bug in r47928 (Int64Ty is the correct type for the constant
pool entry here) and removes the asserts, now that the code
is capable of handling i128.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47932 91177308-0d34-0410-b5e6-96231b3b80d8
For x86, if sse2 is available, it's not a good idea since cvtss2sd is slower than a movsd load and it prevents load folding. On x87, it's important to shrink fp constant since fldt is very expensive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47931 91177308-0d34-0410-b5e6-96231b3b80d8
The basic idea is that all these algorithms are computing the longest paths from the root node or to the exit node. Therefore the existing implementation that uses and iterative and potentially
exponential algorithm was changed to a well-known graph algorithm based on dynamic programming. It has a linear run-time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47884 91177308-0d34-0410-b5e6-96231b3b80d8
generic & x86 versions; change generic to follow x86
and improve comments. Add PPC version (not right
for non-Darwin.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47734 91177308-0d34-0410-b5e6-96231b3b80d8
same size as an int type by doing a bitconvert of
load/store of the int type (same algorithm as floating point).
This makes them work for ppc Altivec. There was some
code that purported to handle loads of (some) vectors
by splitting them into two smaller vectors, but getExtLoad
rejects subvector loads, so this could never have worked;
the patch removes it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47696 91177308-0d34-0410-b5e6-96231b3b80d8
approach taken is different to that in LegalizeDAG
when it is a question of expanding or promoting the
result type: for example, if extracting an i64 from
a <2 x i64>, when i64 needs expanding, it bitcasts
the vector to <4 x i32>, extracts the appropriate
two i32's, and uses those for the Lo and Hi parts.
Likewise, when extracting an i16 from a <4 x i16>,
and i16 needs promoting, it bitcasts the vector to
<2 x i32>, extracts the appropriate i32, twiddles
the bits if necessary, and uses that as the promoted
value. This puts more pressure on bitcast legalization,
and I've added the appropriate cases. They needed to
be added anyway since users can generate such bitcasts
too if they want to. Also, when considering various
cases (Legal, Promote, Expand, Scalarize, Split) it is
a pain that expand can correspond to Expand, Scalarize
or Split, so I've changed the LegalizeTypes enum so it
lists those different cases - now Expand only means
splitting a scalar in two.
The code produced is the same as by LegalizeDAG for
all relevant testcases, except for
2007-10-31-extractelement-i64.ll, where the code seems
to have improved (see below; can an expert please tell
me if it is better or not).
Before < vs after >.
< subl $92, %esp
< movaps %xmm0, 64(%esp)
< movaps %xmm0, (%esp)
< movl 4(%esp), %eax
< movl %eax, 28(%esp)
< movl (%esp), %eax
< movl %eax, 24(%esp)
< movq 24(%esp), %mm0
< movq %mm0, 56(%esp)
---
> subl $44, %esp
> movaps %xmm0, 16(%esp)
> pshufd $1, %xmm0, %xmm1
> movd %xmm1, 4(%esp)
> movd %xmm0, (%esp)
> movq (%esp), %mm0
> movq %mm0, 8(%esp)
< subl $92, %esp
< movaps %xmm0, 64(%esp)
< movaps %xmm0, (%esp)
< movl 12(%esp), %eax
< movl %eax, 28(%esp)
< movl 8(%esp), %eax
< movl %eax, 24(%esp)
< movq 24(%esp), %mm0
< movq %mm0, 56(%esp)
---
> subl $44, %esp
> movaps %xmm0, 16(%esp)
> pshufd $3, %xmm0, %xmm1
> movd %xmm1, 4(%esp)
> movhlps %xmm0, %xmm0
> movd %xmm0, (%esp)
> movq (%esp), %mm0
> movq %mm0, 8(%esp)
< subl $92, %esp
< movaps %xmm0, 64(%esp)
---
> subl $44, %esp
< movl 16(%esp), %eax
< movl %eax, 48(%esp)
< movl 20(%esp), %eax
< movl %eax, 52(%esp)
< movaps %xmm0, (%esp)
< movl 4(%esp), %eax
< movl %eax, 60(%esp)
< movl (%esp), %eax
< movl %eax, 56(%esp)
---
> pshufd $1, %xmm0, %xmm1
> movd %xmm1, 4(%esp)
> movd %xmm0, (%esp)
> movd %xmm1, 12(%esp)
> movd %xmm0, 8(%esp)
< subl $92, %esp
< movaps %xmm0, 64(%esp)
---
> subl $44, %esp
< movl 24(%esp), %eax
< movl %eax, 48(%esp)
< movl 28(%esp), %eax
< movl %eax, 52(%esp)
< movaps %xmm0, (%esp)
< movl 12(%esp), %eax
< movl %eax, 60(%esp)
< movl 8(%esp), %eax
< movl %eax, 56(%esp)
---
> pshufd $3, %xmm0, %xmm1
> movd %xmm1, 4(%esp)
> movhlps %xmm0, %xmm0
> movd %xmm0, (%esp)
> movd %xmm1, 12(%esp)
> movd %xmm0, 8(%esp)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47672 91177308-0d34-0410-b5e6-96231b3b80d8
operand of a VECTOR_SHUFFLE. The mask is a
vector of constant integers. The code in
LegalizeDAG doesn't bother to legalize the
mask, since it's basically just storage for
a bunch of constants, however LegalizeTypes
is more picky. The problem is that there may
not exist any legal vector-of-integers type
with a legal element type, so it is impossible
to create a legal mask! Unless of course you
cheat by creating a BUILD_VECTOR where the
operands have a different type to the element
type of the vector being built... This is
pretty ugly but works - all relevant tests in
the testsuite pass, and produce the same
assembler with and without LegalizeTypes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47670 91177308-0d34-0410-b5e6-96231b3b80d8
Change several cases in SimplifyDemandedMask that don't ever do any
simplifying to reuse the logic in ComputeMaskedBits instead of
duplicating it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47648 91177308-0d34-0410-b5e6-96231b3b80d8
CodeGen/PowerPC/illegal-element-type.ll): suppose
a node X is processed, and processing maps it to
a node Y. Then X continues to exist in the DAG,
but with no users. While processing some other
node, a new node may be created that happens to
be equal to X, and thus X will be reused rather
than a truly new node. This can cause X to
"magically reappear", and since it is in the
Processed state in will not be reprocessed, so
at the end of type legalization the illegal node
X can still be present. The solution is to replace
X with Y whenever X gets resurrected like this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47601 91177308-0d34-0410-b5e6-96231b3b80d8
after legalize. Just because a constant is legal (e.g. 0.0 in SSE)
doesn't mean that its negated value is legal (-0.0). We could make
this stronger by checking to see if the negated constant is actually
legal post negation, but it doesn't seem like a big deal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47591 91177308-0d34-0410-b5e6-96231b3b80d8
out of illegal elements (BUILD_VECTOR). Uses and beefs
up BUILD_PAIR, though it didn't really have to. Like
most of LegalizeTypes, does not support soft-float.
This cures all "make check" vector building failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47537 91177308-0d34-0410-b5e6-96231b3b80d8
early clobbers if the clobber list contains a *register* not some thing
like {memory}, {dirflag} etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47457 91177308-0d34-0410-b5e6-96231b3b80d8
any, we force sdisel to do all regalloc for an asm. This
leads to gross but correct codegen.
This fixes the rest of PR2078.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47454 91177308-0d34-0410-b5e6-96231b3b80d8
inline asms.
Fix PR2078 by marking aliases of registers used when a register is
marked used. This prevents EAX from being allocated when AX is listed
in the clobber set for the asm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47426 91177308-0d34-0410-b5e6-96231b3b80d8
and splitting extract_subvector. This fixes nine
"make check" testcases, for example
2008-02-04-ExtractSubvector.ll and (partially)
CodeGen/Generic/vector.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47384 91177308-0d34-0410-b5e6-96231b3b80d8
AddNodeIDNode does profiling for a ConstantSDNode, but so does
SelectionDAG::getConstant. This profiling should be moved to a common
static function in ConstantSDNode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47359 91177308-0d34-0410-b5e6-96231b3b80d8
- X86 now normalize SCALAR_TO_VECTOR to (BIT_CONVERT (v4i32 SCALAR_TO_VECTOR)). Get rid of X86ISD::S2VEC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47290 91177308-0d34-0410-b5e6-96231b3b80d8
it actually does. Simplify CountOperands a little by reusing
ComputeMemOperandsEnd. And reword some comments for both.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47198 91177308-0d34-0410-b5e6-96231b3b80d8
tblgen will complain if a sign-extended constant does not fit into a
data type smaller than i32, e.g., i16. This causes a problem when certain
hex constants are used, such as 0xff for byte masks or immediate xor
values.
tblgen will try the sign-extended value first and, if the sign extended
value would overflow, it tries to see if the unsigned value will fit.
Consequently, a software developer can now safely incant:
(XORHIr16 R16C:$rA, 0xffff)
which is somewhat clearer and more informative than incanting:
(XORHIr16 R16C:$rA, (i16 -1))
even if the two are bitwise equivalent.
Tblgen also outputs the 64-bit unsigned constant in the generated ISel code
when getTargetConstant() is invoked.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47188 91177308-0d34-0410-b5e6-96231b3b80d8
in a ret node. These are created as i32 constants
but on some platforms i32 is not legal. This
fixes 26 "make check" failures, for example
Alpha/2005-07-12-TwoMallocCalls.ll.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47172 91177308-0d34-0410-b5e6-96231b3b80d8
the return value is zero-extended if it isn't
sign-extended. It may also be any-extended.
Also, if a floating point value was returned
in a larger floating point type, pass 1 as the
second operand to FP_ROUND, which tells it
that all the precision is in the original type.
I think this is right but I could be wrong.
Finally, when doing libcalls, set isZExt on
a parameter if it is "unsigned". Currently
isSExt is set when signed, and nothing is
set otherwise. This should be right for all
calls to standard library routines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47122 91177308-0d34-0410-b5e6-96231b3b80d8
1) ConstantFP is now expand by default
2) ConstantFP is not turned into TargetConstantFP during Legalize
if it is legal.
This allows ConstantFP to be handled like Constant, allowing for
targets that can encode FP immediates as MachineOperands.
As a bonus, fix up Itanium FP constants, which now correctly match,
and match more constants! Hooray.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47121 91177308-0d34-0410-b5e6-96231b3b80d8
CTTZ and CTPOP. The expansion code differs from
that in LegalizeDAG in that it chooses to take the
CTLZ/CTTZ count from the Hi/Lo part depending on
whether the Hi/Lo value is zero, not on whether
CTLZ/CTTZ of Hi/Lo returned 32 (or whatever the
width of the type is) for it. I made this change
because the optimizers may well know that Hi/Lo
is zero and exploit it. The promotion code for
CTTZ also differs from that in LegalizeDAG: it
uses an "or" to get the right result when the
original value is zero, rather than using a compare
and select. This also means the value doesn't
need to be zero extended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47075 91177308-0d34-0410-b5e6-96231b3b80d8
node as soon as we create it in SDISel. Previously we would lower it in
legalize. The problem with this is that it only exposes the argument
loads implied by FORMAL_ARGUMENTs after legalize, so that only dag combine 2
can hack on them. This causes us to miss some optimizations because
datatype expansion also happens here.
Exposing the loads early allows us to do optimizations on them. For example
we now compile arg-cast.ll to:
_foo:
movl $2147483647, %eax
andl 8(%esp), %eax
ret
where we previously produced:
_foo:
subl $12, %esp
movsd 16(%esp), %xmm0
movsd %xmm0, (%esp)
movl $2147483647, %eax
andl 4(%esp), %eax
addl $12, %esp
ret
It might also make sense to do this for ISD::CALL nodes, which have implicit
stores on many targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47054 91177308-0d34-0410-b5e6-96231b3b80d8
Add an overload that supports the uint64_t interface for use by clients
that haven't been updated yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47039 91177308-0d34-0410-b5e6-96231b3b80d8
handle arbitrary precision integers and any number
of parts. For example, on a 32 bit machine an i50
corresponds to two i32 parts. getCopyToParts will
extend the i50 to an i64 then write half of the i64
to each part; getCopyFromParts will combine the two
i32 parts into an i64 then truncate the result to
i50.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47024 91177308-0d34-0410-b5e6-96231b3b80d8
Added member template "Add" to FoldingSetNodeID that allows "adding" arbitrary
objects to a profile via dispatch to FoldingSetTrait<T>::Profile().
Removed FoldingSetNodeID::AddAPFloat and FoldingSetNodeID::APInt, as their
functionality is now replaced using the above mentioned member template.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46957 91177308-0d34-0410-b5e6-96231b3b80d8
initializer problem, a minor tweak to the way the
DAGISelEmitter finds load/store nodes, and a renaming of the
new PseudoSourceValue objects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46827 91177308-0d34-0410-b5e6-96231b3b80d8
ReadyToProcess node - add an assertion to check
this. Add an assertion to NodeDeleted that checks
that processed/ready nodes are indeed not deleted.
It is because they are never deleted that none of
the maps can have a deleted node as the source of
a mapping. It does however seem to be possible in
theory to have a deleted value as the target of a
mapping, however this has not yet been spotted in
the wild. Still mulling on what to do about this.
[The theoretical situation is this: a node A is
expanded/promoted/whatever to a newly created node
B. Thus A->B is added to a map. When the subtree
rooted at B is legalized it is conceivable that B
is deleted due to RAUW on a node somewhere above
it].
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46705 91177308-0d34-0410-b5e6-96231b3b80d8
keep the LegalizeTypes node flags up to date when doing a RAUW.
This fixes a nasty bug that Duncan ran into and makes the
previous (nonbuggy case) more efficent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46679 91177308-0d34-0410-b5e6-96231b3b80d8
DAGUpdateListener object pointer instead of just returning a vector
of deleted nodes. This makes the interfaces more efficient (no more
allocating a vector [at least a malloc], filling it in, then walking
it) and more clean. This also allows the client to be notified of
nodes that are *changed* but not deleted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46677 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAG::ReplaceAllUsesWith to handle replacement of
an SDOperand with *any* sdoperand, not just one for a node with
a single result. Note that this has a horrible FIXME'd hack in it
to work around PR1975. This should be removed when PR1975 is fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46674 91177308-0d34-0410-b5e6-96231b3b80d8
Added ISD::DECLARE node type to represent llvm.dbg.declare intrinsic. Now the intrinsic calls are lowered into a SDNode and lives on through out the codegen passes.
For now, since all the debugging information recording is done at isel time, when a ISD::DECLARE node is selected, it has the side effect of also recording the variable. This is a short term solution that should be fixed in time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46659 91177308-0d34-0410-b5e6-96231b3b80d8
in the backend. Introduce a new SDNode type, MemOperandSDNode, for
holding a MemOperand in the SelectionDAG IR, and add a MemOperand
list to MachineInstr, and code to manage them. Remove the offset
field from SrcValueSDNode; uses of SrcValueSDNode that were using
it are all all using MemOperandSDNode now.
Also, begin updating some getLoad and getStore calls to use the
PseudoSourceValue objects.
Most of this was written by Florian Brander, some
reorganization and updating to TOT by me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46585 91177308-0d34-0410-b5e6-96231b3b80d8
Note this solution might be somewhat fragile since ISD::LABEL may be used for other
purposes. If that ends up to be an issue, we may need to introduce a different node
for debug labels.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46571 91177308-0d34-0410-b5e6-96231b3b80d8
and StoreSDNode into their common base class LSBaseSDNode. Member
functions getLoadedVT and getStoredVT are replaced with the common
getMemoryVT to simplify code that will handle both loads and stores.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46538 91177308-0d34-0410-b5e6-96231b3b80d8
type that matters but the operand type. This fixes
2008-01-08-IllegalCMP.ll which crashed with the new
legalize infrastructure because SETCC with result
type i8 and operand type i64 was being custom expanded
by the X86 backend. With this fix, the gcc build gets
as far as the first libcall.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46525 91177308-0d34-0410-b5e6-96231b3b80d8
registers if used by a bitconvert or using a bitconvert. This allows us to
avoid constant pool loads and use cheaper integer instructions when the
values come from or end up in integer regs anyway. For example, we now
compile CodeGen/X86/fp-in-intregs.ll to:
_test1:
movl $2147483648, %eax
xorl 4(%esp), %eax
ret
_test2:
movl $1065353216, %eax
orl 4(%esp), %eax
andl $3212836864, %eax
ret
Instead of:
_test1:
movss 4(%esp), %xmm0
xorps LCPI2_0, %xmm0
movd %xmm0, %eax
ret
_test2:
movss 4(%esp), %xmm0
andps LCPI3_0, %xmm0
movss LCPI3_1, %xmm1
andps LCPI3_2, %xmm1
orps %xmm0, %xmm1
movd %xmm1, %eax
ret
bitconverts can happen due to various calling conventions that require
fp values to passed in integer regs in some cases, e.g. when returning
a complex.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46414 91177308-0d34-0410-b5e6-96231b3b80d8
delete a node even if it was not dead in some cases. Instead, just add it to
the worklist. Also, make sure to use the CombineTo methods, as it was doing
things that were unsafe: the top level combine loop could touch dangling memory.
This fixes CodeGen/Generic/2008-01-25-dag-combine-mul.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46384 91177308-0d34-0410-b5e6-96231b3b80d8
we can infer it. This will eventually help stuff, though it doesn't
do much right now because all fixed FI's have an alignment of 1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46349 91177308-0d34-0410-b5e6-96231b3b80d8
1. we already know the value is dead, so don't bother replacing
it with undef.
2. The very case the comment describes actually makes the load
live which asserts in deletenode. If we do the replacement
and the node becomes live, just treat it as new. This fixes
a failure on X86/2008-01-16-InvalidDAGCombineXform.ll with
some local changes in my tree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46306 91177308-0d34-0410-b5e6-96231b3b80d8
dead stuff around. This gets fed into the isel pass and causes certain foldings from
happening because nodes have extraneous uses floating around. For example, if we turned
foo(bar(x)) -> baz(x), we sometimes left bar(x) around.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46305 91177308-0d34-0410-b5e6-96231b3b80d8
precision integers. This won't actually work
(and most of the code is dead) unless the new
legalization machinery is turned on. While
there, I rationalized the handling of i1, and
removed some bogus (and unused) sextload patterns.
For i1, this could result in microscopically
better code for some architectures (not X86).
It might also result in worse code if annotating
with AssertZExt nodes turns out to be more harmful
than helpful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46280 91177308-0d34-0410-b5e6-96231b3b80d8
NDEBUG. This is in response to a really nasty bug I introduced that
Dale tracked down, hopefully this won't happen in the future.
Many thanks Dale.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46254 91177308-0d34-0410-b5e6-96231b3b80d8
integers. Handle truncstore of a legal type to an unusual
number of bits. Most of this code is not reachable unless
the new legalize infrastructure is turned on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46249 91177308-0d34-0410-b5e6-96231b3b80d8
1. Legalize now always promotes truncstore of i1 to i8.
2. Remove patterns and gunk related to truncstore i1 from targets.
3. Rename the StoreXAction stuff to TruncStoreAction in TLI.
4. Make the TLI TruncStoreAction table a 2d table to handle from/to conversions.
5. Mark a wide variety of invalid truncstores as such in various targets, e.g.
X86 currently doesn't support truncstore of any of its integer types.
6. Add legalize support for truncstores with invalid value input types.
7. Add a dag combine transform to turn store(truncate) into truncstore when
safe.
The later allows us to compile CodeGen/X86/storetrunc-fp.ll to:
_foo:
fldt 20(%esp)
fldt 4(%esp)
faddp %st(1)
movl 36(%esp), %eax
fstps (%eax)
ret
instead of:
_foo:
subl $4, %esp
fldt 24(%esp)
fldt 8(%esp)
faddp %st(1)
fstps (%esp)
movl 40(%esp), %eax
movss (%esp), %xmm0
movss %xmm0, (%eax)
addl $4, %esp
ret
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46140 91177308-0d34-0410-b5e6-96231b3b80d8
and switch various codegen pieces and the X86 backend over
to using it.
* Add some comments to SelectionDAGNodes.h
* Introduce a second argument to FP_ROUND, which indicates
whether the FP_ROUND changes the value of its input. If
not it is safe to xform things like fp_extend(fp_round(x)) -> x.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46125 91177308-0d34-0410-b5e6-96231b3b80d8
It's not safe to use the two value CombineTo variant to combine away a dead load.
e.g.
v1, chain2 = load chain1, loc
v2, chain3 = load chain2, loc
v3 = add v2, c
Now we replace use of v1 with undef, use of chain2 with chain1.
ReplaceAllUsesWith() will iterate through uses of the first load and update operands:
v1, chain2 = load chain1, loc
v2, chain3 = load chain1, loc
v3 = add v2, c
Now the second load is the same as the first load, SelectionDAG cse will ensure
the use of second load is replaced with the first load.
v1, chain2 = load chain1, loc
v3 = add v1, c
Then v1 is replaced with undef and bad things happen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46099 91177308-0d34-0410-b5e6-96231b3b80d8
into the ANY_EXTEND/ZERO_EXTEND/SIGN_EXTEND code to simplify it.
Unmerge the code for FP_ROUND and FP_EXTEND from each other to
make each one simpler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@46061 91177308-0d34-0410-b5e6-96231b3b80d8
Likewise fix up a bunch of other libcalls. While
there I remove NEG_F32 and NEG_F64 since they are
not used anywhere. This fixes 9 Ada ACATS failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45833 91177308-0d34-0410-b5e6-96231b3b80d8
all clients over to using predicates instead of these flags directly.
These are now private values which are only to be used to statically
initialize the tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45692 91177308-0d34-0410-b5e6-96231b3b80d8
flags that can be set. Add predicates for the ones lacking it, and switch
some clients over to using the predicates instead of Flags directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45690 91177308-0d34-0410-b5e6-96231b3b80d8
over to using them, instead of diddling Flags directly. Change the
various flags from const variables to enums.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45677 91177308-0d34-0410-b5e6-96231b3b80d8
that it is cheap and efficient to get.
Move a variety of predicates from TargetInstrInfo into
TargetInstrDescriptor, which makes it much easier to query a predicate
when you don't have TII around. Now you can use MI->getDesc()->isBranch()
instead of going through TII, and this is much more efficient anyway. Not
all of the predicates have been moved over yet.
Update old code that used MI->getInstrDescriptor()->Flags to use the
new predicates in many places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45674 91177308-0d34-0410-b5e6-96231b3b80d8
up to the various compiler pipelines.
This doesn't actually add support for any GC algorithms, which means it
temporarily breaks a few tests. To be fixed shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45669 91177308-0d34-0410-b5e6-96231b3b80d8
values, which means doing extra legalization work.
It would be easier to get this kind of thing right if
there was some documentation...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45472 91177308-0d34-0410-b5e6-96231b3b80d8
that "machine" classes are used to represent the current state of
the code being compiled. Given this expanded name, we can start
moving other stuff into it. For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.
Update all the clients to match.
This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45467 91177308-0d34-0410-b5e6-96231b3b80d8