1. Added opcode BUNDLE
2. Taught MachineInstr class to deal with bundled MIs
3. Changed MachineBasicBlock iterator to skip over bundled MIs; added an iterator to walk all the MIs
4. Taught MachineBasicBlock methods about bundled MIs
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145975 91177308-0d34-0410-b5e6-96231b3b80d8
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145714 91177308-0d34-0410-b5e6-96231b3b80d8
Conservatively returns zero when the GV does not specify an alignment nor is it
initialized. Previously it returns ABI alignment for type of the GV. However, if
the type is a "packed" type, then the under-specified alignments is attached to
the load / store instructions. In that case, the alignment of the type cannot be
trusted.
rdar://10464621
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145300 91177308-0d34-0410-b5e6-96231b3b80d8
than ABI alignment. These are loads / stores from / to "packed" data structures.
Their alignments are intentionally under-specified.
rdar://10301431
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145273 91177308-0d34-0410-b5e6-96231b3b80d8
dropping weights on the floor for invokes. This was impeding my writing
further test cases for invoke when interacting with probabilities and
block placement.
No test case as there doesn't appear to be a way to test this stuff. =/
Suggestions for a test case of course welcome. I hope to be able to add
test cases that indirectly cover this eventually by adding probabilities
to the exceptional edge and reordering blocks as a result.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145060 91177308-0d34-0410-b5e6-96231b3b80d8
ADDs. MaxOffs is used as a threshold to limit the size of the offset. Tradeoffs
being: (1) If we can't materialize the large constant then we'll cause fast-isel
to bail. (2) Too large of an offset can't be directly encoded in the ADD
resulting in a MOV+ADD. Generally not a bad thing because otherwise we would
have had ADD+ADD, but on Thumb this turns into a MOVS+MOVT+ADD. Working on a fix
for that. (3) Conversely, too low of a threshold we'll miss opportunities to
coalesce ADDs.
rdar://10412592
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144886 91177308-0d34-0410-b5e6-96231b3b80d8
for a single miss and not all predecessor instructions that get selected by
the selection DAG instruction selector. This is still not exact (e.g., over
states misses when folded/dead instructions are present), but it is a step in
the right direction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144832 91177308-0d34-0410-b5e6-96231b3b80d8
%arrayidx135 = getelementptr inbounds [4 x [4 x [4 x [4 x i32]]]]* %M0, i32 0, i64 0
%arrayidx136 = getelementptr inbounds [4 x [4 x [4 x i32]]]* %arrayidx135, i32 0, i64 %idxprom134
Prior to this commit, the GEP instruction that defines %arrayidx136 thought that
%arrayidx135 was a trivial kill. The GEP that defines %arrayidx135 doesn't
generate any code and thus %M0 gets folded into the second GEP. Thus, we need
to look through GEPs with all zero indices.
rdar://10443319
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144730 91177308-0d34-0410-b5e6-96231b3b80d8
instruction lower optimization" in the pre-RA scheduler.
The optimization, rather the hack, was done before MI use-list was available.
Now we should be able to implement it in a better way, perhaps in the
two-address pass until a MI scheduler is available.
Now that the scheduler has to backtrack to handle call sequences. Adding
artificial scheduling constraints is just not safe. Furthermore, the hack
is not taking all the other scheduling decisions into consideration so it's just
as likely to pessimize code. So I view disabling this optimization goodness
regardless of PR11314.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144267 91177308-0d34-0410-b5e6-96231b3b80d8
dragonegg self-host buildbot will recover (it is complaining about object
files differing between different build stages). Original commit message:
Add a hack to the scheduler to disable pseudo-two-address dependencies in
basic blocks containing calls. This works around a problem in which
these artificial dependencies can get tied up in calling seqeunce
scheduling in a way that makes the graph unschedulable with the current
approach of using artificial physical register dependencies for calling
sequences. This fixes PR11314.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144188 91177308-0d34-0410-b5e6-96231b3b80d8
basic blocks containing calls. This works around a problem in which
these artificial dependencies can get tied up in calling seqeunce
scheduling in a way that makes the graph unschedulable with the current
approach of using artificial physical register dependencies for calling
sequences. This fixes PR11314.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144124 91177308-0d34-0410-b5e6-96231b3b80d8
Add support for trimming constants to GetDemandedBits. This fixes some funky
constant generation that occurs when stores are expanded for targets that don't
support unaligned stores natively.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144102 91177308-0d34-0410-b5e6-96231b3b80d8
When this field is true it means that the load is from constant (runt-time or compile-time) and so can be hoisted from loops or moved around other memory accesses
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144100 91177308-0d34-0410-b5e6-96231b3b80d8
into the function. Reflect that here so that the array will be placed next to
the SP.
<rdar://problem/10128329>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143590 91177308-0d34-0410-b5e6-96231b3b80d8
If all of the inputs are zero/any_extended, create a new simple BV
which can be further optimized by other BV optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143297 91177308-0d34-0410-b5e6-96231b3b80d8
fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143206 91177308-0d34-0410-b5e6-96231b3b80d8
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143188 91177308-0d34-0410-b5e6-96231b3b80d8
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143177 91177308-0d34-0410-b5e6-96231b3b80d8
trying to legalize the operand types when only the result type
is required to be legalized - the type legalization machinery
will get round to the operands later if they need legalizing.
There can be a point to legalizing operands in parallel with
the result: when this saves compile time or results in better
code. There was only one case in which this was true: when
the operand is also split, so keep the logic for that bit.
As a result of this change, additional operand legalization
methods may need to be introduced to handle nodes where the
result and operand types can differ, like SIGN_EXTEND, but
the testsuite doesn't contain any tests where this is the case.
In any case, it seems better to require such methods (and die
with an assert if they doesn't exist) than to quietly produce
wrong code if we forgot to special case the node in
SplitVecRes_UnaryOp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143026 91177308-0d34-0410-b5e6-96231b3b80d8
This code makes different decisions when compiled into x87 instructions
because of different rounding behavior. That caused phase 2/3
miscompares on 32-bit Linux when the phase 1 compiler was built with gcc
(using x87), and the phase 2 compiler was built with clang (using SSE).
This fixes PR11200.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143006 91177308-0d34-0410-b5e6-96231b3b80d8
ZExtPromotedInteger and SExtPromotedInteger based on the operation we legalize.
SetCC return type needs to be legalized via PromoteTargetBoolean.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142660 91177308-0d34-0410-b5e6-96231b3b80d8
When checking the availability of instructions using the TLI, a 'promoted'
instruction IS available. It means that the value is bitcasted to another type
for which there is an operation. The correct check for the availablity of an
instruction is to check if it should be expanded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142542 91177308-0d34-0410-b5e6-96231b3b80d8
svn r139159 caused SelectionDAG::getConstant() to promote BUILD_VECTOR operands
with illegal types, even before type legalization. For this testcase, that led
to one BUILD_VECTOR with i16 operands and another with promoted i32 operands,
which triggered the assertion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142370 91177308-0d34-0410-b5e6-96231b3b80d8
Some code want to check that *any* call within a function has the 'returns
twice' attribute, not just that the current function has one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142221 91177308-0d34-0410-b5e6-96231b3b80d8
This isn't put into the 'clear()' method because the information needs to stick
around (at least for a little bit) after the selection DAG is built.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142032 91177308-0d34-0410-b5e6-96231b3b80d8
The inline asm operand constraint is initially encoded in the virtual
register for the operand, but that register class may change during
coalescing, and the original constraint is lost.
Encode the original register class as part of the flag word for each
inline asm operand. This makes it possible to recover the actual
constraint required by inline asm, just like we can for normal
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141833 91177308-0d34-0410-b5e6-96231b3b80d8
EXTRACT_SUBREG is emitted as %dst = COPY %src:sub, so there is no need to
constrain the %dst register class. RegisterCoalescer will apply the
necessary constraints if it decides to eliminate the COPY.
The %src register class does need to be constrained to something with
the right sub-registers, though. This is currently done manually with
COPY_TO_REGCLASS nodes. They can possibly be removed after this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141207 91177308-0d34-0410-b5e6-96231b3b80d8
The register class created by INSERT_SUBREG and SUBREG_TO_REG must be
legal and support the SubIdx sub-registers.
The new getSubClassWithSubReg() hook can compute that.
This may create INSERT_SUBREG instructions defining a larger register
class than the sub-register being inserted. That is OK,
RegisterCoalescer will constrain the register class as needed when it
eliminates the INSERT_SUBREG instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141198 91177308-0d34-0410-b5e6-96231b3b80d8
and the alignment is 0 (i.e., it's defined globally in one file and declared in
another file) it could get an alignment which is larger than the ABI allows for
that type, resulting in aligned moves being used for unaligned loads.
For instance, in file A.c:
struct S s;
In file B.c:
struct {
// something long
};
extern S s;
void foo() {
struct S p = s;
// ...
}
this copy is a 'memcpy' which is turned into a series of 'movaps' instructions
on X86. But this is wrong, because 'struct S' has alignment of 4, not 16.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140902 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic is used to pass the index of the function context to the back-end
for further processing. The back-end is in charge of filling in the rest of the
entries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140676 91177308-0d34-0410-b5e6-96231b3b80d8
SDNodes may return values which are wider than the incoming element types. In
this patch we fix the integer promotion of these nodes.
Fixes spill-q.ll when running -promote-elements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140471 91177308-0d34-0410-b5e6-96231b3b80d8
(this is always the case for scalars), otherwise use the promoted result type.
Fix test/CodeGen/X86/vsplit-and.ll when promote-elements is enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140464 91177308-0d34-0410-b5e6-96231b3b80d8
When generating the trunc-store of i1's, we need to use the vector type and not
the scalar type.
This patch fixes the assertion in CodeGen/Generic/bool-vector.ll when
running with -promote-elements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140463 91177308-0d34-0410-b5e6-96231b3b80d8
DecomposeMERGE_VALUES to "know" that results are legalized in
a particular order, by passing it the number of the result
being legalized (the type legalization core provides this, it
just needs to be passed on).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140373 91177308-0d34-0410-b5e6-96231b3b80d8
integer-promotion of CONCAT_VECTORS.
Test: test/CodeGen/X86/widen_shuffle-1.ll
This patch fixes the above tests (when running in with -promote-elements).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140372 91177308-0d34-0410-b5e6-96231b3b80d8
Sometimes register class constraints are trivial, like GR32->GR32_NOSP,
or GPR->rGPR. Teach InstrEmitter to simply constrain the virtual
register instead of emitting a copy in these cases.
Normally, these copies are handled by the coalescer. This saves some
coalescer work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140340 91177308-0d34-0410-b5e6-96231b3b80d8
Vector SetCC result types need to be type-legalized.
This code worked before because scalar result types are known to be legal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140249 91177308-0d34-0410-b5e6-96231b3b80d8
This is still a hack until we can teach tblgen to generate the
optional CPSR operand rather than an implicit CPSR def. But the
strangeness is now limited to the selection DAG. ADD/SUB MI's no
longer have implicit CPSR defs, nor do we allow flag setting variants
of these opcodes in machine code. There are several corner cases to
consider, and getting one wrong would previously lead to nasty
miscompilation. It's not the first time I've debugged one, so this
time I added enough verification to ensure it won't happen again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140228 91177308-0d34-0410-b5e6-96231b3b80d8
No functionality change. The hook makes it explicit which patterns
require "special" handling. i.e. it self-documents tblgen
deficiencies. I plan to add verification in ExpandISelPseudos and
Thumb2SizeReduce to catch any missing hasPostISelHooks. Otherwise it's
too fragile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140160 91177308-0d34-0410-b5e6-96231b3b80d8
Modified ARMISelLowering::AdjustInstrPostInstrSelection to handle the
full gamut of CPSR defs/uses including instructins whose "optional"
cc_out operand is not really optional. This allowed removal of the
hasPostISelHook to simplify the .td files and make the implementation
more robust.
Fixes rdar://10137436: sqlite3 miscompile
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140134 91177308-0d34-0410-b5e6-96231b3b80d8
(The fix for the related failures on x86 is going to be nastier because we actually need Acquire memoperands attached to the atomic load instrs, etc.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139221 91177308-0d34-0410-b5e6-96231b3b80d8
with a vector condition); such selects become VSELECT codegen nodes.
This patch also removes VSETCC codegen nodes, unifying them with SETCC
nodes (codegen was actually often using SETCC for vector SETCC already).
This ensures that various DAG combiner optimizations kick in for vector
comparisons. Passes dragonegg bootstrap with no testsuite regressions
(nightly testsuite as well as "make check-all"). Patch mostly by
Nadav Rotem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139159 91177308-0d34-0410-b5e6-96231b3b80d8
init.trampoline and adjust.trampoline intrinsics, into two intrinsics
like in GCC. While having one combined intrinsic is tempting, it is
not natural because typically the trampoline initialization needs to
be done in one function, and the result of adjust trampoline is needed
in a different (nested) function. To get around this llvm-gcc hacks the
nested function lowering code to insert an additional parent variable
holding the adjust.trampoline result that can be accessed from the child
function. Dragonegg doesn't have the luxury of tweaking GCC code, so it
stored the result of adjust.trampoline in the memory GCC set aside for
the trampoline itself (this is always available in the child function),
and set up some new memory (using an alloca) to hold the trampoline.
Unfortunately this breaks Go which allocates trampoline memory on the
heap and wants to use it even after the parent has exited (!). Rather
than doing even more hacks to get Go working, it seemed best to just use
two intrinsics like in GCC. Patch mostly by Sanjoy Das.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139140 91177308-0d34-0410-b5e6-96231b3b80d8
If we have a chain of zext -> assert_zext -> zext -> use, the first zext would get simplified away because of the later zext, and then the later zext would get simplified away because of the assert. The solution is to teach SimplifyDemandedBits that assert_zext demands all of the high bits of its input, rather than only those demanded by its users. No testcase because the only example I have manifests as llvm-gcc miscompiling LLVM, and I haven't found a smaller case that reproduces this problem.
Fixes <rdar://problem/10063365>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139059 91177308-0d34-0410-b5e6-96231b3b80d8
to be unreliable on platforms which require memcpy calls, and it is
complicating broader legalize cleanups. It is hoped that these cleanups
will make memcpy byval easier to implement in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138977 91177308-0d34-0410-b5e6-96231b3b80d8
Added canClobberReachingPhysRegUse() to handle a particular pattern in
which a two-address instruction could be forced to interfere with
EFLAGS, causing a compare to be unnecessarilly cloned.
Fixes rdar://problem/5875261
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138924 91177308-0d34-0410-b5e6-96231b3b80d8
Add a instruction flag: hasPostISelHook which tells the pre-RA scheduler to
call a target hook to adjust the instruction. For ARM, this is used to
adjust instructions which may be setting the 's' flag. ADC, SBC, RSB, and RSC
instructions have implicit def of CPSR (required since it now uses CPSR physical
register dependency rather than "glue"). If the carry flag is used, then the
target hook will *fill in* the optional operand with CPSR. Otherwise, the hook
will remove the CPSR implicit def from the MachineInstr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138810 91177308-0d34-0410-b5e6-96231b3b80d8
I don't really like the patterns, but I'm having trouble coming up with a
better way to handle them.
I plan on making other targets use the same legalization
ARM-without-memory-barriers is using... it's not especially efficient, but
if anyone cares, it's not that hard to fix for a given target if there's
some better lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138621 91177308-0d34-0410-b5e6-96231b3b80d8
the intent seems to be to terminate even in Release builds, just use abort()
directly.
If program flow ever reaches a __builtin_unreachable (which llvm_unreachable is
#define'd to on newer GCCs) then the program is undefined.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@138068 91177308-0d34-0410-b5e6-96231b3b80d8
The landingpad instruction is lowered into the EXCEPTIONADDR and EHSELECTION
SDNodes. The information from the landingpad instruction is harvested by the
'AddLandingPadInfo' function. The new EH uses the current EH scheme in the
back-end. This will change once we switch over to the new scheme. (Reviewed by
Jakob!)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137880 91177308-0d34-0410-b5e6-96231b3b80d8
This generates the SDNodes for the new exception handling scheme. It takes the
two values coming from the landingpad instruction and assigns them to the
EXCEPTIONADDR and EHSELECTION nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137873 91177308-0d34-0410-b5e6-96231b3b80d8
be illegal, even if the requested vector type is legal. Testcase is one of the
disabled ARM tests in the vector-select patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137562 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the 'landingpad' instruction. It's used to indicate that a basic
block is a landing pad. There are several restrictions on its use (see
LangRef.html for more detail). These restrictions allow the exception handling
code to gather the information it needs in a much more sane way.
This patch has the definition, implementation, C interface, parsing, and bitcode
support in it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137501 91177308-0d34-0410-b5e6-96231b3b80d8
lower XMM register gets in first. This will allow the SUBREG pattern to
elliminate the first vector insertion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137310 91177308-0d34-0410-b5e6-96231b3b80d8
The testcase looks extremely fragile, so I'm adding an assertion which should catch any cases like this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136711 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136589 91177308-0d34-0410-b5e6-96231b3b80d8
working on x86 (at least for trivial testcases); other architectures will
need more work so that they actually emit the appropriate instructions for
orderings stricter than 'monotonic'. (As far as I can tell, the ARM, PPC,
Mips, and Alpha backends need such changes.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136457 91177308-0d34-0410-b5e6-96231b3b80d8
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136433 91177308-0d34-0410-b5e6-96231b3b80d8
This generates the correct SDNodes for the landingpad instruction. It makes an
assumption that the result of the landingpad instruction has at least two
values. And that the first value is a pointer to the exception object and the
second value is the "selector."
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136430 91177308-0d34-0410-b5e6-96231b3b80d8
AddLandingPadInfo takes a landingpad instruction and grabs all of the
information from it that it needs for EH table generation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136429 91177308-0d34-0410-b5e6-96231b3b80d8
'atomicrmw' instructions, which allow representing all the current atomic
rmw intrinsics.
The allowed operands for these instructions are heavily restricted at the
moment; we can probably loosen it a bit, but supporting general
first-class types (where it makes sense) might get a bit complicated,
given how SelectionDAG works.
As an initial cut, these operations do not support specifying an alignment,
but it would be possible to add if we think it's useful. Specifying an
alignment lower than the natural alignment would be essentially
impossible to support on anything other than x86, but specifying a greater
alignment would be possible. I can't think of any useful optimizations which
would use that information, but maybe someone else has ideas.
Optimizer/codegen support coming soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136404 91177308-0d34-0410-b5e6-96231b3b80d8
This is just a LangRef entry and reading/writing/memory representation; optimizer+codegen support coming soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136009 91177308-0d34-0410-b5e6-96231b3b80d8
errors like the one corrected by r135261. Migrate all LLVM callers of the old
constructor to the new one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135431 91177308-0d34-0410-b5e6-96231b3b80d8
when determining validity of matching constraint. Allow i1
types access to the GR8 reg class for x86.
Fixes PR10352 and rdar://9777108
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135180 91177308-0d34-0410-b5e6-96231b3b80d8
During type legalization we often use the SIGN_EXTEND_INREG SDNode.
When this SDNode is legalized during the LegalizeVector phase, it is
scalarized because non-simple types are automatically marked to be expanded.
In this patch we add support for lowering SIGN_EXTEND_INREG manually.
This fixes CodeGen/X86/vec_sext.ll when running with the '-promote-elements'
flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135144 91177308-0d34-0410-b5e6-96231b3b80d8
We have to do this in DAGBuilder instead of DAGCombiner, because the exact bit is lost after building.
struct foo { char x[24]; };
long bar(struct foo *a, struct foo *b) { return a-b; }
is now compiled into
movl 4(%esp), %eax
subl 8(%esp), %eax
sarl $3, %eax
imull $-1431655765, %eax, %eax
instead of
movl 4(%esp), %eax
subl 8(%esp), %eax
movl $715827883, %ecx
imull %ecx
movl %edx, %eax
shrl $31, %eax
sarl $2, %edx
addl %eax, %edx
movl %edx, %eax
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134695 91177308-0d34-0410-b5e6-96231b3b80d8
hasPredecessorHelper function allows predecessors to be cached to speed up
repeated invocations. This fixes PR10186.
X.isPredecessorOf(Y) now just calls Y.hasPredecessor(X)
Y.hasPredecessor(X) calls Y.hasPredecessorHelper(X, Visited, Worklist) with
empty Visited and Worklist sets (i.e. no caching over invocations).
Y.hasPredecessorHelper(X, Visited, Worklist) caches search state in Visited
and Worklist to speed up repeated calls. The Visited set is searched for X
before going to the worklist to further search the DAG if necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134592 91177308-0d34-0410-b5e6-96231b3b80d8
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134021 91177308-0d34-0410-b5e6-96231b3b80d8
Removed the check that peeks past EXTRA_SUBREG, which I don't think
makes sense any more. Intead treat it as a normal register def. No
significant affect on x86 or ARM benchmarks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133917 91177308-0d34-0410-b5e6-96231b3b80d8
Both become <earlyclobber> defs on the INLINEASM MachineInstr, but we
now use two different asm operand kinds.
The new Kind_Clobber is treated identically to the old
Kind_RegDefEarlyClobber for now, but x87 floating point stack inline
assembly does care about the difference.
This will pop a register off the stack:
asm("fstp %st" : : "t"(x) : "st");
While this will pop the input and push an output:
asm("fst %st" : "=&t"(r) : "t"(x));
We need to know if ST0 was a clobber or an output operand, and we can't
depend on <dead> flags for that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133902 91177308-0d34-0410-b5e6-96231b3b80d8
1. (((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8)
=> (bswap x) >> 16
2. ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0xff000000)>>8)|((x&0x00ff0000)<<8))
=> (rotl (bswap x) 16)
This allows us to eliminate most of the def : Pat patterns for ARM rev16
revsh instructions. It catches many more cases for ARM and x86.
rdar://9609108
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133503 91177308-0d34-0410-b5e6-96231b3b80d8
source vector type is to be split while the target vector is to be promoted.
(eg: <4 x i64> -> <4 x i8> )
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133424 91177308-0d34-0410-b5e6-96231b3b80d8
range without a libcall to a new mulo<mode> libcall
that we'd have to create.
Finishes the rest of rdar://9090077 and rdar://9210061
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133318 91177308-0d34-0410-b5e6-96231b3b80d8
In Thumb mode we cannot handle GPR virtual registers, even though some
instructions can. When isel is lowering a CopyFromReg, it should limit
itself to subclasses of getRegClassFor(VT).
<rdar://problem/9624323>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133210 91177308-0d34-0410-b5e6-96231b3b80d8
BranchProbabilityInfo (expect setEdgeWeight which is not available here).
Branch Weights are kept in MachineBasicBlocks. To turn off this analysis
set -use-mbpi=false.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133184 91177308-0d34-0410-b5e6-96231b3b80d8
This is intended to support using REG_SEQUENCE SDNode's with type MVT::untyped, and is part of the long road to eliminating some of the hacks we currently use to support register pairs and other strange constraints, particularly on ARM NEON.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133178 91177308-0d34-0410-b5e6-96231b3b80d8
This virtual function will replace allocation_order_begin/end as the one
to override when implementing custom allocation orders. It is simpler to
have one function return an ArrayRef than having two virtual functions
computing different ends of the same array.
Use getRawAllocationOrder() in place of allocation_order_begin() where
it makes sense, but leave some clients that look like they really want
the filtered allocation orders from RegisterClassInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133170 91177308-0d34-0410-b5e6-96231b3b80d8
GetDemandBits (which must operate on the vector element type).
Fix the a usage of getZeroExtendInReg which must also be done on scalar types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133052 91177308-0d34-0410-b5e6-96231b3b80d8
converted to add x,x if x is a undef. add undef, undef does not guarantee
that the resulting low order bit is zero.
Fixes <rdar://problem/9453156> and <rdar://problem/9487392>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133022 91177308-0d34-0410-b5e6-96231b3b80d8
types (with power of two types such as 8,16,32 .. 512).
Fix a bug in the integer promotion of bitcast nodes. Enable integer expanding
only if the target of the conversion is an integer (when the type action is
scalarize).
Add handling to the legalization of vector load/store in cases where the saved
vector is integer-promoted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132985 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of scalarizing, and doing an element-by-element truncat, use vector
truncate.
Add support for scalarization of vectors: i8 -> <1 x i1> (from Duncan's
testcase).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132892 91177308-0d34-0410-b5e6-96231b3b80d8
The potential DAGCombine which enforces this more generally messes up some other very fragile patterns, so I'm leaving that alone, at least for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132809 91177308-0d34-0410-b5e6-96231b3b80d8