induction variable. The preRA scheduler is unaware of induction vars,
so we look for potential "virtual register cycles" instead.
Fixes <rdar://problem/8946719> Bad scheduling prevents coalescing
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129100 91177308-0d34-0410-b5e6-96231b3b80d8
There can be multiple defs for a single virtual register when they are defining
sub-registers.
The missing <dead> flag was stopping the inline spiller from eliminating dead
code after rematerialization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128888 91177308-0d34-0410-b5e6-96231b3b80d8
When a virtual register has a single value that is defined as a copy of a
reserved register, permit that copy to be joined. These virtual register are
usually copies of the stack pointer:
%vreg75<def> = COPY %ESP; GR32:%vreg75
MOV32mr %vreg75, 1, %noreg, 0, %noreg, %vreg74<kill>
MOV32mi %vreg75, 1, %noreg, 8, %noreg, 0
MOV32mi %vreg75<kill>, 1, %noreg, 4, %noreg, 0
CALLpcrel32 ...
Coalescing these virtual registers early decreases register pressure.
Previously, they were coalesced by RALinScan::attemptTrivialCoalescing after
register allocation was completed.
The lower register pressure causes the mcinst-lowering-cmp0.ll test case to fail
because it depends on linear scan spilling a particular register.
I am deleting 2008-08-05-SpillerBug.ll because it is counting the number of
instructions emitted, and its revision history shows the 'correct' count being
edited many times.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128845 91177308-0d34-0410-b5e6-96231b3b80d8
The code inserted by PPCTargetLowering::EmitInstrWithCustomInserter for ppc64 is
wrong, and I don't know how to fix it. It seems to be using the correct register
classes for pointers, but it inserts all 32-bit instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128835 91177308-0d34-0410-b5e6-96231b3b80d8
registers that arise from argument shuffling with the soft float ABI. These
instructions are particularly slow on Cortex A8. This fixes one half of
<rdar://problem/8674845>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128759 91177308-0d34-0410-b5e6-96231b3b80d8
Turn them into noop KILL instructions instead. This lets the scavenger know when
super-registers are killed and defined.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128645 91177308-0d34-0410-b5e6-96231b3b80d8
This way, shrinkToUses() will ignore the instruction that is about to be
deleted, and we avoid leaving invalid live ranges that SplitKit doesn't like.
Fix a misunderstanding in MachineVerifier about <def,undef> operands. The
<undef> flag is valid on def operands where it has the same meaning as <undef>
on a use operand. It only applies to sub-register defines which also read the
full register.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128642 91177308-0d34-0410-b5e6-96231b3b80d8
The rematerialized instruction may require a more constrained register class
than the register being spilled. In the test case, the spilled register has been
inflated to the DPR register class, but we are rematerializing a load of the
ssub_0 sub-register which only exists for DPR_VFP2 registers.
The register class is reinflated after spilling, so the conservative choice is
only temporary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128610 91177308-0d34-0410-b5e6-96231b3b80d8
was lowering them to sext / uxt + mul instructions. Unfortunately the
optimization passes may hoist the extensions out of the loop and separate them.
When that happens, the long multiplication instructions can be broken into
several scalar instructions, causing significant performance issue.
Note the vmla and vmls intrinsics are not added back. Frontend will codegen them
as intrinsics vmull* + add / sub. Also note the isel optimizations for catching
mul + sext / zext are not changed either.
First part of rdar://8832507, rdar://9203134
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128502 91177308-0d34-0410-b5e6-96231b3b80d8
isel lowering to fold the zero-extend's and take advantage of no-stall
back to back vmul + vmla:
vmull q0, d4, d6
vmlal q0, d5, d6
is faster than
vaddl q0, d4, d5
vmovl q1, d6
vmul q0, q0, q1
This allows us to vmull + vmlal for:
f = vmull_u8( vget_high_u8(s), c);
f = vmlal_u8(f, vget_low_u8(s), c);
rdar://9197392
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128444 91177308-0d34-0410-b5e6-96231b3b80d8
becomes reachable when before it wasn't). Check to make sure that it's not null
before trying to use it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128434 91177308-0d34-0410-b5e6-96231b3b80d8
Correctly terminate the range of register DBG_VALUEs when the register is
clobbered or when the basic block ends.
The code is now ready to deal with variables that are sometimes in a register
and sometimes on the stack. We just need to teach emitDebugLoc to say 'stack
slot'.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128327 91177308-0d34-0410-b5e6-96231b3b80d8
masks to match inversely for the code as is to work. For the example given
we actually want:
bfi r0, r2, #1, #1
not #0, however, given the way the pattern is written it's not possible
at the moment.
Fixes rdar://9177502
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128320 91177308-0d34-0410-b5e6-96231b3b80d8
The .dot directives don't need labels, that is a leftover from when we created
line number info manually.
Instructions following a DBG_VALUE can share its label since the DBG_VALUE
doesn't produce any code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128284 91177308-0d34-0410-b5e6-96231b3b80d8
I'm backing this out for the second time. It was supposed to be fixed by r128164, but the mingw self-host must be defeating the fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128181 91177308-0d34-0410-b5e6-96231b3b80d8
int tries = INT_MAX;
while (tries > 0) {
tries--;
}
The check should be:
subs r4, #1
cmp r4, #0
bgt LBB0_1
The subs can set the overflow V bit when r4 is INT_MAX+1 (which loop
canonicalization apparently does in this case). cmp #0 would have cleared
it while not changing the N and Z bits. Since BGT is dependent on the V
bit, i.e. (N == V) && !Z, it is not safe to eliminate the cmp #0.
rdar://9172742
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128179 91177308-0d34-0410-b5e6-96231b3b80d8
This will extend the ranges of debug info variables in registers until they are
clobbered.
Fix 1: Don't mistake DBG_VALUE instructions referring to incoming arguments on
the stack with DBG_VALUE instructions referring to variables in the frame
pointer. This fixes the gdb test-suite failure.
Fix 2: Don't trace through copies to physical registers setting up call
arguments. These registers are call clobbered, and the source register is more
likely to be a callee-saved register that can be extended through the call
instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128114 91177308-0d34-0410-b5e6-96231b3b80d8
Temporarily reverting these to see if we can get llvm-objdump to link. Hopefully this is not the problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128097 91177308-0d34-0410-b5e6-96231b3b80d8
These ranges get completely jumbled by the post-ra scheduler, and it is not
really reasonable to expect it to make sense of them.
Instead, teach DwarfDebug to notice when user variables in registers are
clobbered, and terminate the ranges there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128045 91177308-0d34-0410-b5e6-96231b3b80d8
gun as does. This makes it a lot easier to compare the output of both
as the addresses are now a lot closer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127972 91177308-0d34-0410-b5e6-96231b3b80d8
to have single return block (at least getting there) for optimizations. This
is general goodness but it would prevent some tailcall optimizations.
One specific case is code like this:
int f1(void);
int f2(void);
int f3(void);
int f4(void);
int f5(void);
int f6(void);
int foo(int x) {
switch(x) {
case 1: return f1();
case 2: return f2();
case 3: return f3();
case 4: return f4();
case 5: return f5();
case 6: return f6();
}
}
=>
LBB0_2: ## %sw.bb
callq _f1
popq %rbp
ret
LBB0_3: ## %sw.bb1
callq _f2
popq %rbp
ret
LBB0_4: ## %sw.bb3
callq _f3
popq %rbp
ret
This patch teaches codegenprep to duplicate returns when the return value
is a phi and where the phi operands are produced by tail calls followed by
an unconditional branch:
sw.bb7: ; preds = %entry
%call8 = tail call i32 @f5() nounwind
br label %return
sw.bb9: ; preds = %entry
%call10 = tail call i32 @f6() nounwind
br label %return
return:
%retval.0 = phi i32 [ %call10, %sw.bb9 ], [ %call8, %sw.bb7 ], ... [ 0, %entry ]
ret i32 %retval.0
This allows codegen to generate better code like this:
LBB0_2: ## %sw.bb
jmp _f1 ## TAILCALL
LBB0_3: ## %sw.bb1
jmp _f2 ## TAILCALL
LBB0_4: ## %sw.bb3
jmp _f3 ## TAILCALL
rdar://9147433
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127953 91177308-0d34-0410-b5e6-96231b3b80d8
not have native support for this operation (such as X86).
The legalized code uses two vector INT_TO_FP operations and is faster
than scalarizing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127951 91177308-0d34-0410-b5e6-96231b3b80d8
- Emit mad instead of mad.rn for shader model 1.0
- Emit explicit mov.u32 instructions for reading global variables
- (most PTX instructions cannot take global variable immediates)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127895 91177308-0d34-0410-b5e6-96231b3b80d8
comparisons on x86. Essentially, the way this works is that SUB+SBB sets
the relevant flags the same way a double-width CMP would.
This is a substantial improvement over the generic lowering in LLVM. The output
is also shorter than the gcc-generated output; I haven't done any detailed
benchmarking, though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127852 91177308-0d34-0410-b5e6-96231b3b80d8
rather than an int. Thankfully, this only causes LLVM to miss optimizations, not
generate incorrect code.
This just fixes the zext at the return. We still insert an i32 ZextAssert when
reading a function's arguments, but it is followed by a truncate and another i8
ZextAssert so it is not optimized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127766 91177308-0d34-0410-b5e6-96231b3b80d8
plus the test where it used to break.", which broke Clang self-host of a
Debug+Asserts compiler, on OS X.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127763 91177308-0d34-0410-b5e6-96231b3b80d8
conforms to the ABI, but DAGCombine could in theory recognize the sequence of
zext asserts and truncates and generate incorrect code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127754 91177308-0d34-0410-b5e6-96231b3b80d8
v2 = bitcast v1
...
v3 = bitcast v2
...
= v3
=>
v2 = bitcast v1
...
= v1
if v1 and v3 are of in the same register class.
bitcast between i32 and fp (and others) are often not nops since they
are in different register classes. These bitcast instructions are often
left because they are in different basic blocks and cannot be
eliminated by dag combine.
rdar://9104514
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127668 91177308-0d34-0410-b5e6-96231b3b80d8
Also more cleanly separate the ARM vs. Thumb functionality. Previously, the
encoding would be incorrect for some Thumb instructions (the indirect calls).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127637 91177308-0d34-0410-b5e6-96231b3b80d8
Go ahead and add them on when we might want to use them and let
later passes remove them.
Fixes rdar://9118569
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127518 91177308-0d34-0410-b5e6-96231b3b80d8
Optimize trivial branches in CodeGenPrepare, which often get created from the
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127498 91177308-0d34-0410-b5e6-96231b3b80d8
protector insertion not working correctly with unreachable code. Since that
revision was rolled out, this test doesn't actual fail before this fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127497 91177308-0d34-0410-b5e6-96231b3b80d8
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127459 91177308-0d34-0410-b5e6-96231b3b80d8
corresponding testcases back to the previous versions.
Fixes some performance regressions only seen on 32-bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127441 91177308-0d34-0410-b5e6-96231b3b80d8
The damage done by physreg coalescing only depends on the number of instructions
the extended physreg live range covers. This fixes PR9438.
The heuristic is still luck-based, and physreg coalescing really should be
disabled completely. We need a register allocator with better hinting support
before that is possible.
Convert a test to FileCheck and force spilling by inserting an extra call. The
previous spilling behavior was dependent on misguided physreg coalescing
decisions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127351 91177308-0d34-0410-b5e6-96231b3b80d8
The test is derived from an old miscompilation of
MultiSource/Benchmarks/VersaBench/8b10b which is run regularly, so we are not
losing coverage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127350 91177308-0d34-0410-b5e6-96231b3b80d8
testcases accordingly. Some are currently xfailed and will be filed
as bugs to be fixed or understood.
Performance results:
roughly neutral on SPEC
some micro benchmarks in the llvm suite are up between 100 and 150%, only
a pair of regressions that are due to be investigated
john-the-ripper saw:
10% improvement in traditional DES
8% improvement in BSDI DES
59% improvement in FreeBSD MD5
67% improvement in OpenBSD Blowfish
14% improvement in LM DES
Small compile time impact.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127208 91177308-0d34-0410-b5e6-96231b3b80d8
bitcasts, which are really no-ops here. This fixes slowdowns on
MultiSource/Applications/aha and others.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127031 91177308-0d34-0410-b5e6-96231b3b80d8
There was a previous implementation with patterns that would
have matched e.g.
shl <v4i32> <i32>,
but this is not valid LLVM IR so they never were selected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126998 91177308-0d34-0410-b5e6-96231b3b80d8