrong* output.
Patch from David Woodhouse.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198566 91177308-0d34-0410-b5e6-96231b3b80d8
Removed vzeroupper from AVX-512 mode - our optimization gude does not recommend to insert vzeroupper at all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198557 91177308-0d34-0410-b5e6-96231b3b80d8
__builtin_returnaddress requires that the value passed into is be a constant.
However, at -O0 even a constant expression may not be converted to a constant.
Emit an error message intead of crashing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198531 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch any program that wanted to know the final symbol name of a
GlobalValue had to link with Target.
This patch implements a compromise solution where the mangler uses DataLayout.
This way, any tool that already links with Target (llc, clang) gets the exact
behavior as before and new IR files can be mangled without linking with Target.
With this patch the mangler is constructed with just a DataLayout and DataLayout
is extended to include the information the Mangler needs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198438 91177308-0d34-0410-b5e6-96231b3b80d8
During the years there have been some attempts at figuring out how to
align byval arguments. A look at the commit log suggests that they
were
* Use the ABI alignment.
* When that was not sufficient for x86-64, I added the 's' specification to
DataLayout.
* When that was not sufficient Evan added the virtual getByValTypeAlignment.
* When even that was not sufficient, we just got the FE to add the alignment
to the byval.
This patch is just a simple cleanup that removes my first attempt at fixing the
problem. I also added an AArch64 implementation of getByValTypeAlignment to
make sure this patch is a nop. I also left the 's' parsing for backward
compatibility.
I will send a short email to llvmdev about the change for anyone maintaining
an out of tree target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198287 91177308-0d34-0410-b5e6-96231b3b80d8
vector shift by immedate count (VSHLI/VSRLI/VSRAI) into a build_vector when
the vector in input to the shift is a build_vector of all constants or UNDEFs.
Target specific nodes for packed shifts by immediate count are in
general introduced by function 'getTargetVShiftByConstNode' (in
X86ISelLowering.cpp) when lowering shift operations, SSE/AVX immediate
shift intrinsics and (only in very few cases) SIGN_EXTEND_INREG dag
nodes.
This patch adds extra rules for simplifying vector shifts inside
function 'getTargetVShiftByConstNode'.
Added file test/CodeGen/X86/vec_shift5.ll to verify that packed
shifts by immediate are correctly folded into a build_vector when the
input vector to the shift dag node is a vector of constants or undefs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198113 91177308-0d34-0410-b5e6-96231b3b80d8
That's what it actually means, and with 16-bit support it's going to be
a little more relevant since in a few corner cases we may actually want
to distinguish between 16-bit and 32-bit mode (for example the bare 'push'
aliases to pushw/pushl etc.)
Patch by David Woodhouse
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197768 91177308-0d34-0410-b5e6-96231b3b80d8
this commit as the only one on the Blamelist so I quickly reverted this.
However it was actually Nick's change who has since fixed that issue.
Original commit message:
Changed the X86 assembler for intel syntax to work with directional labels.
The X86 assembler as a separate code to parser the intel assembly syntax
in X86AsmParser::ParseIntelOperand(). This did not parse directional labels.
And if something like 1f was used as a branch target it would get an
"Unexpected token" error.
The fix starts in X86AsmParser::ParseIntelExpression() in the case for
AsmToken::Integer, it needs to grab the IntVal from the current token
then look for a 'b' or 'f' following an Integer. Then it basically needs to
do what is done in AsmParser::parsePrimaryExpr() for directional
labels. It saves the MCExpr it creates in the IntelExprStateMachine
in the Sym field.
When it returns to X86AsmParser::ParseIntelOperand() it looks
for a non-zero Sym field in the IntelExprStateMachine and if
set it creates a memory operand not an immediate operand
it would normally do for the Integer.
rdar://14961158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197744 91177308-0d34-0410-b5e6-96231b3b80d8
The X86 assembler has a separate code to parser the intel assembly syntax
in X86AsmParser::ParseIntelOperand(). This did not parse directional labels.
And if something like 1f was used as a branch target it would get an
"Unexpected token" error.
The fix starts in X86AsmParser::ParseIntelExpression() in the case for
AsmToken::Integer, it needs to grab the IntVal from the current token
then look for a 'b' or 'f' following the Integer. Then it basically needs to
do what is done in AsmParser::parsePrimaryExpr() for directional
labels. It saves the MCExpr it creates in the IntelExprStateMachine
in the Sym field.
When it returns to X86AsmParser::ParseIntelOperand() it looks
for a non-zero Sym field in the IntelExprStateMachine and if
set it creates a memory operand not an immediate operand
it would normally do for the Integer.
rdar://14961158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197728 91177308-0d34-0410-b5e6-96231b3b80d8
The condition in selects is supposed to be i1.
Make sure we are just reading the less significant bit
of the 8 bits width value to match this constraint.
<rdar://problem/15651765>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197712 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the MachineFrameInfo API to use the new SSPLayoutKind information
produced by the StackProtector pass (instead of a boolean flag) and updates a
few pass dependencies (to preserve the SSP analysis).
The stack layout follows the same approach used prior to this change - i.e.,
only LargeArray stack objects will be placed near the canary and everything
else will be laid out normally. After this change, structures containing large
arrays will also be placed near the canary - a case previously missed by the
old implementation.
Out of tree targets will need to update their usage of
MachineFrameInfo::CreateStackObject to remove the MayNeedSP argument.
The next patch will implement the rules for sspstrong and sspreq. The end goal
is to support ssp-strong stack layout rules.
WIP.
Differential Revision: http://llvm-reviews.chandlerc.com/D2158
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197653 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r197481, recommiting r197469 with an extra fix.
The vastart_save_xmm_regs pseudo-instruction expands to a test and a
branch, so it modifies EFLAGS. Mark it so, or else the scheduler might
place it in the middle of another test+branch.
This fixes a bug exposed by r192750, which changed the initial scheduler
to source-order as part of enabling the MI Scheduler for X86.
This re-commit changes the VASTART_SAVE_XMM_REGS custom inserter not to
try to save %flags, and adds a test that catches the bad behavior of
r197469.
<rdar://problem/15627766>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197503 91177308-0d34-0410-b5e6-96231b3b80d8
http://llvm.org/bugs/show_bug.cgi?id=18045
Short issue description:
For X86 machines with sse < sse4.1 we got failures for some
particular load/store vector sequences:
$ clang-trunk -m32 -O2 test-case.c
fatal error: error in backend: Cannot select: 0x4200920: v4i32,ch = load 0x41d6ab0, 0x4205850,
0x41dcb10<LD16[getelementptr inbounds ([4 x i32]* @e, i32 0, i32 0)](align=4)> [ORD=82]
[ID=58]
0x4205850: i32 = X86ISD::Wrapper 0x41d5490 [ORD=26] [ID=43]
0x41d5490: i32 = TargetGlobalAddress<[4 x i32]* @e> 0 [ORD=26] [ID=23]
0x41dcb10: i32 = undef [ID=2]
The reason is that EltsFromConsecutiveLoads could emit such load instruction
both before and after legalize stage. Though this instruction is not legal for
machines with SSSE3 and lower.
The fix: In EltsFromConsecutiveLoads, if we have passed legalize stage, we
check whether nodes it emits are legal.
P.S.: If you get failure in time from 12:00 and till 22:00 (UTC-8),
perhaps I'll slow with response, so you better reject this commit. Thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197492 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r197469.
The sanitizer and dragonegg buildbots are failing, I think because of
this change. Reverting until I figure out why.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197481 91177308-0d34-0410-b5e6-96231b3b80d8
The vastart_save_xmm_regs pseudo-instruction expands to a test and a
branch, so it modifies EFLAGS. Mark it so, or else the scheduler might
place it in the middle of another test+branch.
This fixes a bug exposed by r192750, which turned on the MI Scheduler
for X86.
<rdar://problem/15627766>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197469 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the WebKit_JS calling convention to perform partial writes on a 4
byte granularity to stack slots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197431 91177308-0d34-0410-b5e6-96231b3b80d8
Produce them in the same order on every target. The order is that of
getStringRepresentation: e|E-i*-f*-v*-a*-s*-n*-S*.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197411 91177308-0d34-0410-b5e6-96231b3b80d8
Added scalar compare VCMPSS, VCMPSD.
Implemented LowerSELECT for scalar FP operations.
I replaced FSETCCss, FSETCCsd with one node type FSETCCs.
Node extract_vector_elt(v16i1/v8i1, idx) returns an element of type i1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197384 91177308-0d34-0410-b5e6-96231b3b80d8
While it's safe for the X86-specific shift nodes, dag combining will
kill generic nodes. Insert an AND to make it safe, isel will nuke it
as x86's shift instructions have an implicit AND.
Fixes PR16108, which contains a contraption to hit this case in between
constant folders.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197228 91177308-0d34-0410-b5e6-96231b3b80d8
Since gcc 4.6 the compiler uses ___chkstk_ms which has the same semantics as the
MS CRT function __chkstk. This simplifies the prologue generation a bit.
Reviewed by Rafael Espíndola.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197205 91177308-0d34-0410-b5e6-96231b3b80d8
a vector packed single/double fp operation followed by a vector insert.
The effect is that the backend coverts the packed fp instruction
followed by a vectro insert into a SSE or AVX scalar fp instruction.
For example, given the following code:
__m128 foo(__m128 A, __m128 B) {
__m128 C = A + B;
return (__m128) {c[0], a[1], a[2], a[3]};
}
previously we generated:
addps %xmm0, %xmm1
movss %xmm1, %xmm0
we now generate:
addss %xmm1, %xmm0
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197145 91177308-0d34-0410-b5e6-96231b3b80d8