llvm-6502/lib/Target/Sparc/SparcInstrInfo.td

634 lines
27 KiB
TableGen
Raw Normal View History

//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the SparcV8 instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
class InstV8 : Instruction { // SparcV8 instruction baseline
field bits<32> Inst;
let Namespace = "V8";
bits<2> op;
let Inst{31-30} = op; // Top two bits are the 'op' field
// Bit attributes specific to SparcV8 instructions
bit isPasi = 0; // Does this instruction affect an alternate addr space?
bit isPrivileged = 0; // Is this a privileged instruction?
}
include "SparcV8InstrFormats.td"
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//
def simm13 : PatLeaf<(imm), [{
// simm13 predicate - True if the imm fits in a 13-bit sign extended field.
return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
}]>;
def LO10 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
}]>;
def HI22 : SDNodeXForm<imm, [{
// Transformation function: shift the immediate value down into the low bits.
return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
}]>;
def SETHIimm : PatLeaf<(imm), [{
return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
}], HI22>;
// Addressing modes.
def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", []>;
// Address operands
def MEMrr : Operand<i32> {
let PrintMethod = "printMemOperand";
let NumMIOperands = 2;
let MIOperandInfo = (ops IntRegs, IntRegs);
}
def MEMri : Operand<i32> {
let PrintMethod = "printMemOperand";
let NumMIOperands = 2;
let MIOperandInfo = (ops IntRegs, i32imm);
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
// Pseudo instructions.
class PseudoInstV8<string asmstr, dag ops> : InstV8 {
let AsmString = asmstr;
dag OperandList = ops;
}
def PHI : PseudoInstV8<"PHI", (ops variable_ops)>;
def ADJCALLSTACKDOWN : PseudoInstV8<"!ADJCALLSTACKDOWN $amt",
(ops i32imm:$amt)>;
def ADJCALLSTACKUP : PseudoInstV8<"!ADJCALLSTACKUP $amt",
(ops i32imm:$amt)>;
//def IMPLICIT_USE : PseudoInstV8<"!IMPLICIT_USE",(ops variable_ops)>;
def IMPLICIT_DEF : PseudoInstV8<"!IMPLICIT_DEF $dst",
(ops IntRegs:$dst)>;
def FpMOVD : PseudoInstV8<"!FpMOVD", (ops)>; // pseudo 64-bit double move
// Section A.3 - Synthetic Instructions, p. 85
// special cases of JMPL:
let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in {
let rd = I7.Num, rs1 = G0.Num, simm13 = 8 in
def RET : F3_2<2, 0b111000,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"ret $b, $c, $dst", []>;
let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
def RETL: F3_2<2, 0b111000, (ops),
"retl", [(ret)]>;
}
// CMP is a special case of SUBCC where destination is ignored, by setting it to
// %g0 (hardwired zero).
// FIXME: should keep track of the fact that it defs the integer condition codes
let rd = 0 in
def CMPri: F3_2<2, 0b010100,
(ops IntRegs:$b, i32imm:$c),
"cmp $b, $c", []>;
// Section B.1 - Load Integer Instructions, p. 90
def LDSBrr : F3_1<3, 0b001001,
(ops IntRegs:$dst, MEMrr:$addr),
"ldsb [$addr], $dst",
[(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
def LDSBri : F3_2<3, 0b001001,
(ops IntRegs:$dst, MEMri:$addr),
"ldsb [$addr], $dst",
[(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
def LDSHrr : F3_1<3, 0b001010,
(ops IntRegs:$dst, MEMrr:$addr),
"ldsh [$addr], $dst",
[(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
def LDSHri : F3_2<3, 0b001010,
(ops IntRegs:$dst, MEMri:$addr),
"ldsh [$addr], $dst",
[(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
def LDUBrr : F3_1<3, 0b000001,
(ops IntRegs:$dst, MEMrr:$addr),
"ldub [$addr], $dst",
[(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
def LDUBri : F3_2<3, 0b000001,
(ops IntRegs:$dst, MEMri:$addr),
"ldub [$addr], $dst",
[(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
def LDUHrr : F3_1<3, 0b000010,
(ops IntRegs:$dst, MEMrr:$addr),
"lduh [$addr], $dst",
[(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
def LDUHri : F3_2<3, 0b000010,
(ops IntRegs:$dst, MEMri:$addr),
"lduh [$addr], $dst",
[(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
def LDrr : F3_1<3, 0b000000,
(ops IntRegs:$dst, MEMrr:$addr),
"ld [$addr], $dst",
[(set IntRegs:$dst, (load ADDRrr:$addr))]>;
def LDri : F3_2<3, 0b000000,
(ops IntRegs:$dst, MEMri:$addr),
"ld [$addr], $dst",
[(set IntRegs:$dst, (load ADDRri:$addr))]>;
def LDDrr : F3_1<3, 0b000011,
(ops IntRegs:$dst, MEMrr:$addr),
"ldd [$addr], $dst", []>;
def LDDri : F3_2<3, 0b000011,
(ops IntRegs:$dst, MEMri:$addr),
"ldd [$addr], $dst", []>;
// Section B.2 - Load Floating-point Instructions, p. 92
def LDFrr : F3_1<3, 0b100000,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"ld [$b+$c], $dst", []>;
def LDFri : F3_2<3, 0b100000,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"ld [$b+$c], $dst", []>;
def LDDFrr : F3_1<3, 0b100011,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"ldd [$b+$c], $dst", []>;
def LDDFri : F3_2<3, 0b100011,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"ldd [$b+$c], $dst", []>;
def LDFSRrr: F3_1<3, 0b100001,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"ld [$b+$c], $dst", []>;
def LDFSRri: F3_2<3, 0b100001,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"ld [$b+$c], $dst", []>;
// Section B.4 - Store Integer Instructions, p. 95
def STBri : F3_2<3, 0b000101,
(ops MEMri:$addr, IntRegs:$src),
"stb $src, [$addr]", []>;
def STHri : F3_2<3, 0b000110,
(ops MEMri:$addr, IntRegs:$src),
"sth $src, [$addr]", []>;
def STri : F3_2<3, 0b000100,
(ops MEMri:$addr, IntRegs:$src),
"st $src, [$addr]", []>;
def STDri : F3_2<3, 0b000111,
(ops MEMri:$addr, IntRegs:$src),
"std $src, [$addr]", []>;
// Section B.5 - Store Floating-point Instructions, p. 97
def STFrr : F3_1<3, 0b100100,
(ops IntRegs:$base, IntRegs:$offset, IntRegs:$src),
"st $src, [$base+$offset]", []>;
def STFri : F3_2<3, 0b100100,
(ops IntRegs:$base, IntRegs:$offset, i32imm:$src),
"st $src, [$base+$offset]", []>;
def STDFrr : F3_1<3, 0b100111,
(ops IntRegs:$base, IntRegs:$offset, IntRegs:$src),
"std $src, [$base+$offset]", []>;
def STDFri : F3_2<3, 0b100111,
(ops IntRegs:$base, IntRegs:$offset, i32imm:$src),
"std $src, [$base+$offset]", []>;
def STFSRrr : F3_1<3, 0b100101,
(ops IntRegs:$base, IntRegs:$offset, IntRegs:$src),
"st $src, [$base+$offset]", []>;
def STFSRri : F3_2<3, 0b100101,
(ops IntRegs:$base, IntRegs:$offset, i32imm:$src),
"st $src, [$base+$offset]", []>;
def STDFQrr : F3_1<3, 0b100110,
(ops IntRegs:$base, IntRegs:$offset, IntRegs:$src),
"std $src, [$base+$offset]", []>;
def STDFQri : F3_2<3, 0b100110,
(ops IntRegs:$base, IntRegs:$offset, i32imm:$src),
"std $src, [$base+$offset]", []>;
// Section B.9 - SETHI Instruction, p. 104
def SETHIi: F2_1<0b100,
(ops IntRegs:$dst, i32imm:$src),
"sethi $src, $dst",
[(set IntRegs:$dst, SETHIimm:$src)]>;
// Section B.10 - NOP Instruction, p. 105
// (It's a special case of SETHI)
let rd = 0, imm22 = 0 in
def NOP : F2_1<0b100, (ops), "nop", []>;
// Section B.11 - Logical Instructions, p. 106
def ANDrr : F3_1<2, 0b000001,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"and $b, $c, $dst",
[(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
def ANDri : F3_2<2, 0b000001,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"and $b, $c, $dst",
[(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
def ANDCCrr : F3_1<2, 0b010001,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"andcc $b, $c, $dst", []>;
def ANDCCri : F3_2<2, 0b010001,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"andcc $b, $c, $dst", []>;
def ANDNrr : F3_1<2, 0b000101,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"andn $b, $c, $dst", []>;
def ANDNri : F3_2<2, 0b000101,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"andn $b, $c, $dst", []>;
def ANDNCCrr: F3_1<2, 0b010101,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"andncc $b, $c, $dst", []>;
def ANDNCCri: F3_2<2, 0b010101,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"andncc $b, $c, $dst", []>;
def ORrr : F3_1<2, 0b000010,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"or $b, $c, $dst",
[(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
def ORri : F3_2<2, 0b000010,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"or $b, $c, $dst",
[(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
def ORCCrr : F3_1<2, 0b010010,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"orcc $b, $c, $dst", []>;
def ORCCri : F3_2<2, 0b010010,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"orcc $b, $c, $dst", []>;
def ORNrr : F3_1<2, 0b000110,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"orn $b, $c, $dst", []>;
def ORNri : F3_2<2, 0b000110,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"orn $b, $c, $dst", []>;
def ORNCCrr : F3_1<2, 0b010110,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"orncc $b, $c, $dst", []>;
def ORNCCri : F3_2<2, 0b010110,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"orncc $b, $c, $dst", []>;
def XORrr : F3_1<2, 0b000011,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"xor $b, $c, $dst",
[(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
def XORri : F3_2<2, 0b000011,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"xor $b, $c, $dst",
[(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
def XORCCrr : F3_1<2, 0b010011,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"xorcc $b, $c, $dst", []>;
def XORCCri : F3_2<2, 0b010011,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"xorcc $b, $c, $dst", []>;
def XNORrr : F3_1<2, 0b000111,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"xnor $b, $c, $dst", []>;
def XNORri : F3_2<2, 0b000111,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"xnor $b, $c, $dst", []>;
def XNORCCrr: F3_1<2, 0b010111,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"xnorcc $b, $c, $dst", []>;
def XNORCCri: F3_2<2, 0b010111,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"xnorcc $b, $c, $dst", []>;
// Section B.12 - Shift Instructions, p. 107
def SLLrr : F3_1<2, 0b100101,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"sll $b, $c, $dst",
[(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
def SLLri : F3_2<2, 0b100101,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"sll $b, $c, $dst",
[(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
def SRLrr : F3_1<2, 0b100110,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"srl $b, $c, $dst",
[(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
def SRLri : F3_2<2, 0b100110,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"srl $b, $c, $dst",
[(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
def SRArr : F3_1<2, 0b100111,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"sra $b, $c, $dst",
[(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
def SRAri : F3_2<2, 0b100111,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"sra $b, $c, $dst",
[(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
// Section B.13 - Add Instructions, p. 108
def ADDrr : F3_1<2, 0b000000,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"add $b, $c, $dst",
[(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
def ADDri : F3_2<2, 0b000000,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"add $b, $c, $dst",
[(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
def ADDCCrr : F3_1<2, 0b010000,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"addcc $b, $c, $dst", []>;
def ADDCCri : F3_2<2, 0b010000,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"addcc $b, $c, $dst", []>;
def ADDXrr : F3_1<2, 0b001000,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"addx $b, $c, $dst", []>;
def ADDXri : F3_2<2, 0b001000,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"addx $b, $c, $dst", []>;
def ADDXCCrr: F3_1<2, 0b011000,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"addxcc $b, $c, $dst", []>;
def ADDXCCri: F3_2<2, 0b011000,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"addxcc $b, $c, $dst", []>;
// Section B.15 - Subtract Instructions, p. 110
def SUBrr : F3_1<2, 0b000100,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"sub $b, $c, $dst",
[(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
def SUBri : F3_2<2, 0b000100,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"sub $b, $c, $dst",
[(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
def SUBCCrr : F3_1<2, 0b010100,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"subcc $b, $c, $dst", []>;
def SUBCCri : F3_2<2, 0b010100,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"subcc $b, $c, $dst", []>;
def SUBXrr : F3_1<2, 0b001100,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"subx $b, $c, $dst", []>;
def SUBXri : F3_2<2, 0b001100,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"subx $b, $c, $dst", []>;
def SUBXCCrr: F3_1<2, 0b011100,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"subxcc $b, $c, $dst", []>;
def SUBXCCri: F3_2<2, 0b011100,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"subxcc $b, $c, $dst", []>;
// Section B.18 - Multiply Instructions, p. 113
def UMULrr : F3_1<2, 0b001010,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"umul $b, $c, $dst", []>;
def UMULri : F3_2<2, 0b001010,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"umul $b, $c, $dst", []>;
def SMULrr : F3_1<2, 0b001011,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"smul $b, $c, $dst", []>;
def SMULri : F3_2<2, 0b001011,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"smul $b, $c, $dst", []>;
def UMULCCrr: F3_1<2, 0b011010,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"umulcc $b, $c, $dst", []>;
def UMULCCri: F3_2<2, 0b011010,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"umulcc $b, $c, $dst", []>;
def SMULCCrr: F3_1<2, 0b011011,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"smulcc $b, $c, $dst", []>;
def SMULCCri: F3_2<2, 0b011011,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"smulcc $b, $c, $dst", []>;
// Section B.19 - Divide Instructions, p. 115
def UDIVrr : F3_1<2, 0b001110,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"udiv $b, $c, $dst", []>;
def UDIVri : F3_2<2, 0b001110,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"udiv $b, $c, $dst", []>;
def SDIVrr : F3_1<2, 0b001111,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"sdiv $b, $c, $dst", []>;
def SDIVri : F3_2<2, 0b001111,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"sdiv $b, $c, $dst", []>;
def UDIVCCrr : F3_1<2, 0b011110,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"udivcc $b, $c, $dst", []>;
def UDIVCCri : F3_2<2, 0b011110,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"udivcc $b, $c, $dst", []>;
def SDIVCCrr : F3_1<2, 0b011111,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"sdivcc $b, $c, $dst", []>;
def SDIVCCri : F3_2<2, 0b011111,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"sdivcc $b, $c, $dst", []>;
// Section B.20 - SAVE and RESTORE, p. 117
def SAVErr : F3_1<2, 0b111100,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"save $b, $c, $dst", []>;
def SAVEri : F3_2<2, 0b111100,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"save $b, $c, $dst", []>;
def RESTORErr : F3_1<2, 0b111101,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"restore $b, $c, $dst", []>;
def RESTOREri : F3_2<2, 0b111101,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"restore $b, $c, $dst", []>;
// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
// conditional branch class:
class BranchV8<bits<4> cc, dag ops, string asmstr>
: F2_2<cc, 0b010, ops, asmstr> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
}
let isBarrier = 1 in
def BA : BranchV8<0b1000, (ops IntRegs:$dst), "ba $dst">;
def BN : BranchV8<0b0000, (ops IntRegs:$dst), "bn $dst">;
def BNE : BranchV8<0b1001, (ops IntRegs:$dst), "bne $dst">;
def BE : BranchV8<0b0001, (ops IntRegs:$dst), "be $dst">;
def BG : BranchV8<0b1010, (ops IntRegs:$dst), "bg $dst">;
def BLE : BranchV8<0b0010, (ops IntRegs:$dst), "ble $dst">;
def BGE : BranchV8<0b1011, (ops IntRegs:$dst), "bge $dst">;
def BL : BranchV8<0b0011, (ops IntRegs:$dst), "bl $dst">;
def BGU : BranchV8<0b1100, (ops IntRegs:$dst), "bgu $dst">;
def BLEU : BranchV8<0b0100, (ops IntRegs:$dst), "bleu $dst">;
def BCC : BranchV8<0b1101, (ops IntRegs:$dst), "bcc $dst">;
def BCS : BranchV8<0b0101, (ops IntRegs:$dst), "bcs $dst">;
// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
// floating-point conditional branch class:
class FPBranchV8<bits<4> cc, dag ops, string asmstr>
: F2_2<cc, 0b110, ops, asmstr> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
}
def FBA : FPBranchV8<0b1000, (ops IntRegs:$dst), "fba $dst">;
def FBN : FPBranchV8<0b0000, (ops IntRegs:$dst), "fbn $dst">;
def FBU : FPBranchV8<0b0111, (ops IntRegs:$dst), "fbu $dst">;
def FBG : FPBranchV8<0b0110, (ops IntRegs:$dst), "fbg $dst">;
def FBUG : FPBranchV8<0b0101, (ops IntRegs:$dst), "fbug $dst">;
def FBL : FPBranchV8<0b0100, (ops IntRegs:$dst), "fbl $dst">;
def FBUL : FPBranchV8<0b0011, (ops IntRegs:$dst), "fbul $dst">;
def FBLG : FPBranchV8<0b0010, (ops IntRegs:$dst), "fblg $dst">;
def FBNE : FPBranchV8<0b0001, (ops IntRegs:$dst), "fbne $dst">;
def FBE : FPBranchV8<0b1001, (ops IntRegs:$dst), "fbe $dst">;
def FBUE : FPBranchV8<0b1010, (ops IntRegs:$dst), "fbue $dst">;
def FBGE : FPBranchV8<0b1011, (ops IntRegs:$dst), "fbge $dst">;
def FBUGE: FPBranchV8<0b1100, (ops IntRegs:$dst), "fbuge $dst">;
def FBLE : FPBranchV8<0b1101, (ops IntRegs:$dst), "fble $dst">;
def FBULE: FPBranchV8<0b1110, (ops IntRegs:$dst), "fbule $dst">;
def FBO : FPBranchV8<0b1111, (ops IntRegs:$dst), "fbo $dst">;
// Section B.24 - Call and Link Instruction, p. 125
// This is the only Format 1 instruction
let Uses = [O0, O1, O2, O3, O4, O5], hasDelaySlot = 1, isCall = 1 in {
// pc-relative call:
let Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in
def CALL : InstV8 {
let OperandList = (ops IntRegs:$dst);
bits<30> disp;
let op = 1;
let Inst{29-0} = disp;
let AsmString = "call $dst";
}
// indirect call (O7 is an EXPLICIT def in indirect calls, so it cannot also
// be an implicit def):
let Defs = [O0, O1, O2, O3, O4, O5, G1, G2, G3, G4, G5, G6, G7,
D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in
def JMPLrr : F3_1<2, 0b111000,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"jmpl $b+$c, $dst", []>;
}
// Section B.29 - Write State Register Instructions
def WRrr : F3_1<2, 0b110000,
(ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
"wr $b, $c, $dst", []>;
def WRri : F3_2<2, 0b110000,
(ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
"wr $b, $c, $dst", []>;
// Convert Integer to Floating-point Instructions, p. 141
def FITOS : F3_3<2, 0b110100, 0b011000100,
(ops FPRegs:$dst, FPRegs:$src),
"fitos $src, $dst">;
def FITOD : F3_3<2, 0b110100, 0b011001000,
(ops DFPRegs:$dst, DFPRegs:$src),
"fitod $src, $dst">;
// Convert Floating-point to Integer Instructions, p. 142
def FSTOI : F3_3<2, 0b110100, 0b011010001,
(ops FPRegs:$dst, FPRegs:$src),
"fstoi $src, $dst">;
def FDTOI : F3_3<2, 0b110100, 0b011010010,
(ops DFPRegs:$dst, DFPRegs:$src),
"fdtoi $src, $dst">;
// Convert between Floating-point Formats Instructions, p. 143
def FSTOD : F3_3<2, 0b110100, 0b011001001,
(ops DFPRegs:$dst, FPRegs:$src),
"fstod $src, $dst">;
def FDTOS : F3_3<2, 0b110100, 0b011000110,
(ops FPRegs:$dst, DFPRegs:$src),
"fdtos $src, $dst">;
// Floating-point Move Instructions, p. 144
def FMOVS : F3_3<2, 0b110100, 0b000000001,
(ops FPRegs:$dst, FPRegs:$src),
"fmovs $src, $dst">;
def FNEGS : F3_3<2, 0b110100, 0b000000101,
(ops FPRegs:$dst, FPRegs:$src),
"fnegs $src, $dst">;
def FABSS : F3_3<2, 0b110100, 0b000001001,
(ops FPRegs:$dst, FPRegs:$src),
"fabss $src, $dst">;
// Floating-point Add and Subtract Instructions, p. 146
def FADDS : F3_3<2, 0b110100, 0b001000001,
(ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
"fadds $src1, $src2, $dst">;
def FADDD : F3_3<2, 0b110100, 0b001000010,
(ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
"faddd $src1, $src2, $dst">;
def FSUBS : F3_3<2, 0b110100, 0b001000101,
(ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
"fsubs $src1, $src2, $dst">;
def FSUBD : F3_3<2, 0b110100, 0b001000110,
(ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
"fsubd $src1, $src2, $dst">;
// Floating-point Multiply and Divide Instructions, p. 147
def FMULS : F3_3<2, 0b110100, 0b001001001,
(ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
"fmuls $src1, $src2, $dst">;
def FMULD : F3_3<2, 0b110100, 0b001001010,
(ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
"fmuld $src1, $src2, $dst">;
def FSMULD : F3_3<2, 0b110100, 0b001101001,
(ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
"fsmuld $src1, $src2, $dst">;
def FDIVS : F3_3<2, 0b110100, 0b001001101,
(ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
"fdivs $src1, $src2, $dst">;
def FDIVD : F3_3<2, 0b110100, 0b001001110,
(ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
"fdivd $src1, $src2, $dst">;
// Floating-point Compare Instructions, p. 148
// Note: the 2nd template arg is different for these guys.
// Note 2: the result of a FCMP is not available until the 2nd cycle
// after the instr is retired, but there is no interlock. This behavior
// is modelled with a forced noop after the instruction.
def FCMPS : F3_3<2, 0b110101, 0b001010001,
(ops FPRegs:$src1, FPRegs:$src2),
"fcmps $src1, $src2\n\tnop">;
def FCMPD : F3_3<2, 0b110101, 0b001010010,
(ops DFPRegs:$src1, DFPRegs:$src2),
"fcmpd $src1, $src2\n\tnop">;
def FCMPES : F3_3<2, 0b110101, 0b001010101,
(ops FPRegs:$src1, FPRegs:$src2),
"fcmpes $src1, $src2\n\tnop">;
def FCMPED : F3_3<2, 0b110101, 0b001010110,
(ops DFPRegs:$src1, DFPRegs:$src2),
"fcmped $src1, $src2\n\tnop">;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// Small immediates.
def : Pat<(i32 simm13:$val),
(ORri G0, imm:$val)>;
// Arbitrary immediates.
def : Pat<(i32 imm:$val),
(ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;