contents of the block to be duplicated. Use this for ARM Cortex A8/9 to
be more aggressive tail duplicating indirect branches, since it makes it
much more likely that they will be predicted in the branch target buffer.
Testcase coming soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89187 91177308-0d34-0410-b5e6-96231b3b80d8
This is probably not confined to *just* these two things.
Anyway, the llvm-gcc front-end may look up the structure layout information for
an abstract type. That information will be stored into a table with the FE's
TD. Instruction combine can come along and also ask for information on that
abstract type, but for a separate TD (the one associated with the pass manager).
After the type is refined, the old structure layout information in the pass
manager's TD file is out of date. If a new type is allocated in the same space
as the old-unrefined type, then the structure type information in the pass
manager's TD file will be wrong, but won't know it.
Fix this by making the TD's structure type information an abstract type user.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89176 91177308-0d34-0410-b5e6-96231b3b80d8
0b1110 (ALways). This is so that the disassembler decoder can distinguish among
BX_RET, BRIND, and BXr9.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89000 91177308-0d34-0410-b5e6-96231b3b80d8
The large code model is documented at
http://www.x86-64.org/documentation/abi.pdf and says that calls should
assume their target doesn't live within the 32-bit pc-relative offset
that fits in the call instruction.
To do this, we turn off the global-address->target-global-address
conversion in X86TargetLowering::LowerCall(). The first attempt at
this broke the lazy JIT because it can separate the movabs(imm->reg)
from the actual call instruction. The lazy JIT receives the address of
the movabs as a relocation and needs to record the return address from
the call; and then when that call happens, it needs to patch the
movabs with the newly-compiled target. We could thread the call
instruction into the relocation and record the movabs<->call mapping
explicitly, but that seems to require at least as much new
complication in the code generator as this change.
To fix this, we make lazy functions _always_ go through a call
stub. You'd think we'd only have to force lazy calls through a stub on
difficult platforms, but that turns out to break indirect calls
through a function pointer. The right fix for that is to distinguish
between calls and address-of operations on uncompiled functions, but
that's complex enough to leave for someone else to do.
Another attempt at this defined a new CALL64i pseudo-instruction,
which expanded to a 2-instruction sequence in the assembly output and
was special-cased in the X86CodeEmitter's emitInstruction()
function. That broke indirect calls in the same way as above.
This patch also removes a hack forcing Darwin to the small code model.
Without far-call-stubs, the small code model requires things of the
JITMemoryManager that the DefaultJITMemoryManager can't provide.
Thanks to echristo for lots of testing!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88984 91177308-0d34-0410-b5e6-96231b3b80d8
- This is an initial step towards -march=native support in Clang, and towards
eliminating host dependencies in the targets. See PR5389.
- Patch by Roman Divacky!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88768 91177308-0d34-0410-b5e6-96231b3b80d8
- If destination is a physical register and it has a subreg index, use the
sub-register instead.
This fixes PR5423.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88745 91177308-0d34-0410-b5e6-96231b3b80d8
target-specific AsmPrinters. Not all comments need DebugInfo.
Re-enable the line numbers comment test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88697 91177308-0d34-0410-b5e6-96231b3b80d8
Provide special isLoadFromStackSlotPostFE and isStoreToStackSlotPostFE
interfaces to explicitly request checking for post-frame ptr elimination
operands. This uses a heuristic so it isn't reliable for correctness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@87047 91177308-0d34-0410-b5e6-96231b3b80d8
machine instruction loads or stores from/to a stack slot. Unlike
isLoadFromStackSlot and isStoreFromStackSlot, the instruction may be
something other than a pure load/store (e.g. it may be an arithmetic
operation with a memory operand). This helps AsmPrinter determine when
to print a spill/reload comment.
This is only a hint since we may not be able to figure this out in all
cases. As such, it should not be relied upon for correctness.
Implement for X86. Return false by default for other architectures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@87026 91177308-0d34-0410-b5e6-96231b3b80d8
slots. The AsmPrinter will use this information to determine whether to
print a spill/reload comment.
Remove default argument values. It's too easy to pass a wrong argument
value when multiple arguments have default values. Make everything
explicit to trap bugs early.
Update all targets to adhere to the new interfaces..
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@87022 91177308-0d34-0410-b5e6-96231b3b80d8
to directly follow the jump table. Move the layout changes to prior to any
constant island handling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86999 91177308-0d34-0410-b5e6-96231b3b80d8
can only branch forward. To best take advantage of them, we'd like to adjust
the basic blocks around a bit when reasonable. This patch puts basics in place
to do that, with a super-simple algorithm for backwards jump table targets that
creates a new branch after the jump table which branches backwards. Real
heuristics for reordering blocks or other modifications rather than inserting
branches will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86791 91177308-0d34-0410-b5e6-96231b3b80d8
generates a sequence similar to this:
__Z4funci:
LFB2:
mflr r0
LCFI0:
stmw r30,-8(r1)
LCFI1:
stw r0,8(r1)
LCFI2:
stwu r1,-80(r1)
LCFI3:
mr r30,r1
LCFI4:
where LCFI3 and LCFI4 are used by the FDE to indicate what the FP, LR, and other
things are. We generated something more like this:
Leh_func_begin1:
mflr r0
stw r31, 20(r1)
stw r0, 8(r1)
Llabel1:
stwu r1, -80(r1)
Llabel2:
mr r31, r1
Note that we are missing the "mr" instruction. This patch makes it more like the
GCC output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86729 91177308-0d34-0410-b5e6-96231b3b80d8
- Force NDEBUG on in any Release build. This drops the compile time to ~100s
from ~600s, in Release mode.
- This may just be a temporary workaround, I don't know the true nature of the
gcc-4.2 compile time performance problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86695 91177308-0d34-0410-b5e6-96231b3b80d8
This patch forbids implicit conversion of DenseMap::const_iterator to
DenseMap::iterator which was possible because DenseMapIterator inherited
(publicly) from DenseMapConstIterator. Conversion the other way around is now
allowed as one may expect.
The template DenseMapConstIterator is removed and the template parameter
IsConst which specifies whether the iterator is constant is added to
DenseMapIterator.
Actually IsConst parameter is not necessary since the constness can be
determined from KeyT but this is not relevant to the fix and can be addressed
later.
Patch by Victor Zverovich!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86636 91177308-0d34-0410-b5e6-96231b3b80d8
was generated. This caused code like this:
## The asm code for the function
.section __TEXT,__const
.align 2
lJTI11_0:
LJTI11_0:
.long LBB11_16
.long LBB11_4
.long LBB11_5
.long LBB11_6
.long LBB11_7
.long LBB11_8
.long LBB11_9
.long LBB11_10
.long LBB11_11
.long LBB11_12
.long LBB11_13
.long LBB11_14
Leh_func_end11: ## <---now in the wrong section!
The `Leh_func_end11' would then end up in the wrong section, causing the
resulting EH frame information to be wrong:
__ZL11CheckRightsjPKcbRbRP6NSData.eh:
.set Lset500eh,Leh_frame_end11-Leh_frame_begin11
.long Lset500eh ; Length of Frame Information Entry
Leh_frame_begin11:
.long Leh_frame_begin11-Leh_frame_common
.long Leh_func_begin11-.
.set Lset501eh,Leh_func_end11-Leh_func_begin11
.long Lset501eh ; FDE address range
`Lset501eh' is now something huge instead of the real value.
The X86 back-end generates the jump table after the EH information is
emitted. Do the same here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86588 91177308-0d34-0410-b5e6-96231b3b80d8
1. rename the movhp patfrag to movlhps, since thats what it actually matches
2. eliminate the bogus movhps load and store patterns, they were incorrect. The load transforms are already handled (correctly) by shufps/unpack.
3. revert a recent test change to its correct form.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86415 91177308-0d34-0410-b5e6-96231b3b80d8
datatypes on a given CPU. This is intended to allow instcombine and other
transformations to avoid converting big sequences of operations to an
inconvenient width, and will help clean up after SRoA. See also "Adding
legal integer sizes to TargetData" on Feb 1, 2009 on llvmdev, and PR3451.
Comments welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86370 91177308-0d34-0410-b5e6-96231b3b80d8
MachineRelocations, "stub" always refers to a far-call stub or a
load-a-faraway-global stub, so this patch adds "Far" to the term. (Other stubs
are used for lazy compilation and dlsym address replacement.) The variable was
also inconsistent between the positive and negative sense, and the positive
sense ("NeedStub") was more demanding than is accurate (since a nearby-enough
function can be called directly even if the platform often requires a stub).
Since the negative sense causes double-negatives, I switched to
"MayNeedFarStub" globally.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86363 91177308-0d34-0410-b5e6-96231b3b80d8
except it doesn't care if the definitions' virtual registers differ. This is
used by machine LICM and other MI passes to perform CSE.
- Teach Thumb2InstrInfo::isIdentical() to check two t2LDRpci_pic are identical.
Since pc relative constantpool entries are always different, this requires it
it check if the values can actually the same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86328 91177308-0d34-0410-b5e6-96231b3b80d8
was wrong and too aggressive in the sense that DPSoRegFrm includes both constant
shifts (with Inst{4} = 0) and register controlled shifts (with Inst{4} = 1 and
Inst{7} = 0). The 'rr' fragment of the multiclass definitions actually means
register/register with no shift, see A8-11.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86319 91177308-0d34-0410-b5e6-96231b3b80d8
load of a GV from constantpool and then add pc. It allows the code sequence to
be rematerializable so it would be hoisted by machine licm.
- Add a late pass to break these pseudo instructions into a number of real
instructions. Also move the code in Thumb2 IT pass that breaks up t2MOVi32imm
to this pass. This is done before post regalloc scheduling to allow the
scheduler to proper schedule these instructions. It also allow them to be
if-converted and shrunk by later passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86304 91177308-0d34-0410-b5e6-96231b3b80d8
will not accept negative values for these. LLVM's default operand printing
sign extends values, so that valid unsigned values appear as negative
immediates. Print all VMOV immediate operands as hex values to resolve this.
Radar 7372576.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86301 91177308-0d34-0410-b5e6-96231b3b80d8
aggressive testing of dynamic stack alignment.
Note that this is off by default, and enabled for LLCBETA nightly results.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86064 91177308-0d34-0410-b5e6-96231b3b80d8
The KILL pseudo-instruction may survive to the asm printer pass, just like the IMPLICIT_DEF. Print the KILL as a comment instead of just leaving a blank line in the output.
With -asm-verbose=0, a blank line is printed, like IMPLICIT?DEF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86041 91177308-0d34-0410-b5e6-96231b3b80d8
the testcase into:
_test1: ## @test1
## BB#0: ## %entry
leaq L_test1_bb6(%rip), %rax
jmpq *%rax
L_test1_bb: ## Address Taken
LBB1_1: ## %bb
movb $1, %al
ret
L_test1_bb6: ## Address Taken
LBB1_2: ## %bb6
movb $2, %al
ret
Note, it is very very strange that BlockAddressSDNode doesn't carry
around TargetFlags. Dan, please fix this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85703 91177308-0d34-0410-b5e6-96231b3b80d8
is unconditional. Making it still use the libcall when optimizing for size
would be a good adjustment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85675 91177308-0d34-0410-b5e6-96231b3b80d8
Daniel Dunbar.
- Reordered the fields in the ARMOperand Mem struct to make the struct smaller.
Making bool's into 1 bit fields and put the MCExpr* fields adjacent to each
other.
- Fixed a number of places in ARMAsmParser.cpp so they have doxygen comments.
- Change the name of ARMAsmParser::ParseRegister() to MaybeParseRegister and
added the bool ParseWriteBack parameter.
- Changed ARMAsmParser::ParseMemory() to call MaybeParseRegister().
- Added ARMAsmParser::ParseMemoryOffsetReg to factor out parsing the offset of a
memory operand. And use it for both parsing both preindexed and post indexing
addressing forms in ARMAsmParser::ParseMemory.
- Changed the first argument to ParseShift() to a reference.
- Changed ParseShift() to check for Rrx first and return to reduce nesting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85632 91177308-0d34-0410-b5e6-96231b3b80d8
unfolding loads for hoisting. getOpcodeAfterMemoryUnfold returns the
opcode of the original operation without the load, not the load
itself, MachineLICM needs to know the operand index in order to get
the correct register class. Extend getOpcodeAfterMemoryUnfold to
return this information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85622 91177308-0d34-0410-b5e6-96231b3b80d8
void f (int a1, int a2, int a3, int a4, int a5,...)
In ARMTargetLowering::LowerFormalArguments if the function has 4 or
more regular arguments we used to set VarArgsFrameIndex using an
offset of 0, which is only correct if the function has exactly 4
regular arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85590 91177308-0d34-0410-b5e6-96231b3b80d8
bunch of associated comments, because it doesn't have anything to do
with DAGs or scheduling. This is another step in decoupling MachineInstr
emitting from scheduling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85517 91177308-0d34-0410-b5e6-96231b3b80d8
In the new world order, BlockAddress can have a BasicBlock operand.
This doesn't permute much, because if you have a ConstantExpr (or
anything more specific than Constant) we still know the operand has
to be a Constant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85375 91177308-0d34-0410-b5e6-96231b3b80d8
eliminating a use of MVT::Flag, this is needed for an upcoming CodeGen
change.
This unfortunately requires SystemZ to switch to the list-burr
scheduler, in order to handle the physreg defs properly, however
that's what LLVM has available at this time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85357 91177308-0d34-0410-b5e6-96231b3b80d8
use it to control tail merging when there is a tradeoff between performance
and code size. When there is only 1 instruction in the common tail, we have
been merging. That can be good for code size but is a definite loss for
performance. Now we will avoid tail merging in that case when the
optimization level is "Aggressive", i.e., "-O3". Radar 7338114.
Since the IfConversion pass invokes BranchFolding, it too needs to know
the optimization level. Note that I removed the RegisterPass instantiation
for IfConversion because it required a default constructor. If someone
wants to keep that for some reason, we can add a default constructor with
a hard-wired optimization level.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85346 91177308-0d34-0410-b5e6-96231b3b80d8
default behind a command line option. This will enable better performance for
vectors on NEON enabled processors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85333 91177308-0d34-0410-b5e6-96231b3b80d8