llvm-6502/lib/CodeGen/SelectionDAG/TargetLowering.cpp

2847 lines
115 KiB
C++
Raw Normal View History

//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the TargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <cctype>
using namespace llvm;
/// NOTE: The constructor takes ownership of TLOF.
TargetLowering::TargetLowering(const TargetMachine &tm,
const TargetLoweringObjectFile *tlof)
: TargetLoweringBase(tm, tlof) {}
const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
return nullptr;
}
/// Check whether a given call node is in tail position within its function. If
/// so, it sets Chain to the input chain of the tail call.
bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
SDValue &Chain) const {
const Function *F = DAG.getMachineFunction().getFunction();
// Conservatively require the attributes of the call to match those of
// the return. Ignore noalias because it doesn't affect the call sequence.
AttributeSet CallerAttrs = F->getAttributes();
if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
.removeAttribute(Attribute::NoAlias).hasAttributes())
return false;
// It's not safe to eliminate the sign / zero extension of the return value.
if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
return false;
// Check if the only use is a function return node.
return isUsedByReturnOnly(Node, Chain);
}
/// \brief Set CallLoweringInfo attribute flags based on a call instruction
/// and called function attributes.
void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
unsigned AttrIdx) {
isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
Alignment = CS->getParamAlignment(AttrIdx);
}
/// Generate a libcall taking the given operands as arguments and returning a
/// result of type RetVT.
std::pair<SDValue, SDValue>
TargetLowering::makeLibCall(SelectionDAG &DAG,
RTLIB::Libcall LC, EVT RetVT,
const SDValue *Ops, unsigned NumOps,
bool isSigned, SDLoc dl,
bool doesNotReturn,
bool isReturnValueUsed) const {
TargetLowering::ArgListTy Args;
Args.reserve(NumOps);
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0; i != NumOps; ++i) {
Entry.Node = Ops[i];
Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
Args.push_back(Entry);
}
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
TargetLowering::
CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
false, 0, getLibcallCallingConv(LC),
/*isTailCall=*/false,
doesNotReturn, isReturnValueUsed, Callee, Args,
DAG, dl);
return LowerCallTo(CLI);
}
/// SoftenSetCCOperands - Soften the operands of a comparison. This code is
/// shared among BR_CC, SELECT_CC, and SETCC handlers.
void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode,
SDLoc dl) const {
assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
&& "Unsupported setcc type!");
// Expand into one or more soft-fp libcall(s).
RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
switch (CCCode) {
case ISD::SETEQ:
case ISD::SETOEQ:
LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
(VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
break;
case ISD::SETNE:
case ISD::SETUNE:
LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
(VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
break;
case ISD::SETGE:
case ISD::SETOGE:
LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
(VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
break;
case ISD::SETLT:
case ISD::SETOLT:
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
(VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
break;
case ISD::SETLE:
case ISD::SETOLE:
LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
(VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
break;
case ISD::SETGT:
case ISD::SETOGT:
LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
(VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
break;
case ISD::SETUO:
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
(VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
break;
case ISD::SETO:
LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
(VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
break;
default:
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
(VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
switch (CCCode) {
case ISD::SETONE:
// SETONE = SETOLT | SETOGT
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
(VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
// Fallthrough
case ISD::SETUGT:
LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
(VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
break;
case ISD::SETUGE:
LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
(VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
break;
case ISD::SETULT:
LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
(VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
break;
case ISD::SETULE:
LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
(VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
break;
case ISD::SETUEQ:
LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
(VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
break;
default: llvm_unreachable("Do not know how to soften this setcc!");
}
}
// Use the target specific return value for comparions lib calls.
EVT RetVT = getCmpLibcallReturnType();
SDValue Ops[2] = { NewLHS, NewRHS };
NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/,
dl).first;
NewRHS = DAG.getConstant(0, RetVT);
CCCode = getCmpLibcallCC(LC1);
if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
getSetCCResultType(*DAG.getContext(), RetVT),
NewLHS, NewRHS, DAG.getCondCode(CCCode));
NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/,
dl).first;
NewLHS = DAG.getNode(ISD::SETCC, dl,
getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
NewRHS = SDValue();
}
}
/// getJumpTableEncoding - Return the entry encoding for a jump table in the
/// current function. The returned value is a member of the
/// MachineJumpTableInfo::JTEntryKind enum.
unsigned TargetLowering::getJumpTableEncoding() const {
// In non-pic modes, just use the address of a block.
if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
return MachineJumpTableInfo::EK_BlockAddress;
// In PIC mode, if the target supports a GPRel32 directive, use it.
if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
return MachineJumpTableInfo::EK_GPRel32BlockAddress;
// Otherwise, use a label difference.
return MachineJumpTableInfo::EK_LabelDifference32;
}
SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
// If our PIC model is GP relative, use the global offset table as the base.
unsigned JTEncoding = getJumpTableEncoding();
if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
(JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
return Table;
}
/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
/// MCExpr.
const MCExpr *
TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
unsigned JTI,MCContext &Ctx) const{
// The normal PIC reloc base is the label at the start of the jump table.
return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
}
bool
TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// Assume that everything is safe in static mode.
if (getTargetMachine().getRelocationModel() == Reloc::Static)
return true;
// In dynamic-no-pic mode, assume that known defined values are safe.
if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
GA &&
!GA->getGlobal()->isDeclaration() &&
!GA->getGlobal()->isWeakForLinker())
return true;
// Otherwise assume nothing is safe.
return false;
}
//===----------------------------------------------------------------------===//
// Optimization Methods
//===----------------------------------------------------------------------===//
/// ShrinkDemandedConstant - Check to see if the specified operand of the
/// specified instruction is a constant integer. If so, check to see if there
/// are any bits set in the constant that are not demanded. If so, shrink the
/// constant and return true.
bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
const APInt &Demanded) {
SDLoc dl(Op);
// FIXME: ISD::SELECT, ISD::SELECT_CC
switch (Op.getOpcode()) {
default: break;
case ISD::XOR:
case ISD::AND:
case ISD::OR: {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!C) return false;
if (Op.getOpcode() == ISD::XOR &&
(C->getAPIntValue() | (~Demanded)).isAllOnesValue())
return false;
// if we can expand it to have all bits set, do it
if (C->getAPIntValue().intersects(~Demanded)) {
EVT VT = Op.getValueType();
SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
DAG.getConstant(Demanded &
C->getAPIntValue(),
VT));
return CombineTo(Op, New);
}
break;
}
}
return false;
}
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
/// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
/// cast, but it could be generalized for targets with other types of
/// implicit widening casts.
bool
TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
unsigned BitWidth,
const APInt &Demanded,
SDLoc dl) {
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
assert(Op.getNumOperands() == 2 &&
"ShrinkDemandedOp only supports binary operators!");
assert(Op.getNode()->getNumValues() == 1 &&
"ShrinkDemandedOp only supports nodes with one result!");
// Don't do this if the node has another user, which may require the
// full value.
if (!Op.getNode()->hasOneUse())
return false;
// Search for the smallest integer type with free casts to and from
// Op's type. For expedience, just check power-of-2 integer types.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
unsigned SmallVTBits = DemandedSize;
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
if (!isPowerOf2_32(SmallVTBits))
SmallVTBits = NextPowerOf2(SmallVTBits);
for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
TLI.isZExtFree(SmallVT, Op.getValueType())) {
// We found a type with free casts.
SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
Op.getNode()->getOperand(0)),
DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
Op.getNode()->getOperand(1)));
bool NeedZext = DemandedSize > SmallVTBits;
SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
dl, Op.getValueType(), X);
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
return CombineTo(Op, Z);
}
}
return false;
}
/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
/// DemandedMask bits of the result of Op are ever used downstream. If we can
/// use this information to simplify Op, create a new simplified DAG node and
/// return true, returning the original and new nodes in Old and New. Otherwise,
/// analyze the expression and return a mask of KnownOne and KnownZero bits for
/// the expression (used to simplify the caller). The KnownZero/One bits may
/// only be accurate for those bits in the DemandedMask.
bool TargetLowering::SimplifyDemandedBits(SDValue Op,
const APInt &DemandedMask,
APInt &KnownZero,
APInt &KnownOne,
TargetLoweringOpt &TLO,
unsigned Depth) const {
unsigned BitWidth = DemandedMask.getBitWidth();
assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
"Mask size mismatches value type size!");
APInt NewMask = DemandedMask;
SDLoc dl(Op);
// Don't know anything.
KnownZero = KnownOne = APInt(BitWidth, 0);
// Other users may use these bits.
if (!Op.getNode()->hasOneUse()) {
if (Depth != 0) {
// If not at the root, Just compute the KnownZero/KnownOne bits to
// simplify things downstream.
TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
return false;
}
// If this is the root being simplified, allow it to have multiple uses,
// just set the NewMask to all bits.
NewMask = APInt::getAllOnesValue(BitWidth);
} else if (DemandedMask == 0) {
// Not demanding any bits from Op.
if (Op.getOpcode() != ISD::UNDEF)
return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
return false;
} else if (Depth == 6) { // Limit search depth.
return false;
}
APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
switch (Op.getOpcode()) {
case ISD::Constant:
// We know all of the bits for a constant!
KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
KnownZero = ~KnownOne;
return false; // Don't fall through, will infinitely loop.
case ISD::AND:
// If the RHS is a constant, check to see if the LHS would be zero without
// using the bits from the RHS. Below, we use knowledge about the RHS to
// simplify the LHS, here we're using information from the LHS to simplify
// the RHS.
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
APInt LHSZero, LHSOne;
// Do not increment Depth here; that can cause an infinite loop.
TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
// If the LHS already has zeros where RHSC does, this and is dead.
if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
return TLO.CombineTo(Op, Op.getOperand(0));
// If any of the set bits in the RHS are known zero on the LHS, shrink
// the constant.
if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
return true;
}
if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
KnownZero2, KnownOne2, TLO, Depth+1))
return true;
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If all of the demanded bits are known one on one side, return the other.
// These bits cannot contribute to the result of the 'and'.
if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
return TLO.CombineTo(Op, Op.getOperand(0));
if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
return TLO.CombineTo(Op, Op.getOperand(1));
// If all of the demanded bits in the inputs are known zeros, return zero.
if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
// If the RHS is a constant, see if we can simplify it.
if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
return true;
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
// If the operation can be done in a smaller type, do so.
if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
return true;
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
break;
case ISD::OR:
if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
KnownZero2, KnownOne2, TLO, Depth+1))
return true;
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'or'.
if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
return TLO.CombineTo(Op, Op.getOperand(0));
if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
return TLO.CombineTo(Op, Op.getOperand(1));
// If all of the potentially set bits on one side are known to be set on
// the other side, just use the 'other' side.
if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
return TLO.CombineTo(Op, Op.getOperand(0));
if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
return TLO.CombineTo(Op, Op.getOperand(1));
// If the RHS is a constant, see if we can simplify it.
if (TLO.ShrinkDemandedConstant(Op, NewMask))
return true;
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
// If the operation can be done in a smaller type, do so.
if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
return true;
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
break;
case ISD::XOR:
if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
KnownOne2, TLO, Depth+1))
return true;
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'xor'.
if ((KnownZero & NewMask) == NewMask)
return TLO.CombineTo(Op, Op.getOperand(0));
if ((KnownZero2 & NewMask) == NewMask)
return TLO.CombineTo(Op, Op.getOperand(1));
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
// If the operation can be done in a smaller type, do so.
if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
return true;
// If all of the unknown bits are known to be zero on one side or the other
// (but not both) turn this into an *inclusive* or.
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
Op.getOperand(0),
Op.getOperand(1)));
// Output known-0 bits are known if clear or set in both the LHS & RHS.
KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
// If all of the demanded bits on one side are known, and all of the set
// bits on that side are also known to be set on the other side, turn this
// into an AND, as we know the bits will be cleared.
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
// NB: it is okay if more bits are known than are requested
if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
if (KnownOne == KnownOne2) { // set bits are the same on both sides
EVT VT = Op.getValueType();
SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
Op.getOperand(0), ANDC));
}
}
// If the RHS is a constant, see if we can simplify it.
// for XOR, we prefer to force bits to 1 if they will make a -1.
// if we can't force bits, try to shrink constant
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
APInt Expanded = C->getAPIntValue() | (~NewMask);
// if we can expand it to have all bits set, do it
if (Expanded.isAllOnesValue()) {
if (Expanded != C->getAPIntValue()) {
EVT VT = Op.getValueType();
SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
TLO.DAG.getConstant(Expanded, VT));
return TLO.CombineTo(Op, New);
}
// if it already has all the bits set, nothing to change
// but don't shrink either!
} else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
return true;
}
}
KnownZero = KnownZeroOut;
KnownOne = KnownOneOut;
break;
case ISD::SELECT:
if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
KnownOne, TLO, Depth+1))
return true;
if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
KnownOne2, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If the operands are constants, see if we can simplify them.
if (TLO.ShrinkDemandedConstant(Op, NewMask))
return true;
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
case ISD::SELECT_CC:
if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
KnownOne, TLO, Depth+1))
return true;
if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
KnownOne2, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If the operands are constants, see if we can simplify them.
if (TLO.ShrinkDemandedConstant(Op, NewMask))
return true;
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
case ISD::SHL:
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned ShAmt = SA->getZExtValue();
SDValue InOp = Op.getOperand(0);
// If the shift count is an invalid immediate, don't do anything.
if (ShAmt >= BitWidth)
break;
// If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
// single shift. We can do this if the bottom bits (which are shifted
// out) are never demanded.
if (InOp.getOpcode() == ISD::SRL &&
isa<ConstantSDNode>(InOp.getOperand(1))) {
if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
unsigned Opc = ISD::SHL;
int Diff = ShAmt-C1;
if (Diff < 0) {
Diff = -Diff;
Opc = ISD::SRL;
}
SDValue NewSA =
TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
EVT VT = Op.getValueType();
return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
InOp.getOperand(0), NewSA));
}
}
if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
KnownZero, KnownOne, TLO, Depth+1))
return true;
// Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
// are not demanded. This will likely allow the anyext to be folded away.
if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
SDValue InnerOp = InOp.getNode()->getOperand(0);
EVT InnerVT = InnerOp.getValueType();
unsigned InnerBits = InnerVT.getSizeInBits();
if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
isTypeDesirableForOp(ISD::SHL, InnerVT)) {
EVT ShTy = getShiftAmountTy(InnerVT);
if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
ShTy = InnerVT;
SDValue NarrowShl =
TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
TLO.DAG.getConstant(ShAmt, ShTy));
return
TLO.CombineTo(Op,
TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
NarrowShl));
}
// Repeat the SHL optimization above in cases where an extension
// intervenes: (shl (anyext (shr x, c1)), c2) to
// (shl (anyext x), c2-c1). This requires that the bottom c1 bits
// aren't demanded (as above) and that the shifted upper c1 bits of
// x aren't demanded.
if (InOp.hasOneUse() &&
InnerOp.getOpcode() == ISD::SRL &&
InnerOp.hasOneUse() &&
isa<ConstantSDNode>(InnerOp.getOperand(1))) {
uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
->getZExtValue();
if (InnerShAmt < ShAmt &&
InnerShAmt < InnerBits &&
NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
NewMask.trunc(ShAmt) == 0) {
SDValue NewSA =
TLO.DAG.getConstant(ShAmt - InnerShAmt,
Op.getOperand(1).getValueType());
EVT VT = Op.getValueType();
SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
InnerOp.getOperand(0));
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
NewExt, NewSA));
}
}
}
KnownZero <<= SA->getZExtValue();
KnownOne <<= SA->getZExtValue();
// low bits known zero.
KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
}
break;
case ISD::SRL:
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
EVT VT = Op.getValueType();
unsigned ShAmt = SA->getZExtValue();
unsigned VTSize = VT.getSizeInBits();
SDValue InOp = Op.getOperand(0);
// If the shift count is an invalid immediate, don't do anything.
if (ShAmt >= BitWidth)
break;
// If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
// single shift. We can do this if the top bits (which are shifted out)
// are never demanded.
if (InOp.getOpcode() == ISD::SHL &&
isa<ConstantSDNode>(InOp.getOperand(1))) {
if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
unsigned Opc = ISD::SRL;
int Diff = ShAmt-C1;
if (Diff < 0) {
Diff = -Diff;
Opc = ISD::SHL;
}
SDValue NewSA =
TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
InOp.getOperand(0), NewSA));
}
}
// Compute the new bits that are at the top now.
if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
KnownZero, KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.lshr(ShAmt);
KnownOne = KnownOne.lshr(ShAmt);
APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
KnownZero |= HighBits; // High bits known zero.
}
break;
case ISD::SRA:
// If this is an arithmetic shift right and only the low-bit is set, we can
// always convert this into a logical shr, even if the shift amount is
// variable. The low bit of the shift cannot be an input sign bit unless
// the shift amount is >= the size of the datatype, which is undefined.
if (NewMask == 1)
return TLO.CombineTo(Op,
TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
Op.getOperand(0), Op.getOperand(1)));
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
EVT VT = Op.getValueType();
unsigned ShAmt = SA->getZExtValue();
// If the shift count is an invalid immediate, don't do anything.
if (ShAmt >= BitWidth)
break;
APInt InDemandedMask = (NewMask << ShAmt);
// If any of the demanded bits are produced by the sign extension, we also
// demand the input sign bit.
APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
if (HighBits.intersects(NewMask))
InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
KnownZero, KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.lshr(ShAmt);
KnownOne = KnownOne.lshr(ShAmt);
// Handle the sign bit, adjusted to where it is now in the mask.
APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits)
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
Op.getOperand(0),
Op.getOperand(1)));
int Log2 = NewMask.exactLogBase2();
if (Log2 >= 0) {
// The bit must come from the sign.
SDValue NewSA =
TLO.DAG.getConstant(BitWidth - 1 - Log2,
Op.getOperand(1).getValueType());
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
Op.getOperand(0), NewSA));
}
if (KnownOne.intersects(SignBit))
// New bits are known one.
KnownOne |= HighBits;
}
break;
case ISD::SIGN_EXTEND_INREG: {
EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
// If we only care about the highest bit, don't bother shifting right.
if (MsbMask == DemandedMask) {
unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
SDValue InOp = Op.getOperand(0);
// Compute the correct shift amount type, which must be getShiftAmountTy
// for scalar types after legalization.
EVT ShiftAmtTy = Op.getValueType();
if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
Op.getValueType(), InOp, ShiftAmt));
}
// Sign extension. Compute the demanded bits in the result that are not
// present in the input.
APInt NewBits =
APInt::getHighBitsSet(BitWidth,
BitWidth - ExVT.getScalarType().getSizeInBits());
// If none of the extended bits are demanded, eliminate the sextinreg.
if ((NewBits & NewMask) == 0)
return TLO.CombineTo(Op, Op.getOperand(0));
APInt InSignBit =
APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
APInt InputDemandedBits =
APInt::getLowBitsSet(BitWidth,
ExVT.getScalarType().getSizeInBits()) &
NewMask;
// Since the sign extended bits are demanded, we know that the sign
// bit is demanded.
InputDemandedBits |= InSignBit;
if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
KnownZero, KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
// If the input sign bit is known zero, convert this into a zero extension.
if (KnownZero.intersects(InSignBit))
return TLO.CombineTo(Op,
TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
KnownOne |= NewBits;
KnownZero &= ~NewBits;
} else { // Input sign bit unknown
KnownZero &= ~NewBits;
KnownOne &= ~NewBits;
}
break;
}
case ISD::ZERO_EXTEND: {
unsigned OperandBitWidth =
Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
APInt InMask = NewMask.trunc(OperandBitWidth);
// If none of the top bits are demanded, convert this into an any_extend.
APInt NewBits =
APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
if (!NewBits.intersects(NewMask))
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
Op.getValueType(),
Op.getOperand(0)));
if (SimplifyDemandedBits(Op.getOperand(0), InMask,
KnownZero, KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
KnownZero |= NewBits;
break;
}
case ISD::SIGN_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarType().getSizeInBits();
APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
APInt NewBits = ~InMask & NewMask;
// If none of the top bits are demanded, convert this into an any_extend.
if (NewBits == 0)
return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
Op.getValueType(),
Op.getOperand(0)));
// Since some of the sign extended bits are demanded, we know that the sign
// bit is demanded.
APInt InDemandedBits = InMask & NewMask;
InDemandedBits |= InSignBit;
InDemandedBits = InDemandedBits.trunc(InBits);
if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
KnownOne, TLO, Depth+1))
return true;
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
// If the sign bit is known zero, convert this to a zero extend.
if (KnownZero.intersects(InSignBit))
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
Op.getValueType(),
Op.getOperand(0)));
// If the sign bit is known one, the top bits match.
if (KnownOne.intersects(InSignBit)) {
KnownOne |= NewBits;
assert((KnownZero & NewBits) == 0);
} else { // Otherwise, top bits aren't known.
assert((KnownOne & NewBits) == 0);
assert((KnownZero & NewBits) == 0);
}
break;
}
case ISD::ANY_EXTEND: {
unsigned OperandBitWidth =
Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
APInt InMask = NewMask.trunc(OperandBitWidth);
if (SimplifyDemandedBits(Op.getOperand(0), InMask,
KnownZero, KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
break;
}
case ISD::TRUNCATE: {
// Simplify the input, using demanded bit information, and compute the known
// zero/one bits live out.
unsigned OperandBitWidth =
Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
APInt TruncMask = NewMask.zext(OperandBitWidth);
if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
KnownZero, KnownOne, TLO, Depth+1))
return true;
KnownZero = KnownZero.trunc(BitWidth);
KnownOne = KnownOne.trunc(BitWidth);
// If the input is only used by this truncate, see if we can shrink it based
// on the known demanded bits.
if (Op.getOperand(0).getNode()->hasOneUse()) {
SDValue In = Op.getOperand(0);
switch (In.getOpcode()) {
default: break;
case ISD::SRL:
// Shrink SRL by a constant if none of the high bits shifted in are
// demanded.
if (TLO.LegalTypes() &&
!isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
// Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
// undesirable.
break;
ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
if (!ShAmt)
break;
SDValue Shift = In.getOperand(1);
if (TLO.LegalTypes()) {
uint64_t ShVal = ShAmt->getZExtValue();
Shift =
TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
}
APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
OperandBitWidth - BitWidth);
HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
// None of the shifted in bits are needed. Add a truncate of the
// shift input, then shift it.
SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
Op.getValueType(),
In.getOperand(0));
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
Op.getValueType(),
NewTrunc,
Shift));
}
break;
}
}
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
break;
}
case ISD::AssertZext: {
// AssertZext demands all of the high bits, plus any of the low bits
// demanded by its users.
EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
APInt InMask = APInt::getLowBitsSet(BitWidth,
VT.getSizeInBits());
if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
KnownZero, KnownOne, TLO, Depth+1))
return true;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero |= ~InMask & NewMask;
break;
}
case ISD::BITCAST:
// If this is an FP->Int bitcast and if the sign bit is the only
// thing demanded, turn this into a FGETSIGN.
if (!TLO.LegalOperations() &&
!Op.getValueType().isVector() &&
!Op.getOperand(0).getValueType().isVector() &&
NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
Op.getOperand(0).getValueType().isFloatingPoint()) {
bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
// Make a FGETSIGN + SHL to move the sign bit into the appropriate
// place. We expect the SHL to be eliminated by other optimizations.
SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
if (!OpVTLegal && OpVTSizeInBits > 32)
Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
unsigned ShVal = Op.getValueType().getSizeInBits()-1;
SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
Op.getValueType(),
Sign, ShAmt));
}
}
break;
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
case ISD::ADD:
case ISD::MUL:
case ISD::SUB: {
// Add, Sub, and Mul don't demand any bits in positions beyond that
// of the highest bit demanded of them.
APInt LoMask = APInt::getLowBitsSet(BitWidth,
BitWidth - NewMask.countLeadingZeros());
if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
KnownOne2, TLO, Depth+1))
return true;
if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
KnownOne2, TLO, Depth+1))
return true;
// See if the operation should be performed at a smaller bit width.
if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
Implement support for using modeling implicit-zero-extension on x86-64 with SUBREG_TO_REG, teach SimpleRegisterCoalescing to coalesce SUBREG_TO_REG instructions (which are similar to INSERT_SUBREG instructions), and teach the DAGCombiner to take advantage of this on targets which support it. This eliminates many redundant zero-extension operations on x86-64. This adds a new TargetLowering hook, isZExtFree. It's similar to isTruncateFree, except it only applies to actual definitions, and not no-op truncates which may not zero the high bits. Also, this adds a new optimization to SimplifyDemandedBits: transform operations like x+y into (zext (add (trunc x), (trunc y))) on targets where all the casts are no-ops. In contexts where the high part of the add is explicitly masked off, this allows the mask operation to be eliminated. Fix the DAGCombiner to avoid undoing these transformations to eliminate casts on targets where the casts are no-ops. Also, this adds a new two-address lowering heuristic. Since two-address lowering runs before coalescing, it helps to be able to look through copies when deciding whether commuting and/or three-address conversion are profitable. Also, fix a bug in LiveInterval::MergeInClobberRanges. It didn't handle the case that a clobber range extended both before and beyond an existing live range. In that case, multiple live ranges need to be added. This was exposed by the new subreg coalescing code. Remove 2008-05-06-SpillerBug.ll. It was bugpoint-reduced, and the spiller behavior it was looking for no longer occurrs with the new instruction selection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68576 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-08 00:15:30 +00:00
return true;
}
// FALL THROUGH
default:
// Just use ComputeMaskedBits to compute output bits.
TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
break;
}
// If we know the value of all of the demanded bits, return this as a
// constant.
if ((NewMask & (KnownZero|KnownOne)) == NewMask)
return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
return false;
}
/// computeMaskedBitsForTargetNode - Determine which of the bits specified
/// in Mask are known to be either zero or one and return them in the
/// KnownZero/KnownOne bitsets.
void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
"Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!");
KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
}
/// ComputeNumSignBitsForTargetNode - This method can be implemented by
/// targets that want to expose additional information about sign bits to the
/// DAG Combiner.
unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
const SelectionDAG &,
unsigned Depth) const {
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
"Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!");
return 1;
}
/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
/// determine which bit is set.
///
static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
// A left-shift of a constant one will have exactly one bit set, because
// shifting the bit off the end is undefined.
if (Val.getOpcode() == ISD::SHL)
if (ConstantSDNode *C =
dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
if (C->getAPIntValue() == 1)
return true;
// Similarly, a right-shift of a constant sign-bit will have exactly
// one bit set.
if (Val.getOpcode() == ISD::SRL)
if (ConstantSDNode *C =
dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
if (C->getAPIntValue().isSignBit())
return true;
// More could be done here, though the above checks are enough
// to handle some common cases.
// Fall back to ComputeMaskedBits to catch other known cases.
EVT OpVT = Val.getValueType();
unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
APInt KnownZero, KnownOne;
DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
return (KnownZero.countPopulation() == BitWidth - 1) &&
(KnownOne.countPopulation() == 1);
}
bool TargetLowering::isConstTrueVal(const SDNode *N) const {
if (!N)
return false;
bool IsVec = false;
const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
if (!CN) {
const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
if (!BV)
return false;
IsVec = true;
CN = BV->getConstantSplatValue();
}
switch (getBooleanContents(IsVec)) {
case UndefinedBooleanContent:
return CN->getAPIntValue()[0];
case ZeroOrOneBooleanContent:
return CN->isOne();
case ZeroOrNegativeOneBooleanContent:
return CN->isAllOnesValue();
}
llvm_unreachable("Invalid boolean contents");
}
bool TargetLowering::isConstFalseVal(const SDNode *N) const {
if (!N)
return false;
bool IsVec = false;
const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
if (!CN) {
const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
if (!BV)
return false;
IsVec = true;
CN = BV->getConstantSplatValue();
}
if (getBooleanContents(IsVec) == UndefinedBooleanContent)
return !CN->getAPIntValue()[0];
return CN->isNullValue();
}
/// SimplifySetCC - Try to simplify a setcc built with the specified operands
/// and cc. If it is unable to simplify it, return a null SDValue.
SDValue
TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
ISD::CondCode Cond, bool foldBooleans,
DAGCombinerInfo &DCI, SDLoc dl) const {
SelectionDAG &DAG = DCI.DAG;
// These setcc operations always fold.
switch (Cond) {
default: break;
case ISD::SETFALSE:
case ISD::SETFALSE2: return DAG.getConstant(0, VT);
case ISD::SETTRUE:
case ISD::SETTRUE2: {
TargetLowering::BooleanContent Cnt = getBooleanContents(VT.isVector());
return DAG.getConstant(
Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
}
}
// Ensure that the constant occurs on the RHS, and fold constant
// comparisons.
ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
if (isa<ConstantSDNode>(N0.getNode()) &&
(DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
const APInt &C1 = N1C->getAPIntValue();
// If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
// equality comparison, then we're just comparing whether X itself is
// zero.
if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
N0.getOperand(0).getOpcode() == ISD::CTLZ &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
const APInt &ShAmt
= cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
if ((C1 == 0) == (Cond == ISD::SETEQ)) {
// (srl (ctlz x), 5) == 0 -> X != 0
// (srl (ctlz x), 5) != 1 -> X != 0
Cond = ISD::SETNE;
} else {
// (srl (ctlz x), 5) != 0 -> X == 0
// (srl (ctlz x), 5) == 1 -> X == 0
Cond = ISD::SETEQ;
}
SDValue Zero = DAG.getConstant(0, N0.getValueType());
return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
Zero, Cond);
}
}
SDValue CTPOP = N0;
// Look through truncs that don't change the value of a ctpop.
if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
CTPOP = N0.getOperand(0);
if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
(N0 == CTPOP || N0.getValueType().getSizeInBits() >
Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
EVT CTVT = CTPOP.getValueType();
SDValue CTOp = CTPOP.getOperand(0);
// (ctpop x) u< 2 -> (x & x-1) == 0
// (ctpop x) u> 1 -> (x & x-1) != 0
if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
DAG.getConstant(1, CTVT));
SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
}
// TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
}
// (zext x) == C --> x == (trunc C)
if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
(Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
unsigned MinBits = N0.getValueSizeInBits();
SDValue PreZExt;
if (N0->getOpcode() == ISD::ZERO_EXTEND) {
// ZExt
MinBits = N0->getOperand(0).getValueSizeInBits();
PreZExt = N0->getOperand(0);
} else if (N0->getOpcode() == ISD::AND) {
// DAGCombine turns costly ZExts into ANDs
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
if ((C->getAPIntValue()+1).isPowerOf2()) {
MinBits = C->getAPIntValue().countTrailingOnes();
PreZExt = N0->getOperand(0);
}
} else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
// ZEXTLOAD
if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
MinBits = LN0->getMemoryVT().getSizeInBits();
PreZExt = N0;
}
}
// Make sure we're not losing bits from the constant.
if (MinBits > 0 &&
MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) {
EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
// Will get folded away.
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
return DAG.getSetCC(dl, VT, Trunc, C, Cond);
}
}
}
// If the LHS is '(and load, const)', the RHS is 0,
// the test is for equality or unsigned, and all 1 bits of the const are
// in the same partial word, see if we can shorten the load.
if (DCI.isBeforeLegalize() &&
!ISD::isSignedIntSetCC(Cond) &&
N0.getOpcode() == ISD::AND && C1 == 0 &&
N0.getNode()->hasOneUse() &&
isa<LoadSDNode>(N0.getOperand(0)) &&
N0.getOperand(0).getNode()->hasOneUse() &&
isa<ConstantSDNode>(N0.getOperand(1))) {
LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
APInt bestMask;
unsigned bestWidth = 0, bestOffset = 0;
if (!Lod->isVolatile() && Lod->isUnindexed()) {
unsigned origWidth = N0.getValueType().getSizeInBits();
unsigned maskWidth = origWidth;
// We can narrow (e.g.) 16-bit extending loads on 32-bit target to
// 8 bits, but have to be careful...
if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
origWidth = Lod->getMemoryVT().getSizeInBits();
const APInt &Mask =
cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
for (unsigned width = origWidth / 2; width>=8; width /= 2) {
APInt newMask = APInt::getLowBitsSet(maskWidth, width);
for (unsigned offset=0; offset<origWidth/width; offset++) {
if ((newMask & Mask) == Mask) {
if (!getDataLayout()->isLittleEndian())
bestOffset = (origWidth/width - offset - 1) * (width/8);
else
bestOffset = (uint64_t)offset * (width/8);
bestMask = Mask.lshr(offset * (width/8) * 8);
bestWidth = width;
break;
}
newMask = newMask << width;
}
}
}
if (bestWidth) {
EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
if (newVT.isRound()) {
EVT PtrType = Lod->getOperand(1).getValueType();
SDValue Ptr = Lod->getBasePtr();
if (bestOffset != 0)
Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
DAG.getConstant(bestOffset, PtrType));
unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
Lod->getPointerInfo().getWithOffset(bestOffset),
false, false, false, NewAlign);
return DAG.getSetCC(dl, VT,
DAG.getNode(ISD::AND, dl, newVT, NewLoad,
DAG.getConstant(bestMask.trunc(bestWidth),
newVT)),
DAG.getConstant(0LL, newVT), Cond);
}
}
}
// If the LHS is a ZERO_EXTEND, perform the comparison on the input.
if (N0.getOpcode() == ISD::ZERO_EXTEND) {
unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
// If the comparison constant has bits in the upper part, the
// zero-extended value could never match.
if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
C1.getBitWidth() - InSize))) {
switch (Cond) {
case ISD::SETUGT:
case ISD::SETUGE:
case ISD::SETEQ: return DAG.getConstant(0, VT);
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETNE: return DAG.getConstant(1, VT);
case ISD::SETGT:
case ISD::SETGE:
// True if the sign bit of C1 is set.
return DAG.getConstant(C1.isNegative(), VT);
case ISD::SETLT:
case ISD::SETLE:
// True if the sign bit of C1 isn't set.
return DAG.getConstant(C1.isNonNegative(), VT);
default:
break;
}
}
// Otherwise, we can perform the comparison with the low bits.
switch (Cond) {
case ISD::SETEQ:
case ISD::SETNE:
case ISD::SETUGT:
case ISD::SETUGE:
case ISD::SETULT:
case ISD::SETULE: {
EVT newVT = N0.getOperand(0).getValueType();
if (DCI.isBeforeLegalizeOps() ||
(isOperationLegal(ISD::SETCC, newVT) &&
getCondCodeAction(Cond, newVT.getSimpleVT())==Legal))
return DAG.getSetCC(dl, VT, N0.getOperand(0),
DAG.getConstant(C1.trunc(InSize), newVT),
Cond);
break;
}
default:
break; // todo, be more careful with signed comparisons
}
} else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
(Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
EVT ExtDstTy = N0.getValueType();
unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
// If the constant doesn't fit into the number of bits for the source of
// the sign extension, it is impossible for both sides to be equal.
if (C1.getMinSignedBits() > ExtSrcTyBits)
return DAG.getConstant(Cond == ISD::SETNE, VT);
SDValue ZextOp;
EVT Op0Ty = N0.getOperand(0).getValueType();
if (Op0Ty == ExtSrcTy) {
ZextOp = N0.getOperand(0);
} else {
APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
DAG.getConstant(Imm, Op0Ty));
}
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(ZextOp.getNode());
// Otherwise, make this a use of a zext.
return DAG.getSetCC(dl, VT, ZextOp,
DAG.getConstant(C1 & APInt::getLowBitsSet(
ExtDstTyBits,
ExtSrcTyBits),
ExtDstTy),
Cond);
} else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
(Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
// SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
if (N0.getOpcode() == ISD::SETCC &&
isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
if (TrueWhenTrue)
return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
// Invert the condition.
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
CC = ISD::getSetCCInverse(CC,
N0.getOperand(0).getValueType().isInteger());
if (DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
}
if ((N0.getOpcode() == ISD::XOR ||
(N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::XOR &&
N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
isa<ConstantSDNode>(N0.getOperand(1)) &&
cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
// If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
// can only do this if the top bits are known zero.
unsigned BitWidth = N0.getValueSizeInBits();
if (DAG.MaskedValueIsZero(N0,
APInt::getHighBitsSet(BitWidth,
BitWidth-1))) {
// Okay, get the un-inverted input value.
SDValue Val;
if (N0.getOpcode() == ISD::XOR)
Val = N0.getOperand(0);
else {
assert(N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::XOR);
// ((X^1)&1)^1 -> X & 1
Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
N0.getOperand(0).getOperand(0),
N0.getOperand(1));
}
return DAG.getSetCC(dl, VT, Val, N1,
Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
}
} else if (N1C->getAPIntValue() == 1 &&
(VT == MVT::i1 ||
getBooleanContents(false) == ZeroOrOneBooleanContent)) {
SDValue Op0 = N0;
if (Op0.getOpcode() == ISD::TRUNCATE)
Op0 = Op0.getOperand(0);
if ((Op0.getOpcode() == ISD::XOR) &&
Op0.getOperand(0).getOpcode() == ISD::SETCC &&
Op0.getOperand(1).getOpcode() == ISD::SETCC) {
// (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
Cond);
}
if (Op0.getOpcode() == ISD::AND &&
isa<ConstantSDNode>(Op0.getOperand(1)) &&
cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
// If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
if (Op0.getValueType().bitsGT(VT))
Op0 = DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
DAG.getConstant(1, VT));
else if (Op0.getValueType().bitsLT(VT))
Op0 = DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
DAG.getConstant(1, VT));
return DAG.getSetCC(dl, VT, Op0,
DAG.getConstant(0, Op0.getValueType()),
Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
}
if (Op0.getOpcode() == ISD::AssertZext &&
cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
return DAG.getSetCC(dl, VT, Op0,
DAG.getConstant(0, Op0.getValueType()),
Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
}
}
APInt MinVal, MaxVal;
unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
if (ISD::isSignedIntSetCC(Cond)) {
MinVal = APInt::getSignedMinValue(OperandBitSize);
MaxVal = APInt::getSignedMaxValue(OperandBitSize);
} else {
MinVal = APInt::getMinValue(OperandBitSize);
MaxVal = APInt::getMaxValue(OperandBitSize);
}
// Canonicalize GE/LE comparisons to use GT/LT comparisons.
if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
// X >= C0 --> X > (C0 - 1)
APInt C = C1 - 1;
ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
if ((DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
(!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
isLegalICmpImmediate(C.getSExtValue())))) {
return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(C, N1.getValueType()),
NewCC);
}
}
if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
// X <= C0 --> X < (C0 + 1)
APInt C = C1 + 1;
ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
if ((DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
(!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
isLegalICmpImmediate(C.getSExtValue())))) {
return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(C, N1.getValueType()),
NewCC);
}
}
if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
return DAG.getConstant(0, VT); // X < MIN --> false
if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
return DAG.getConstant(1, VT); // X >= MIN --> true
if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
return DAG.getConstant(0, VT); // X > MAX --> false
if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
return DAG.getConstant(1, VT); // X <= MAX --> true
// Canonicalize setgt X, Min --> setne X, Min
if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
// Canonicalize setlt X, Max --> setne X, Max
if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
// If we have setult X, 1, turn it into seteq X, 0
if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(MinVal, N0.getValueType()),
ISD::SETEQ);
// If we have setugt X, Max-1, turn it into seteq X, Max
if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(MaxVal, N0.getValueType()),
ISD::SETEQ);
// If we have "setcc X, C0", check to see if we can shrink the immediate
// by changing cc.
// SETUGT X, SINTMAX -> SETLT X, 0
if (Cond == ISD::SETUGT &&
C1 == APInt::getSignedMaxValue(OperandBitSize))
return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(0, N1.getValueType()),
ISD::SETLT);
// SETULT X, SINTMIN -> SETGT X, -1
if (Cond == ISD::SETULT &&
C1 == APInt::getSignedMinValue(OperandBitSize)) {
SDValue ConstMinusOne =
DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
N1.getValueType());
return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
}
// Fold bit comparisons when we can.
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
(VT == N0.getValueType() ||
(isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
N0.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS =
dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
EVT ShiftTy = DCI.isBeforeLegalize() ?
getPointerTy() : getShiftAmountTy(N0.getValueType());
if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
// Perform the xform if the AND RHS is a single bit.
if (AndRHS->getAPIntValue().isPowerOf2()) {
return DAG.getNode(ISD::TRUNCATE, dl, VT,
DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
}
} else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
// (X & 8) == 8 --> (X & 8) >> 3
// Perform the xform if C1 is a single bit.
if (C1.isPowerOf2()) {
return DAG.getNode(ISD::TRUNCATE, dl, VT,
DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
DAG.getConstant(C1.logBase2(), ShiftTy)));
}
}
}
if (C1.getMinSignedBits() <= 64 &&
!isLegalICmpImmediate(C1.getSExtValue())) {
// (X & -256) == 256 -> (X >> 8) == 1
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
if (ConstantSDNode *AndRHS =
dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
const APInt &AndRHSC = AndRHS->getAPIntValue();
if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
unsigned ShiftBits = AndRHSC.countTrailingZeros();
EVT ShiftTy = DCI.isBeforeLegalize() ?
getPointerTy() : getShiftAmountTy(N0.getValueType());
EVT CmpTy = N0.getValueType();
SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
DAG.getConstant(ShiftBits, ShiftTy));
SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
}
}
} else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
Cond == ISD::SETULE || Cond == ISD::SETUGT) {
bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
// X < 0x100000000 -> (X >> 32) < 1
// X >= 0x100000000 -> (X >> 32) >= 1
// X <= 0x0ffffffff -> (X >> 32) < 1
// X > 0x0ffffffff -> (X >> 32) >= 1
unsigned ShiftBits;
APInt NewC = C1;
ISD::CondCode NewCond = Cond;
if (AdjOne) {
ShiftBits = C1.countTrailingOnes();
NewC = NewC + 1;
NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
} else {
ShiftBits = C1.countTrailingZeros();
}
NewC = NewC.lshr(ShiftBits);
if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
EVT ShiftTy = DCI.isBeforeLegalize() ?
getPointerTy() : getShiftAmountTy(N0.getValueType());
EVT CmpTy = N0.getValueType();
SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
DAG.getConstant(ShiftBits, ShiftTy));
SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
}
}
}
}
if (isa<ConstantFPSDNode>(N0.getNode())) {
// Constant fold or commute setcc.
SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
if (O.getNode()) return O;
} else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
// If the RHS of an FP comparison is a constant, simplify it away in
// some cases.
if (CFP->getValueAPF().isNaN()) {
// If an operand is known to be a nan, we can fold it.
switch (ISD::getUnorderedFlavor(Cond)) {
default: llvm_unreachable("Unknown flavor!");
case 0: // Known false.
return DAG.getConstant(0, VT);
case 1: // Known true.
return DAG.getConstant(1, VT);
case 2: // Undefined.
return DAG.getUNDEF(VT);
}
}
// Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
// constant if knowing that the operand is non-nan is enough. We prefer to
// have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
// materialize 0.0.
if (Cond == ISD::SETO || Cond == ISD::SETUO)
return DAG.getSetCC(dl, VT, N0, N0, Cond);
// If the condition is not legal, see if we can find an equivalent one
// which is legal.
if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
// If the comparison was an awkward floating-point == or != and one of
// the comparison operands is infinity or negative infinity, convert the
// condition to a less-awkward <= or >=.
if (CFP->getValueAPF().isInfinity()) {
if (CFP->getValueAPF().isNegative()) {
if (Cond == ISD::SETOEQ &&
isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
if (Cond == ISD::SETUEQ &&
isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
if (Cond == ISD::SETUNE &&
isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
if (Cond == ISD::SETONE &&
isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
} else {
if (Cond == ISD::SETOEQ &&
isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
if (Cond == ISD::SETUEQ &&
isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
if (Cond == ISD::SETUNE &&
isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
if (Cond == ISD::SETONE &&
isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
}
}
}
}
if (N0 == N1) {
// The sext(setcc()) => setcc() optimization relies on the appropriate
// constant being emitted.
uint64_t EqVal = 0;
switch (getBooleanContents(N0.getValueType().isVector())) {
case UndefinedBooleanContent:
case ZeroOrOneBooleanContent:
EqVal = ISD::isTrueWhenEqual(Cond);
break;
case ZeroOrNegativeOneBooleanContent:
EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
break;
}
// We can always fold X == X for integer setcc's.
if (N0.getValueType().isInteger()) {
return DAG.getConstant(EqVal, VT);
}
unsigned UOF = ISD::getUnorderedFlavor(Cond);
if (UOF == 2) // FP operators that are undefined on NaNs.
return DAG.getConstant(EqVal, VT);
if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
return DAG.getConstant(EqVal, VT);
// Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
// if it is not already.
ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
return DAG.getSetCC(dl, VT, N0, N1, NewCond);
}
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
N0.getValueType().isInteger()) {
if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
N0.getOpcode() == ISD::XOR) {
// Simplify (X+Y) == (X+Z) --> Y == Z
if (N0.getOpcode() == N1.getOpcode()) {
if (N0.getOperand(0) == N1.getOperand(0))
return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
if (N0.getOperand(1) == N1.getOperand(1))
return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
if (DAG.isCommutativeBinOp(N0.getOpcode())) {
// If X op Y == Y op X, try other combinations.
if (N0.getOperand(0) == N1.getOperand(1))
return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
Cond);
if (N0.getOperand(1) == N1.getOperand(0))
return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
Cond);
}
}
// If RHS is a legal immediate value for a compare instruction, we need
// to be careful about increasing register pressure needlessly.
bool LegalRHSImm = false;
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
// Turn (X+C1) == C2 --> X == C2-C1
if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
return DAG.getSetCC(dl, VT, N0.getOperand(0),
DAG.getConstant(RHSC->getAPIntValue()-
LHSR->getAPIntValue(),
N0.getValueType()), Cond);
}
// Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
if (N0.getOpcode() == ISD::XOR)
// If we know that all of the inverted bits are zero, don't bother
// performing the inversion.
if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
return
DAG.getSetCC(dl, VT, N0.getOperand(0),
DAG.getConstant(LHSR->getAPIntValue() ^
RHSC->getAPIntValue(),
N0.getValueType()),
Cond);
}
// Turn (C1-X) == C2 --> X == C1-C2
if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
return
DAG.getSetCC(dl, VT, N0.getOperand(1),
DAG.getConstant(SUBC->getAPIntValue() -
RHSC->getAPIntValue(),
N0.getValueType()),
Cond);
}
}
// Could RHSC fold directly into a compare?
if (RHSC->getValueType(0).getSizeInBits() <= 64)
LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
}
// Simplify (X+Z) == X --> Z == 0
// Don't do this if X is an immediate that can fold into a cmp
// instruction and X+Z has other uses. It could be an induction variable
// chain, and the transform would increase register pressure.
if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
if (N0.getOperand(0) == N1)
return DAG.getSetCC(dl, VT, N0.getOperand(1),
DAG.getConstant(0, N0.getValueType()), Cond);
if (N0.getOperand(1) == N1) {
if (DAG.isCommutativeBinOp(N0.getOpcode()))
return DAG.getSetCC(dl, VT, N0.getOperand(0),
DAG.getConstant(0, N0.getValueType()), Cond);
if (N0.getNode()->hasOneUse()) {
assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
// (Z-X) == X --> Z == X<<1
SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(SH.getNode());
return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
}
}
}
}
if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
N1.getOpcode() == ISD::XOR) {
// Simplify X == (X+Z) --> Z == 0
if (N1.getOperand(0) == N0)
return DAG.getSetCC(dl, VT, N1.getOperand(1),
DAG.getConstant(0, N1.getValueType()), Cond);
if (N1.getOperand(1) == N0) {
if (DAG.isCommutativeBinOp(N1.getOpcode()))
return DAG.getSetCC(dl, VT, N1.getOperand(0),
DAG.getConstant(0, N1.getValueType()), Cond);
if (N1.getNode()->hasOneUse()) {
assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
// X == (Z-X) --> X<<1 == Z
SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(SH.getNode());
return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
}
}
}
// Simplify x&y == y to x&y != 0 if y has exactly one bit set.
// Note that where y is variable and is known to have at most
// one bit set (for example, if it is z&1) we cannot do this;
// the expressions are not equivalent when y==0.
if (N0.getOpcode() == ISD::AND)
if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
if (ValueHasExactlyOneBitSet(N1, DAG)) {
Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
if (DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(Cond, N0.getSimpleValueType())) {
SDValue Zero = DAG.getConstant(0, N1.getValueType());
return DAG.getSetCC(dl, VT, N0, Zero, Cond);
}
}
}
if (N1.getOpcode() == ISD::AND)
if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
if (ValueHasExactlyOneBitSet(N0, DAG)) {
Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
if (DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(Cond, N1.getSimpleValueType())) {
SDValue Zero = DAG.getConstant(0, N0.getValueType());
return DAG.getSetCC(dl, VT, N1, Zero, Cond);
}
}
}
}
// Fold away ALL boolean setcc's.
SDValue Temp;
if (N0.getValueType() == MVT::i1 && foldBooleans) {
switch (Cond) {
default: llvm_unreachable("Unknown integer setcc!");
case ISD::SETEQ: // X == Y -> ~(X^Y)
Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
N0 = DAG.getNOT(dl, Temp, MVT::i1);
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(Temp.getNode());
break;
case ISD::SETNE: // X != Y --> (X^Y)
N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
break;
case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
Temp = DAG.getNOT(dl, N0, MVT::i1);
N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(Temp.getNode());
break;
case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
Temp = DAG.getNOT(dl, N1, MVT::i1);
N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(Temp.getNode());
break;
case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
Temp = DAG.getNOT(dl, N0, MVT::i1);
N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(Temp.getNode());
break;
case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
Temp = DAG.getNOT(dl, N1, MVT::i1);
N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
break;
}
if (VT != MVT::i1) {
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(N0.getNode());
// FIXME: If running after legalize, we probably can't do this.
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
}
return N0;
}
// Could not fold it.
return SDValue();
}
/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
/// node is a GlobalAddress + offset.
bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
int64_t &Offset) const {
if (isa<GlobalAddressSDNode>(N)) {
GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
GA = GASD->getGlobal();
Offset += GASD->getOffset();
return true;
}
if (N->getOpcode() == ISD::ADD) {
SDValue N1 = N->getOperand(0);
SDValue N2 = N->getOperand(1);
if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
if (V) {
Offset += V->getSExtValue();
return true;
}
} else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
if (V) {
Offset += V->getSExtValue();
return true;
}
}
}
return false;
}
SDValue TargetLowering::
PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
// Default implementation: no optimization.
return SDValue();
}
//===----------------------------------------------------------------------===//
// Inline Assembler Implementation Methods
//===----------------------------------------------------------------------===//
TargetLowering::ConstraintType
TargetLowering::getConstraintType(const std::string &Constraint) const {
unsigned S = Constraint.size();
if (S == 1) {
switch (Constraint[0]) {
default: break;
case 'r': return C_RegisterClass;
case 'm': // memory
case 'o': // offsetable
case 'V': // not offsetable
return C_Memory;
case 'i': // Simple Integer or Relocatable Constant
case 'n': // Simple Integer
case 'E': // Floating Point Constant
case 'F': // Floating Point Constant
case 's': // Relocatable Constant
case 'p': // Address.
case 'X': // Allow ANY value.
case 'I': // Target registers.
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P':
case '<':
case '>':
return C_Other;
}
}
if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}"
return C_Memory;
return C_Register;
}
return C_Unknown;
}
/// LowerXConstraint - try to replace an X constraint, which matches anything,
/// with another that has more specific requirements based on the type of the
/// corresponding operand.
const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
if (ConstraintVT.isInteger())
return "r";
if (ConstraintVT.isFloatingPoint())
return "f"; // works for many targets
return nullptr;
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
if (Constraint.length() > 1) return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break;
case 'X': // Allows any operand; labels (basic block) use this.
if (Op.getOpcode() == ISD::BasicBlock) {
Ops.push_back(Op);
return;
}
// fall through
case 'i': // Simple Integer or Relocatable Constant
case 'n': // Simple Integer
case 's': { // Relocatable Constant
// These operands are interested in values of the form (GV+C), where C may
// be folded in as an offset of GV, or it may be explicitly added. Also, it
// is possible and fine if either GV or C are missing.
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
// If we have "(add GV, C)", pull out GV/C
if (Op.getOpcode() == ISD::ADD) {
C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
if (!C || !GA) {
C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
}
if (!C || !GA)
C = nullptr, GA = nullptr;
}
// If we find a valid operand, map to the TargetXXX version so that the
// value itself doesn't get selected.
if (GA) { // Either &GV or &GV+C
if (ConstraintLetter != 'n') {
int64_t Offs = GA->getOffset();
if (C) Offs += C->getZExtValue();
Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
C ? SDLoc(C) : SDLoc(),
Op.getValueType(), Offs));
return;
}
}
if (C) { // just C, no GV.
// Simple constants are not allowed for 's'.
if (ConstraintLetter != 's') {
// gcc prints these as sign extended. Sign extend value to 64 bits
// now; without this it would get ZExt'd later in
// ScheduleDAGSDNodes::EmitNode, which is very generic.
Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
MVT::i64));
return;
}
}
break;
}
}
}
std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint,
MVT VT) const {
if (Constraint.empty() || Constraint[0] != '{')
return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
// Remove the braces from around the name.
StringRef RegName(Constraint.data()+1, Constraint.size()-2);
std::pair<unsigned, const TargetRegisterClass*> R =
std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
// Figure out which register class contains this reg.
const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo();
for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
E = RI->regclass_end(); RCI != E; ++RCI) {
const TargetRegisterClass *RC = *RCI;
// If none of the value types for this register class are valid, we
// can't use it. For example, 64-bit reg classes on 32-bit targets.
if (!isLegalRC(RC))
continue;
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
I != E; ++I) {
if (RegName.equals_lower(RI->getName(*I))) {
std::pair<unsigned, const TargetRegisterClass*> S =
std::make_pair(*I, RC);
// If this register class has the requested value type, return it,
// otherwise keep searching and return the first class found
// if no other is found which explicitly has the requested type.
if (RC->hasType(VT))
return S;
else if (!R.second)
R = S;
}
}
}
return R;
}
//===----------------------------------------------------------------------===//
// Constraint Selection.
/// isMatchingInputConstraint - Return true of this is an input operand that is
/// a matching constraint like "4".
bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
assert(!ConstraintCode.empty() && "No known constraint!");
return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
}
/// getMatchedOperand - If this is an input matching constraint, this method
/// returns the output operand it matches.
unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
assert(!ConstraintCode.empty() && "No known constraint!");
return atoi(ConstraintCode.c_str());
}
/// ParseConstraints - Split up the constraint string from the inline
/// assembly value into the specific constraints and their prefixes,
/// and also tie in the associated operand values.
/// If this returns an empty vector, and if the constraint string itself
/// isn't empty, there was an error parsing.
TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
ImmutableCallSite CS) const {
/// ConstraintOperands - Information about all of the constraints.
AsmOperandInfoVector ConstraintOperands;
const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
unsigned maCount = 0; // Largest number of multiple alternative constraints.
// Do a prepass over the constraints, canonicalizing them, and building up the
// ConstraintOperands list.
InlineAsm::ConstraintInfoVector
ConstraintInfos = IA->ParseConstraints();
unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
unsigned ResNo = 0; // ResNo - The result number of the next output.
for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
AsmOperandInfo &OpInfo = ConstraintOperands.back();
// Update multiple alternative constraint count.
if (OpInfo.multipleAlternatives.size() > maCount)
maCount = OpInfo.multipleAlternatives.size();
OpInfo.ConstraintVT = MVT::Other;
// Compute the value type for each operand.
switch (OpInfo.Type) {
case InlineAsm::isOutput:
// Indirect outputs just consume an argument.
if (OpInfo.isIndirect) {
OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
break;
}
// The return value of the call is this value. As such, there is no
// corresponding argument.
assert(!CS.getType()->isVoidTy() &&
"Bad inline asm!");
if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
} else {
assert(ResNo == 0 && "Asm only has one result!");
OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
}
++ResNo;
break;
case InlineAsm::isInput:
OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
break;
case InlineAsm::isClobber:
// Nothing to do.
break;
}
if (OpInfo.CallOperandVal) {
llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
if (OpInfo.isIndirect) {
llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
if (!PtrTy)
report_fatal_error("Indirect operand for inline asm not a pointer!");
OpTy = PtrTy->getElementType();
}
// Look for vector wrapped in a struct. e.g. { <16 x i8> }.
if (StructType *STy = dyn_cast<StructType>(OpTy))
if (STy->getNumElements() == 1)
OpTy = STy->getElementType(0);
// If OpTy is not a single value, it may be a struct/union that we
// can tile with integers.
if (!OpTy->isSingleValueType() && OpTy->isSized()) {
unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
switch (BitSize) {
default: break;
case 1:
case 8:
case 16:
case 32:
case 64:
case 128:
OpInfo.ConstraintVT =
MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
break;
}
} else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
unsigned PtrSize
= getDataLayout()->getPointerSizeInBits(PT->getAddressSpace());
OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
} else {
OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
}
}
}
// If we have multiple alternative constraints, select the best alternative.
if (ConstraintInfos.size()) {
if (maCount) {
unsigned bestMAIndex = 0;
int bestWeight = -1;
// weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
int weight = -1;
unsigned maIndex;
// Compute the sums of the weights for each alternative, keeping track
// of the best (highest weight) one so far.
for (maIndex = 0; maIndex < maCount; ++maIndex) {
int weightSum = 0;
for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
cIndex != eIndex; ++cIndex) {
AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
if (OpInfo.Type == InlineAsm::isClobber)
continue;
// If this is an output operand with a matching input operand,
// look up the matching input. If their types mismatch, e.g. one
// is an integer, the other is floating point, or their sizes are
// different, flag it as an maCantMatch.
if (OpInfo.hasMatchingInput()) {
AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
if (OpInfo.ConstraintVT != Input.ConstraintVT) {
if ((OpInfo.ConstraintVT.isInteger() !=
Input.ConstraintVT.isInteger()) ||
(OpInfo.ConstraintVT.getSizeInBits() !=
Input.ConstraintVT.getSizeInBits())) {
weightSum = -1; // Can't match.
break;
}
}
}
weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
if (weight == -1) {
weightSum = -1;
break;
}
weightSum += weight;
}
// Update best.
if (weightSum > bestWeight) {
bestWeight = weightSum;
bestMAIndex = maIndex;
}
}
// Now select chosen alternative in each constraint.
for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
cIndex != eIndex; ++cIndex) {
AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
if (cInfo.Type == InlineAsm::isClobber)
continue;
cInfo.selectAlternative(bestMAIndex);
}
}
}
// Check and hook up tied operands, choose constraint code to use.
for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
cIndex != eIndex; ++cIndex) {
AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
// If this is an output operand with a matching input operand, look up the
// matching input. If their types mismatch, e.g. one is an integer, the
// other is floating point, or their sizes are different, flag it as an
// error.
if (OpInfo.hasMatchingInput()) {
AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
if (OpInfo.ConstraintVT != Input.ConstraintVT) {
std::pair<unsigned, const TargetRegisterClass*> MatchRC =
getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
OpInfo.ConstraintVT);
std::pair<unsigned, const TargetRegisterClass*> InputRC =
getRegForInlineAsmConstraint(Input.ConstraintCode,
Input.ConstraintVT);
if ((OpInfo.ConstraintVT.isInteger() !=
Input.ConstraintVT.isInteger()) ||
(MatchRC.second != InputRC.second)) {
report_fatal_error("Unsupported asm: input constraint"
" with a matching output constraint of"
" incompatible type!");
}
}
}
}
return ConstraintOperands;
}
/// getConstraintGenerality - Return an integer indicating how general CT
/// is.
static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
switch (CT) {
case TargetLowering::C_Other:
case TargetLowering::C_Unknown:
return 0;
case TargetLowering::C_Register:
return 1;
case TargetLowering::C_RegisterClass:
return 2;
case TargetLowering::C_Memory:
return 3;
}
llvm_unreachable("Invalid constraint type");
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
TargetLowering::getMultipleConstraintMatchWeight(
AsmOperandInfo &info, int maIndex) const {
InlineAsm::ConstraintCodeVector *rCodes;
if (maIndex >= (int)info.multipleAlternatives.size())
rCodes = &info.Codes;
else
rCodes = &info.multipleAlternatives[maIndex].Codes;
ConstraintWeight BestWeight = CW_Invalid;
// Loop over the options, keeping track of the most general one.
for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
ConstraintWeight weight =
getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
if (weight > BestWeight)
BestWeight = weight;
}
return BestWeight;
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
TargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
// Look at the constraint type.
switch (*constraint) {
case 'i': // immediate integer.
case 'n': // immediate integer with a known value.
if (isa<ConstantInt>(CallOperandVal))
weight = CW_Constant;
break;
case 's': // non-explicit intregal immediate.
if (isa<GlobalValue>(CallOperandVal))
weight = CW_Constant;
break;
case 'E': // immediate float if host format.
case 'F': // immediate float.
if (isa<ConstantFP>(CallOperandVal))
weight = CW_Constant;
break;
case '<': // memory operand with autodecrement.
case '>': // memory operand with autoincrement.
case 'm': // memory operand.
case 'o': // offsettable memory operand
case 'V': // non-offsettable memory operand
weight = CW_Memory;
break;
case 'r': // general register.
case 'g': // general register, memory operand or immediate integer.
// note: Clang converts "g" to "imr".
if (CallOperandVal->getType()->isIntegerTy())
weight = CW_Register;
break;
case 'X': // any operand.
default:
weight = CW_Default;
break;
}
return weight;
}
/// ChooseConstraint - If there are multiple different constraints that we
/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
/// This is somewhat tricky: constraints fall into four classes:
/// Other -> immediates and magic values
/// Register -> one specific register
/// RegisterClass -> a group of regs
/// Memory -> memory
/// Ideally, we would pick the most specific constraint possible: if we have
/// something that fits into a register, we would pick it. The problem here
/// is that if we have something that could either be in a register or in
/// memory that use of the register could cause selection of *other*
/// operands to fail: they might only succeed if we pick memory. Because of
/// this the heuristic we use is:
///
/// 1) If there is an 'other' constraint, and if the operand is valid for
/// that constraint, use it. This makes us take advantage of 'i'
/// constraints when available.
/// 2) Otherwise, pick the most general constraint present. This prefers
/// 'm' over 'r', for example.
///
static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
const TargetLowering &TLI,
SDValue Op, SelectionDAG *DAG) {
assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
unsigned BestIdx = 0;
TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
int BestGenerality = -1;
// Loop over the options, keeping track of the most general one.
for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
TargetLowering::ConstraintType CType =
TLI.getConstraintType(OpInfo.Codes[i]);
// If this is an 'other' constraint, see if the operand is valid for it.
// For example, on X86 we might have an 'rI' constraint. If the operand
// is an integer in the range [0..31] we want to use I (saving a load
// of a register), otherwise we must use 'r'.
if (CType == TargetLowering::C_Other && Op.getNode()) {
assert(OpInfo.Codes[i].size() == 1 &&
"Unhandled multi-letter 'other' constraint");
std::vector<SDValue> ResultOps;
TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
ResultOps, *DAG);
if (!ResultOps.empty()) {
BestType = CType;
BestIdx = i;
break;
}
}
// Things with matching constraints can only be registers, per gcc
// documentation. This mainly affects "g" constraints.
if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
continue;
// This constraint letter is more general than the previous one, use it.
int Generality = getConstraintGenerality(CType);
if (Generality > BestGenerality) {
BestType = CType;
BestIdx = i;
BestGenerality = Generality;
}
}
OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
OpInfo.ConstraintType = BestType;
}
/// ComputeConstraintToUse - Determines the constraint code and constraint
/// type to use for the specific AsmOperandInfo, setting
/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
SDValue Op,
SelectionDAG *DAG) const {
assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
// Single-letter constraints ('r') are very common.
if (OpInfo.Codes.size() == 1) {
OpInfo.ConstraintCode = OpInfo.Codes[0];
OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
} else {
ChooseConstraint(OpInfo, *this, Op, DAG);
}
// 'X' matches anything.
if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
// Labels and constants are handled elsewhere ('X' is the only thing
// that matches labels). For Functions, the type here is the type of
// the result, which is not what we want to look at; leave them alone.
Value *v = OpInfo.CallOperandVal;
if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
OpInfo.CallOperandVal = v;
return;
}
// Otherwise, try to resolve it to something we know about by looking at
// the actual operand type.
if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
OpInfo.ConstraintCode = Repl;
OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
}
}
}
/// \brief Given an exact SDIV by a constant, create a multiplication
/// with the multiplicative inverse of the constant.
SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
SelectionDAG &DAG) const {
ConstantSDNode *C = cast<ConstantSDNode>(Op2);
APInt d = C->getAPIntValue();
assert(d != 0 && "Division by zero!");
// Shift the value upfront if it is even, so the LSB is one.
unsigned ShAmt = d.countTrailingZeros();
if (ShAmt) {
// TODO: For UDIV use SRL instead of SRA.
SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
d = d.ashr(ShAmt);
}
// Calculate the multiplicative inverse, using Newton's method.
APInt t, xn = d;
while ((t = d*xn) != 1)
xn *= APInt(d.getBitWidth(), 2) - t;
Op2 = DAG.getConstant(xn, Op1.getValueType());
return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
}
/// \brief Given an ISD::SDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG, bool IsAfterLegalization,
std::vector<SDNode *> *Created) const {
EVT VT = N->getValueType(0);
SDLoc dl(N);
// Check to see if we can do this.
// FIXME: We should be more aggressive here.
if (!isTypeLegal(VT))
return SDValue();
APInt::ms magics = Divisor.magic();
// Multiply the numerator (operand 0) by the magic value
// FIXME: We should support doing a MUL in a wider type
SDValue Q;
if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
isOperationLegalOrCustom(ISD::MULHS, VT))
Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
DAG.getConstant(magics.m, VT));
else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
N->getOperand(0),
DAG.getConstant(magics.m, VT)).getNode(), 1);
else
return SDValue(); // No mulhs or equvialent
// If d > 0 and m < 0, add the numerator
if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
if (Created)
Created->push_back(Q.getNode());
}
// If d < 0 and m > 0, subtract the numerator.
if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
if (Created)
Created->push_back(Q.getNode());
}
// Shift right algebraic if shift value is nonzero
if (magics.s > 0) {
Q = DAG.getNode(ISD::SRA, dl, VT, Q,
DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
if (Created)
Created->push_back(Q.getNode());
}
// Extract the sign bit and add it to the quotient
SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q,
DAG.getConstant(VT.getScalarSizeInBits() - 1,
getShiftAmountTy(Q.getValueType())));
if (Created)
Created->push_back(T.getNode());
return DAG.getNode(ISD::ADD, dl, VT, Q, T);
}
/// \brief Given an ISD::UDIV node expressing a divide by constant,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG, bool IsAfterLegalization,
std::vector<SDNode *> *Created) const {
EVT VT = N->getValueType(0);
SDLoc dl(N);
// Check to see if we can do this.
// FIXME: We should be more aggressive here.
if (!isTypeLegal(VT))
return SDValue();
// FIXME: We should use a narrower constant when the upper
// bits are known to be zero.
APInt::mu magics = Divisor.magicu();
SDValue Q = N->getOperand(0);
// If the divisor is even, we can avoid using the expensive fixup by shifting
// the divided value upfront.
if (magics.a != 0 && !Divisor[0]) {
unsigned Shift = Divisor.countTrailingZeros();
Q = DAG.getNode(ISD::SRL, dl, VT, Q,
DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
if (Created)
Created->push_back(Q.getNode());
// Get magic number for the shifted divisor.
magics = Divisor.lshr(Shift).magicu(Shift);
assert(magics.a == 0 && "Should use cheap fixup now");
}
// Multiply the numerator (operand 0) by the magic value
// FIXME: We should support doing a MUL in a wider type
if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
isOperationLegalOrCustom(ISD::MULHU, VT))
Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
DAG.getConstant(magics.m, VT)).getNode(), 1);
else
return SDValue(); // No mulhu or equvialent
if (Created)
Created->push_back(Q.getNode());
if (magics.a == 0) {
assert(magics.s < Divisor.getBitWidth() &&
"We shouldn't generate an undefined shift!");
return DAG.getNode(ISD::SRL, dl, VT, Q,
DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
} else {
SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
if (Created)
Created->push_back(NPQ.getNode());
NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
if (Created)
Created->push_back(NPQ.getNode());
NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
if (Created)
Created->push_back(NPQ.getNode());
return DAG.getNode(ISD::SRL, dl, VT, NPQ,
DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
}
}
bool TargetLowering::
verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
if (!isa<ConstantSDNode>(Op.getOperand(0))) {
DAG.getContext()->emitError("argument to '__builtin_return_address' must "
"be a constant integer");
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Legalization Utilities
//===----------------------------------------------------------------------===//
bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
SelectionDAG &DAG, SDValue LL, SDValue LH,
SDValue RL, SDValue RH) const {
EVT VT = N->getValueType(0);
SDLoc dl(N);
bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
unsigned OuterBitSize = VT.getSizeInBits();
unsigned InnerBitSize = HiLoVT.getSizeInBits();
unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
// LL, LH, RL, and RH must be either all NULL or all set to a value.
assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
(!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
if (!LL.getNode() && !RL.getNode() &&
isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
}
if (!LL.getNode())
return false;
APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
// The inputs are both zero-extended.
if (HasUMUL_LOHI) {
// We can emit a umul_lohi.
Lo = DAG.getNode(ISD::UMUL_LOHI, dl,
DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
Hi = SDValue(Lo.getNode(), 1);
return true;
}
if (HasMULHU) {
// We can emit a mulhu+mul.
Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
return true;
}
}
if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
// The input values are both sign-extended.
if (HasSMUL_LOHI) {
// We can emit a smul_lohi.
Lo = DAG.getNode(ISD::SMUL_LOHI, dl,
DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
Hi = SDValue(Lo.getNode(), 1);
return true;
}
if (HasMULHS) {
// We can emit a mulhs+mul.
Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
return true;
}
}
if (!LH.getNode() && !RH.getNode() &&
isOperationLegalOrCustom(ISD::SRL, VT) &&
isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
SDValue Shift = DAG.getConstant(ShiftAmt, getShiftAmountTy(VT));
LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
}
if (!LH.getNode())
return false;
if (HasUMUL_LOHI) {
// Lo,Hi = umul LHS, RHS.
SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
Lo = UMulLOHI;
Hi = UMulLOHI.getValue(1);
RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
return true;
}
if (HasMULHU) {
Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
return true;
}
}
return false;
}